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Abstract

Driving style, road geometry, and traffic conditions have a significant impact on vehicles’ fuel
economy. In general, drivers are not aware of the optimal velocity profile for a given route.
Indeed, the global optimal velocity trajectory depends on many factors, and its calculation
requires intensive computations. In this paper, we discuss the optimization of the speed
trajectory to minimize fuel consumption and communicate it to the driver. With this infor-
mation the driver can adjust his/her speed profile to reduce the overall fuel consumption. We
propose to perform the computation-intensive calculations on a distinct computing platform
called the ”cloud.”? In our approach, the driver sends the information of the intended travel
destination to the cloud. In the cloud, the server generates a route, collects the associated
traffic and geographical information, and solves the optimization problem by a spatial domain
dynamic programming (DP) algorithm that utilizes accurate vehicle and fuel consumption
models to determine the optimal speed trajectory along the route. Then, the server sends
the speed trajectory to the vehicle where it is communicated to the driver. We tested the
approach on a prototype vehicle equipped with a visual interface mounted on the dash of a
test vehicle. The test results show 5%-15% improvement in fuel economy depending on the
driver and route without a significant effect on the travel time. Although this paper imple-
ments the speed advisory system in a conventional vehicle, the solution is generic, and it is
applicable to any kind of powertrain structure.
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Abstract—Driving style, road geometry, and traffic conditions
have significant impact on the vehicle fuel economy. In general,
drivers are not aware of the optimal velocity profile for a given
route. Indeed, the global optimal velocity trajectory depends on
many factors and its calculation requires intensive computations.
In this study, we discuss the optimization of the speed trajectory
to minimize fuel consumption and communicate it to the driver.
With this information, the driver can adjust his/her speed profile
to reduce the overall fuel consumption. We propose to perform
the computation intensive calculations on a distinct computing
platform called the ”Cloud”. In our approach, the driver sends
the information of the intended travel destination to the cloud.
In the cloud the server generates a route, collects the associated
traffic and geographical information and solves the optimiza-
tion problem by a spatial domain dynamic programming (DP)
algorithm which utilizes accurate vehicle and fuel consumption
models to determine the optimal speed trajectory along the route.
Then, the server sends the speed trajectory to the vehicle where
it is communicated to the driver. We tested the approach on a
prototype vehicle equipped with a visual interface mounted on the
dash of a test vehicle. The test results show 5%-15% improvement
in fuel economy depending on the driver and route without
significant effect on the travel time. Although the current research
implements the speed advisory system (SAS) in a conventional
vehicle, the solution is generic and it is applicable to any kind
of powertrain structure.

Index Terms—Cloud computing, optimal control, dynamic
programming, fuel economy, intelligent transportation systems.

I. INTRODUCTION

As the number of vehicles on the road has increased world-
wide, the importance of decreasing overall vehicle energy
consumption has grown. Increased environmental pollution
and the limited petroleum supply, still the main source of
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energy in today’s vehicles, compels society, academia, and
industry to seek more efficient vehicles. Significant effort has
been put forth in finding new powertrain with less energy
consumption. This work resulted in breakthroughs allowing
modern hybrid vehicles. Although hybrid vehicles take many
forms, pneumatic, mechanical, fuelcell, etc., hybrid electric
vehicles (HEVs) drew the most attention to date, and many
studies focused on energy management of HEVs [1]-[3].

Another approach to reduce energy consumption is in the
area of driving velocity profile optimization. However, the
traffic and geographical information of the road networks
require large storage units and the search algorithms for global
optimization may require high computation power which are
not available on current vehicle computing units [4]-[6]. As
technology develops, however, cheaper and better communica-
tion systems emerge, more accurate sensors become available
and in vehicle computation units become more powerful.
Recently in Europe, some of the local public transportation
vehicles have started to communicate with a certain number
of traffic lights [7]. In the US, industry and academia are
conducting experiments in broadcasting red light timings for
security warning systems [8]. These advances in commu-
nication systems, sensor technology and high performance
computation sources enable further work in driving profile
optimization, an approach which still holds a great potential
for energy consumption reduction of road vehicles [9], [10] at
a very limited cost.

Recently, many algorithms have been proposed for speed
trajectory optimization. Asadi et al. [11] have proposed a
control algorithm that adapts the velocity profile to guarantee
a vehicle approaches a traffic light at green, whenever possi-
ble. The authors used a short range radar and traffic signal
information to predictively schedule a sub-optimal velocity
trajectory and implemented the algorithm in an existing cruise
control system. A similar approach has been proposed by
Raubitschek et al. [12], where the authors divided the velocity
profile into a number of modes and generated a velocity
profile combined with these modes to ensure arrival at a
green traffic light. In [13], we developed an analytical solution
to generate an optimal velocity profile to minimize energy
consumption on a given route with the existence of a single
traffic light. In our analysis we assumed the availability of
real-time traffic light information. Similarly in [14], a closed
form solution is proposed for the generation of optimal energy
management in electric vehicles for a given route. In [15],



[16] the authors have proposed a velocity profile optimizing
algorithm for a certain look-ahead distance, however their
algorithm may lead to suboptimal solutions for the entire
trip distance. In [17] - [19], algorithms based on traffic and
topographic information of the road for energy consumption
reduction have been proposed. The studies discussed so far
in general require relatively expensive on board computation
resources and sensors and their real time applications have
been limited. Another application of energy efficient velocity
optimization is conducted by Howlett e al. [20], [21], where
the authors deal with the speed control problem within the
context of train operation, although there is much less need
for cloud computation because the route is repetitive and there
are far fewer disturbances. Also the time scheduling in trains
is the dominant factor because of the shared rail resource.

In our preliminary work [22] we have introduced the cloud
framework and in this paper, we extend the developed ideas
with real time implementation of the speed advisory system
(SAS) to generate a global optimal velocity profile by in-
corporating the available geographical and traffic information,
propose a solution by means of cloud computing [23], present
more details on the algorithms, and their implementation,
and present experimental results on multiple routes and for
multiple drivers.

Cloud Computing for Vehicle Applications

Cloud computing as defined in [24], is a system for enabling
on-demand network access to a shared pool of configurable
computing resources which have “virtually unlimited” storage
space and computational power. Resources can be rapidly
acquired and released with minimum management effort.
The recent penetration of the mobile wireless internet access
renders cloud computing possible for in vehicle applications.
Currently, cloud computing has limited number of automo-
tive applications and preliminary analysis [25], [26]. Some
examples are the Ford’s MyFordMobile application [27] which
uses an on board wireless internet connection module to com-
municate with cloud computing services for infotainment and
telematics features and the Progressive Insurance Company’s
MyRate driving monitoring device. The MyRate is the first
automotive application monitoring the driving profile.

In this paper we extend the utilization of cloud computing
in automotive applications by providing a driving assistance
system. The system aims at advising the driver of an optimal
velocity profile to reduce the overall fuel consumption. For
this purpose we established a two-way communication system
between the vehicle and the cloud as shown in Fig. 1. The
vehicle sends the intended trip information to the cloud. The
associated traffic and geographical information is retrieved
and a route is generated via cloud computing. A dynamic
programming (DP) algorithm is executed to calculate the
optimal velocity trajectory and sent back to the vehicle. Then,
the optimal speed is advised to the driver in real time by a
visual interface.

This paper is structured as follows. In Section II, the vehicle
dynamics and fuel consumption models are described and the
vehicle backward simulator is developed. In Section III, we
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Fig. 1. Cloud-vehicle interaction schematic
TABLE I
SPECIFICATIONS FOR LINCOLN MKS USED FOR TESTING
[ Vehicle [ Engine |
Specification Value Specification Value
Mass[kg] 1954 # of Cyl.[-] 6
Frontal Area [m?] 2.77 Size [L] 3.7
Drag Coeff. [-] 0.29 Max. Trq [Nm] 360 (4250 rpm)
Tire Radius [m] 0.363 | Max. Speed [rpm] 6500

formulate the spatial domain optimal control problem and
solve it using a DP algorithm as presented in Section IV. The
test setup is explained in Section V, followed by the descrip-
tion of the test procedure and the test results in Section VI.
In Section VII, we discuss the advisory system requirements
in term of communication bandwidth, computation power and
memory size. Finally, in Section VIII, we conclude the paper
by summarizing the overall system and presenting possible
future developments.

II. VEHICLE MODELING

In this section we introduce the vehicle longitudinal and
fuel consumption models and their use in a vehicle sim-
ulator. The simulator operates backwards from the vehicle
speed trajectory, through the powertrain, to determine the fuel
consumption. Although, the simulator uses quasi-steady state
equations, the studies in [29] and the other references there
have shown that the backward simulator predicts the fuel
consumption accurately and outperforms the forward simulator
in terms of computation time. This work utilizes the backward
simulator in the optimization because of the calculation time
advantage.

A. Vehicle Dynamics

We have developed a general backward simulation model
that is used for fuel consumption optimization, and we have
used as parameters the values for the prototype vehicle used
for testing (Lincoln MKS) that are reported in Tab. I.

The longitudinal dynamics of the vehicle is given by

dv

’7:Frac_
!

Megq Froll - Faero

- Fgrade - Fbrake (1)



where v is the vehicle speed, m., is the equivalent mass of
the vehicle which is the sum of the curb weight of the vehicle,
m, and the inertia of all the rotating parts. The traction force,
F},qc, 1s the force supplied by the engine and transmitted to the
tires by means of mechanical connections and its formulation
is given by

_ Ny fd g

Frac—i e 2
t Ron 2

where 7 is the efficiency of the transmission unit, v is the
gear ratio of the selected gear, y¢q is the gear ratio of the
final drive, R, is the radius of the tires and 7 is the engine
torque. The rolling resistance, F..;;, is the friction force acting
on the tires and is given by

Froy=m-g-cos(a)-(rg+ry-v) 3)

where g is the gravitational constant, « is the road grade,
and r; are constants specific to the selected tires and wheels
and may vary depending on the pressure, temperature and the
condition of the tires. The aerodynamic resistance, Fi o, 1S

1
Faero = §pAdeUQ (4)

where p is the air density, A is the frontal area and Cj is the
drag coefficient of the vehicle. Due to the proportionality to v?,
F,.r, dominates the other resistive forces at high velocities.
The road grade force, Fy.q4e, is defined as

Fyradge = m - g -sin(a) 5)

Finally, Fj,qke is brake force. By substituting (2), (3), (4) and
(5) into (1) we obtain the vehicle longitudinal dynamics as

dv 1 (nvvfd
dt Meq Ryn

1 .
—gpAdevz — mgsin(a) — Fbrak:e) (6)

T. — mgcos(a)(ro + riv)

B. Fuel Consumption Model

Developing an accurate fuel consumption model is crucial
for addressing energy consumption optimization problems. In
the literature, a number of fuel consumption models have
been developed [28], [29]. Models based on the Willans Line
approximation suffer from accuracy over the entire range
of the engine speed and engine torque, while the empirical
models are in general developed for a particular class of
engines.

In this paper we use a fuel consumption model consisting
of a polynomial function up to the third order of engine torque

mfuel = CS(We)'Te3+02(we>'TeQ+Cl(We)'Te+CO(we) (7)

where Cy, Cy, Co, C5 are functions of the engine speed, deter-
mined experimentally at Ford Technical Center, Dearborn, MI
and reported in Tab. II. Several experimental validations of the
model were conducted and due to space limitations we report
only one comparison plot of the measured and predicted fuel
consumption amounts in Fig. 2. Despite having small regional
differences, the two cumulative fuel consumption curves are
consistent.

TABLE I
FUEL CONSUMPTION MODEL PARAMETER VARIATION

Engine Co[107% [ CL [107° [ C2 [10°8 [ C3 [10°1°
Speed[”’pm} QTT] s]%rm] s.Ngz’,:rn2 ] s.Ng?”,rrn3 ]
1000 2.8 0.47 0.11 0.14
2000 5.5 1.11 -0.33 0.15
3000 9.5 1.95 -2.62 0.57
4000 14.2 2.65 -4.15 0.95
5000 18.9 2.84 -1.01 0.77
6000 24.5 3.68 -2.02 1.53
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Fig. 2. Measured and model predicted cumulative fuel consumption curves
for the same velocity profile from an actual experiment.

C. Vehicle Backward Simulator

A transition cost used in Section IV for DP calculations
from an initial speed (p) to a terminal speed (q) for a given
interval distance (I) and the average road grade (agye) i
executed by the vehicle backward simulator as depicted in
Fig. 3. In the 1-sec sampling block, first, we determine the
travel time and the average acceleration of the road segment
based on p, ¢, [ by

2-1 > —p?
t=——, Qgpe = ————. 8
p + q ave 2 . l ( )
Then, we determine the velocity at each one second sam-
ple time, i.e, we calculate v, for & = 0,1,---,|t] where
vg = p+ k- age and |-] is the floor operator. We insert
the one second interval average speed, Vgpe r = UH_# if

ke{0,1, -+, [t] — 1}, and vape s = %52 if k = [t], agve
and agqe into Eq. (6) to calculate the required torque at the
wheels, T}, ;, at time k. Then we determine the gear number,
& in the gear shifting block based on the gear shifting map
shown in Fig. 4. In the figure, the contour plots indicate that an
operating point between any two curves labeled by j and j+1
is at the j*" gear. An operating point outside of the most outer
curve labeled by 2 is at the first gear. The engine speed at
time k, is calculated by we j = 7(%# - vi. The mechanical
limitations block consisting of the vehicle’s torque converter
model checks the feasibility of the operating point in terms
of the limits of the engine speed and torque at the selected
gear. The block assigns an infinite cost if the operating points
is infeasible and terminates any further calculations. On the
other hand, for a feasible operating point it sends the results
to the vehicle backward model block.

The vehicle backward model block receives the feasible
we,; and T, as inputs, inserts the values in Eq. (7) to
obtain the instantaneous fuel consumption and sends it to the
cumulative summation block which calculates the cumulative
fuel consumption. We repeat the procedure until we process
Vk € {0,1,---,|¢|} and obtain the total fuel consumption of
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Fig. 4. The contour plot of the gear shifting strategy

the road segment, m ¢y, as the final output of the backward
simulator.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The objective of the optimal control problem is to find the
optimal velocity profile that minimizes the fuel consumption
over a travel distance Dy. For this purpose, the optimization
is conducted in spatial domain by means of the following
transformation (which converts time domain equations into
spatial domain), [16], [22]:

_7dv7dv dDi dv

YZat ~dp dt ' dD
where the traveled distance D is the independent variable.
The cost function to be minimized is:

Jp = / P11 puet (Te(D), we (D))
0

v(D)
where Dy is the total travel distance and the admissible control
is u(D) = T.(D). The minimization of (10) is subject to the
dynamic constraint

(€))

-dD

(10)

dv 1 ny 1 9

@ S, . — ZpAsC

dD ~heg v (Rwh mg(ro +riv) = 5pAsCav
(11)

—m - g - sin(a) — Fyrake)
obtained from (6) through (9).

Besides the dynamic constraint (11), constraints are imposed
on the control input and state during the optimization.

Control Constraint Set

The control input, T, is bounded by the a maximum and
minimum engine torques. The maximum engine torque of
the target vehicle, the Lincoln MKS, is given in Tab. I and
the minimum engine torque is taken as zero; thus, the first
constraint set is

I/{D,l = {TQ(D),FbTake(D) :0 S TE(D) S Tema;c and

Fbrake(D) = 0} .
Similarly, a limitation is also enforced for the maximum
braking force
Z/{D,2 = {Te(D)a Fbrake(D) :0 S Fbrake(D) S Fl::}g]?e and
T.(D) =0}. (13)

12)

Then, the control constraint set becomes Up = Up 1 UUp 2.

State Constraint Set

To guarantee vehicle operation within the legal speed limits
we define the constraint set
Xpa = {v(D) 1 vl (D) < v(D) <ol (D)}.  (14)
For driver comfort and safety issues limitations are imposed
on the vehicle acceleration

dv min dv dv mazx
Xpo = D):|—-—= < —< | —= . (15
D2 {”( ) <dD> =dD = <dD) } (1)
Furthermore, the stop signs on the route impose a set of
interior-point constraints defined by

Xps:={v(D):v(Ds) =0 for s=1,2,---,m}. (16)

where D, is the location of the 5" stop sign and m is the total
number of the stop signs on the route . The state constraint
set then becomes Xp = Xp 1 N Xp 2 NAXp 3.

In general, the traffic congestion further restricts X'p ; and
Xp 2 for real-time applications, however, in this application we
are not directly incorporating these effects into the state con-
straint sets. Instead, we accordingly update X'p ; (described in
detail in Section VI-C), based on the driver’s optimal velocity
profile following characteristic such that the optimal speed
trajectory tracking error is decremented.

Boundary Conditions

In our calculations we assume that a trip starts and ends at
a standing position, i.e., the boundary conditions are

v(0) = v(Dy) = 0. (17)

In the spatial domain framework, the optimization control
problem aims at minimizing Eq. (10) by manipulating u(D),
subject to the constraints (11), u(D) € Up and x(D) € Xp
with boundary condition (17). Then for a given route Dy,
Ds (for s = 1,2,---,m), a(D), vM"(D) and v (D)
are fixed parameters and it is straight forward to determine
Up and Xp. Although, the boundary condition (17) seems to
render the system state dynamic equation (11) undefined at the
boundary points, this is not the case due to the inherent discrete



nature of the dynamic programming (DP) solution used to
solve the spatial domain optimization, i.e., in DP solution a
speed transition from v(k) = 0 to v(k 4+ 1) = 0 is forbidden
where v(k) and v(k + 1) is the speed at discrete times k and
k + 1. Moreover, v in Eq. (11) is taken as v = M
and the condition v = 0 rendering the problem undeﬁned never
occurs.

IV. DYNAMIC PROGRAMMING ALGORITHM

The section details the solution of the non-linear optimal
control problem formulated in the spatial domain by the DP
algorithm. A set of points identify the route specific data,
and the route. Specifically the route consists of the points
P = {po,p1,p2, - ,pKx}. Each point, p, € P fork =

0,1,---, K, has its own characteristic parameters; pp =
T . .
[latk,lonk,dk,hk,ak, max v,?””] where lat; is the lati-

tude, lon; is the 10ng1tude dp is the distance, hj is the
elevation, oy, is the grade, v;*** is the maximum speed, and
v is the minimum speed along the interval between pj; and
Dk+1. To define the DP algorithm we require full information
of the intended route. Some of these data are normally not
available in the vehicle, but are easily obtained in the cloud.
In what follows we describe the assumptions for P.
Assumptions

- laty and lony for k =0,1,--- , K are known.

- dg is known and dy4; > dy, for k=0,1,--- | K — 1.

- hy and v;*** for k =0,1,--- , K are known and change

linearly between py and pg .

With the above assumptions we calculate the other unknowns
namely ay and U,’;’”” for k=0,1,--- , K as described in the
next section. We associate the stop signs represented by the
set S = {s1,52, -+, Sm} by the points, pj with v};"** = 0.

The points in P are not necessarily evenly spaced, however,
DP requires regularity between the elements of P for smooth
transition of the optimal velocity profile. In the next section,
we describe how we satisfy the regularity between the points.

Manipulation of Set P

The manipulation of P aims at creating a new set P* =
{p§,pi,p5, -+ ,py} such that S C P* and the elements
of P* are dispersed with a regular pattern. The easiest way
is to define a constant d, = dp Vk € {0,1,--- ,N —1}
and then insert the stop signs if they are not already in P*.
However using a constant d. results in undesired behaviors on
the optimal velocity profile, e.g., a relatively large equidistant
value results in slow acceleration in the low speed region.
On the other hand, the selection of a small interval distance
causes an unnecessary increase in the calculation time. As
a compromise between the two situations, we define variable
distance segments based on the regional maximum speed limit.
We select the variable quantization interval as

_ 50 m if v < 30 mph
ADy = { 150 m  if v}"2® > 30 mph
Then we generate p; € P* such that df = AD; for k =

0,1,---,N —1 . Moreover we determine hj, and v} ™" by
interpolating the corresponding values at p;, € P. Finally, the

(18)
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Fig. 5. Schematic Representation of DP Algorithm

stop sign and the boundary points of the route are inserted
into P* by the monotonicity.

The grade between any two consecutive points is calculated
b —%x h2+1—h2

y o = dr

calculation time we quantize the grade in intervals of 0.5°, i.e.,
af = Z?:ngmw r(i, ), where Qg € N is the maximum
absolute grade and

r(i, ay,) ={ 6/2
(19)

The optimal control problem is cast in such a way that the
fuel consumed is the only cost criterion (Eq. 10). However,
for driver satisfaction shorter travel time is also crucial. A
reasonable speed bandwidth should be selected to satisfy
shorter travel times. In this study, we limit vj; min to be 10
mph less than v; ™%, to keep the travel time at an acceptable
range.

The last parameter affecting the performance of DP is the
quantization interval of the velocity, Av, where too small step
values unnecessarily increase the calculation time and too large
values reduce performance. In this paper we selected Av = 2
mph previously determined [22] as a good compromise be-
tween the calculation time and the accuracy of the solution.

tan~! ) However, to reduce the DP

if i/2-0.25<
otherwise.

a; <i/2+0.25,

DP Formulation

The DP algorithm [30] which proceeds backward in time
from time step IV to 0, is defined as

Ji(vk) = min {9k (vr, ur, ADk) + Jry1 (f (vi, ur))}t

kEUD 20)
where Jy(vy) is the cost-to-go function from step k to N
starting from vy, with terminal cost Jy(vn) = gy (vN). uy €
Up is the control input determining the velocity at the next
step. Up is the input constraint set defined in Section III. Since
the boundary condition at the end of the travel is fixed by Eq.
(17), the terminal cost function, g (vy), is defined as

{0 i wy=0
gN(UN)_{OO if ovn#0

Similarly, the transition cost function from step k to k + 1 for
k=0,1,--- N —1 is defined by

21

if f(vk., uk) € Vit1

Yk v € Vi, up € Up,

9k (v, ug, ADy) =

oo  otherwise.
(22)



where y;, is the output of the vehicle backward simulator
described in section II-C and V) is the velocity bandwidth
bounded by v; ™ and v} ™.

To retrieve the optimal path, i.e., the optimal velocity
trajectory V* = {v§, v}, v5, - o}

or(v) = argmin {gy, (vk, ug, ADy) + Jry1(f (vg, ur))}

ur€UD
(23)
for k =0,1,--- N—1. Then, the optimal control strategy p* =

{1, 15, -+, iy} is obtained by the backtracking algorithm
wr = ¢r (vy), where vj =v(0) (24)
Vg1 = f (v, 1k)- (25

Fig. 5 shows a graphical representation of the DP algorithm
where the feasible and unfeasible points are represented with
filled and unfilled circles, respectively. The DP algorithm starts
from the last step, /V, and firstly, calculates the transition cost
to the points at (N — 1)* step. The cost of the transition to
a feasible point (filled circle) is determined by the vehicle
backward simulator, while the cost of the transition to an
unfeasible point (unfilled circle) is infinity as defined by Eq.
(22). After we determine the transition costs from step k41 to
kfork=0,1,---, N —1 in backwards direction, we generate
the optimal path by the backtracking algorithm.

The DP algorithm computes the entire feedback law iy, =
¢r(v) . That is if a disturbance occurs, the optimal control
profile from the current time instant onwards is adjusted to
maintain future optimality.

V. DESCRIPTION OF THE TEST SETUP

This section describes the cloud architecture and the setup
developed in the vehicle.

A. Cloud Architecture

Three servers comprise the cloud used in this project, the
main server (optimization server), the ArcGIS Server and the
Google Maps Server. The main server resides at the Center
for Automotive Research (CAR), at the Ohio State University
and manages the communications between the servers and the
vehicle. Fig. 6 presents a schematic of the communication
sequence. The driver sends the origin, destination and the way
points of the desired route to the main server in the cloud
through a webpage. The main server sends the desired trip
information to the Google Maps Server using Google Maps
Application Programming Interface (API) and the Google
Maps Server generates the route in the form of polylines
defined by the latitude (laty) and longitude (lony) of the
edge points (pg,pr+1) which are utilized to calculate the
distance (dj) between each point and then transferred to
the ArcGIS Server through Single Object Access Protocol
(SOAP). The ArcGIS Server containing the digital elevation
model(DEM) of the states of Ohio and Michigan, determines
the elevation data (h;) and sends it back to the main server.
At the end of the above mentioned communication sequence
the main server gathers hy, laty, lony, and dj, information
of p; for k = 0,1,---, K which constitutes P as described

( Main Server '\
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Fig. 6. Cloud communication sequence and protocol diagram.
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in Section IV. Employing the Distributed Component Object
Model (DCOM), the main server executes the optimization
program that includes the DP algorithm which is currently
implemented in MATLAB. The result of the DP algorithm
is the optimal velocity profile and it is transferred back to
the vehicle through the internet connection. The data package
that is sent contains dj, vy, lat), and lon}, of p;, € P* for
k=0,1,---,N, where v is the optimal velocity at pj.

An extension to our approach would be to determine a
number of competing routes from the source point to the
destination point, evaluate the energy consumption of each
route and pick the route having the least energy consumption
amount. Furthermore, similar to the discussions for velocity
profile update described in section VI-C, we could also apply
a reinforcement learning from the historical data and the
most recent traffic and road information to update the route
for minimum energy consumption along the trip. However,
we leave the dynamic routing as a future work and in this
particular application of the cloud, without loss of generality
we only consider the fuel economy achievement based on
velocity profile adaptation for a given route.

B. Vehicle Instrumentation

The vehicle uses five main hardware components, namely
the display screen, GPS receiver, CAN Interface, 4G LTE
Capable USB Modem and the vehicle laptop. Their function-
alities are described next.

Display Screen: The screen displays the advised velocity
to the driver. The background color of the display changes
to warn the driver depending on the deviation amount of the
vehicle speed with respect to the advised speed. A picture of
the screen mounted on the dash of the test vehicle is shown
in Fig. 7.

GPS Receiver: The GPS receiver and some other vehicle
specific data are fused for vehicle localization.

CAN Interface: The advisory system requires the real time
vehicle speed and the odometer information in order to update
the advised velocity. To transfer the data between the ECU and
laptop a parallel connection to the CAN data bus of the vehicle
is established.

LTE 4G USB Modem: The communication from the driver
to the cloud and vice versa is obtained through a mobile
internet connection. The test setup uses a 4G LTE USB
Modem.




Fig. 7. Lincoln MKS dashboard: the display screen and the GPS receiver
installed for in-vehicle testing.

Laptop: The computing unit in the vehicle receives and
logs the information received from the ECU, GPS and the
cloud server and runs the algorithm synchronizing the advised
velocity with the vehicle position. It also runs the graphical
user interface (GUI) to show the advised velocity to the user
and allows driver to interact with the cloud.

VI. TEST PROCEDURE AND RESULTS

The tests have been performed in a highway and an ur-
ban driving route. For both cases we determine the origin,
destination points and the waypoints and send a request to the
cloud. In the cloud the calculations are performed, the optimal
velocity profiles are generated and sent back to the vehicle.
Then the driver drives along the generated route.

For each experiment, two test runs are performed. In the
first run the driver drives by his normal driving style without
considering the advisory. Here after, the velocity profiles
obtained from the first test are referred to as "Natural Driving”
or “Baseline Driving”, interchangeably. In the second run, the
drivers follow the advised velocity profile. The second test
run is referred to as ”Advisor Following”. In order to capture
the average benefit obtained by the method, the same routes
are tested by several drivers. In the following sections we
introduce the highway and the urban routes and present the
test results.

A. Highway Driving Test Results

TABLE III
HIGHWAY TEST ROUTE INFORAMTION.
Address
Origin 850 N Wilson Rd, Columbus, OH 43204, USA
Destination 930 Kinnear Rd, Columbus, OH 43212, USA
Waypoint 1 6874 Dublin Center Dr, Dublin, OH 43017, USA
Waypoint 2 | 6688 Dublin Center Dr, Dublin, OH 43017, USA

The first set of experiments is conducted in highway driving.
A route mainly consisting of highway and freeway segments
is selected near The Ohio State University, Columbus, Ohio,
USA. Only a small portion of the route is in urban area.
The origin, destination and the waypoints information of the
trip is presented in Table IIl. The route shown in Fig. 8 is
generated by Google Maps Server. Based on the latitude and
longitude values the elevation information have been gathered
from the GIS server. The elevation information is utilized to
generate the road grade profile as shown in Fig. 9. For the
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given route the maximum speed limits and the location of
stop signs are determined, and the minimum speed limits are
selected as 10 mph less than the maximum speed limits. Then,
the optimization problem is solved and the optimal velocity
profile minimizing the total fuel consumption is calculated as
shown in Fig. 10. Apart from the optimal velocity trajectory,
some other velocity trajectories which are namely slow poke,
lead foot and average speed profiles are generated. The ”Slow
Poke” driving profile operates at the minimum velocity limit
and reaches the destination after the longest time, while the
”Lead Foot” driving profile corresponds to legally permitted
maximum speed profile and arrives at the destination point in
the shortest time. The ~Average Profile” is the average of the
two previous scenarios. For the test route the slow poke, lead
foot and average velocity trajectories are generated as shown
in Fig. 10. Three different drivers performed the tests. The
velocity profiles from the test results of the first driver are

80
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Fig. 10. Slow poke, foot lead and average velocity profiles for the highway
route.
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Fig. 12. The highway test route fuel consumption evolution for baseline and
advisor following cases

presented in Fig. 11. indicating that in the baseline (natural)
driving the driver tends to drive faster than the optimal velocity
trajectory suggested for the highway route. Indeed the driver
sometimes exceeds the speed limits. On the other hand in
the advisor following test the driving pattern of the driver is
smoother and the average speed is lower. The travel time for
the baseline is 30.6 minutes while it is 31.1 minutes for the
advisor following case.

Fig. 12 presents the cumulative fuel consumption of baseline
and advisor following drivings of the first driver and Table
IV shows the trip time and the fuel economy of each test.
The results show that the SAS improves the fuel economy
in average by 12.6% with 3.6% increase in travel time in
the worst case test for highway driving. Despite the drivers’

TABLE IV
COMPARISON OF HIGHWAY TESTS

[ Feature [ Test 1 [ Test2 [ Test3 | Average |
Baseline FE [mpg] 23.7 23.7 23.7 23.7
Adv. Fol. FE [mpg] 272 | 277 | 265 771
Improvement [%] 12.9 14.4 10.6 12.6
Baseline Trip Time [min] 30.6 30.6 30.6 30.6
Adv. Fol. Trip Time [min] 31.1 31.7 314 31.4
Improvement [%] -1.6 -3.6 -2.6 -2.6

efforts, the velocity tracking is not perfect. The degradation in
fuel economy in the case of imperfect tracking is thus assessed.
First, we predict the fuel consumption of the slow poke, lead
foot, average and optimal velocity trajectories by employing
the fuel consumption model of the vehicle introduced and
verified in section II-B. In Table V, the fuel consumption of
that velocity trajectories and the corresponding travel times
are presented. To assess the potential improvement in fuel
economy in case of perfect tracking of the advised speed, the

TABLE V
FUEL ECONOMY OF VARIOUS HIGHWAY DRIVING PROFILES

Fuel Economy [mpg] | Trip Time [min]
Optimal Profile 27.6 28.5
Slow Poke 27.0 36.1
Average Profile 26.3 29..8
Lead Foot 24.8 25.6
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Fig. 13.  Urban driving test route

fuel economy on the simulated velocity profiles are compared.
In Table VI, the relative fuel economy of each driving profile
with respect to the advised velocity profile are given. Since in
this particular test route the advised velocity profile is close
to the lower speed limit, the relative fuel economy of the slow
poke velocity profile is limited to 2%. On the other hand, the
relative fuel economy of the lead foot velocity profile is 10.2%.
Furthermore, when the drivers follow the advised velocity, in
average they have 1.8% relative fuel economy due to imperfect
following of the advised velocity profile as shown in Table
VI. Finally, if the drivers could perfectly track the advised
velocity, they could improve the fuel economy in average by
14.1% with respect to the baseline driving.

B. Urban Driving Test Results

TABLE VII
URBAN TEST ROUTE INFORAMTION.
Address

Origin S Military, Dearborn, MI, USA
Destination S Military, Dearborn, MI, USA
Waypoint 1 20061 Michigan Ave, Dearborn, MI, USA
Waypoint 2 18125 Rotunda Dr, Dearborn, MI, USA
Waypoint 3 | 20800 Oakwood Blvd, Dearborn, MI, USA

The second set of tests have been performed in an urban
driving route. The route is in Dearborn, MI, USA around the
Headquarters of Ford Motor Company. The origin destination
and waypoints of the route are given in Table VII. Based on
the trip information, the route is generated by the Google Maps
Server. The generated route is 5.4 miles long and contains a
number of traffic lights and stop signs as presented in Fig. 13.
Based on the latitude and longitude values of the route, the
elevation information is collected from the GIS server and in
the main server the road grade profile is generated (see Fig.
14). Similar to highway tests the minimum speed limits are
selected to be 10 mph less than the maximum speed limits.
The position of the stop signs are determined and included



TABLE VI
RELATIVE FUEL ECONOMY OF HIGHWAY TESTS

Test-1 Test-2 Test-3 Average Driver
Optimal | Slow P. | Average | Lead F. | Adv. Fol. | Base. | Adv. Fol. | Base. | Adv. Fol. | Base. | Adv. Fol. | Base.
Relative FE [%] 0.0 2.0 4.6 10.2 1.5 14.1 0.4 14.1 4.0 14.1 1.8 14.1
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urban

as constraints in the optimization problem. As the operation
sequence of the traffic lights are unknown, we simply consider
the traffic lights as stop signs but suggest the driver to ignore
the advised optimal velocity profile in the case of green at a
traffic light. The calculated optimal velocity profile, the slow
poke, the lead foot and the average speed profiles are shown
in Fig. 15. Seven different drivers performed two test runs:
one for Natural Driving and one for Advisor Following. In
the urban route more drivers are used since the urban tests
are more prone to external disturbances (like traffic lights or
variation in traffic flow). By increasing the number of drivers
and averaging the results more accurate judgements could
be made. To compensate for traffic light disturbance, in the
analysis if a driver had to stop at a traffic light while it did
not in another run, the stopping and re-acceleration phases are
discarded from the logged data.

In Fig. 16, the natural driving and advisor following velocity
profiles of the first driver are compared with the advised veloc-
ity profile. It is clear that the driver tends to drive around the
maximum speed limit. In some sections the maximum speed
limit coincides with the advised (optimal) velocity, especially
in those regions where no significant improvement in fuel
economy is expected. However, similar to highway driving, at
the higher maximum speed limit region, the deviation between
the optimal velocity and the drivers natural velocity is more
significant, and more improvement in fuel economy can be
expected. In Fig. 17, the cumulative fuel consumption curves

and advisor following cases for test-1

along the travel distance for the runs of the first driver are
shown. In Table VIII, the comparison of the travel times and

TABLE VIII
COMPARISON OF URBAN TESTS

[TestNo [ #1 [ #2 [ #3 [ #4 [ #5 [ #6 [ #7 [ Aver |
Baseline 116 4| 198 | 197 | 202] 203 | 207 | 17.8 | 197
FE [mpg]
Adv. Fol. 10 gl 910 | 208 | 215] 215 | 228 | 19.6 | 211
FE [mpg]
Tmpr. (%] | 72 | 58 | 62 | 63 | 58 | 100 | 102 | 74
Baseline
T | 141] 141|133 | 133] 119 | 129|136 | 133
Adv. Fol. 3 0 a0l 134 | 132] 139 | 135 | 137 | 135
TT [min]
Tmpr. (%] | 2.8 | 49 | 08 | 08 | <169 | 47 | 07 | 21

fuel economy for both test runs of each driver and average
values are presented. Table VIII shows that compared to
highway tests the fuel economy improvement is reduced but
it is still in the range of 5-10%. An average fuel economy
improvement of 7.4% is obtained, and the increase in the travel
time is only 12 seconds for a 13.3 minutes driving cycle.
The predicted fuel economy and trip times of the slow poke,
lead foot, average and optimal velocity profiles are given in
Table IX. Contrary to the highway driving, the slow poke
velocity profile has much worse fuel economy relative to the
advised velocity, 23.2%, while the lead foot profile has 5.4%
relative fuel economy as given in Table X. In average the
drivers could achieve 6.3% better fuel economy if they could



TABLE X
RELATIVE FUEL ECONOMY OF URBAN TESTS
Test-1 Test-2 Test-3

Optimal Slow Poke Average Lead Foot | Adv. Fol. | Baseline | Adv. Fol. | Baseline | Adv. Fol. | Baseline

Relative FE [%] 0.0 232 6.7 5.4 7.6 13.8 6.7 12.1 7.6 12.5

Test-4 Test-5 Test-6 Test-7 Average Driver
Adyv. Fol. Baseline Adyv. Fol. Baseline Adv. Fol. | Baseline | Adv. Fol. | Baseline | Adv. Fol. | Baseline

Relative FE [%] 45 10.3 4.5 9.8 1.3 8.1 12.9 20.9 6.3 12.5

TABLE IX

FUEL ECONOMY OF VARIOUS URBAN DRIVING PROFILES

Fuel Economy [mpg] | Trip Time [min]
Optimal Velocity 22.5 12.6
Slow Poke 17.3 21.2
Average Profile 21.0 14.2
Lead Foot 21.3 11.7

perfectly follow the advised velocity. In that case the fuel
economy improvement of the drivers would be in average
12.5% compared to their average baseline driving profiles
which is similar to what was achieved in the highway tests.
This clearly indicates that in urban driving it is harder to
follow the advised velocity profile. As we should expect the
generation of speed profiles that are easier to follow for the
driver is an interesting research direction for future work and
discussed next from a reinforcement learning point of view.

C. Advisory System Adaptation by Reinforcement Learning

As discussed in the preceding sections, fuel economy de-
grades if the drivers do not follow the recommended speed
profile. The driver may not follow the recommendation for
several reasons, e.g., because he is not comfortable with the
recommendation, or current traffic / safety conditions do not
allow following the recommended profile. Different types of
drivers may perceive the optimal velocity advice differently.
It seems unrealistic to estimate the speed that the driver
would be comfortable to follow unless we learn what speed is
acceptable. A solution to this problem is the use of reinforce-
ment learning of the driver’s tendency; some applications of
which are reported in [31], [32]. In this paper we propose a
simplified form of reinforcement learning in which the driver’s
tendency to follow the recommended profile is continuously
evaluated and the limits are adjusted accordingly. Therefore,
an adaptive algorithm that can learn the driver perception of
the recommended speed by monitoring his/her behavior with
respect to the recommendation of the optimization algorithm
is applied.

The adaptation algorithm uses the estimated driver charac-
terization to dynamically adapt the speed limits to the specific
driver pattern and improve its effectiveness. The adaptation
increases the likelihood that the driver would follow the
recommended speed profile and consequently increases the
effectiveness of the advisory system.

The driver acceptance of the recommendations provided by
the advisory system can be quantified through the frequency
at acceptance [27]. The process of recursive calculation of
the weighted frequency of rejection (with higher weights
corresponding to the recent observations) is implemented by

a low pass filter with exponential smoothing
(1 - ﬁ)R(k - 1) +a Zf Umin < U(k) < Vmaz

(1-BRK-1)  if zgzg 5 i

R(k) =

(26)
where R is the rejection rate of the advised speed, § is a
constant forgetting factor, 0 < g < 1, controlling the rate of
updating the weighted mean R. For a constant forgetting factor
[, we obtain a vector of positive weights with unit sum by:

W=][pg"1-8) p'1-p) (1-51 @

The vector W defines a weighted average aggregating operator
with exponentially decreasing weights that are parametrized
by the forgetting factor 3. Parameter § defines the memory
depth (the length of the moving window) of the weighted
averaging aggregating operator. It can be shown that the
memory depth K, is approximately related to the forgetting
factor by K, = 1/(1 — ). The operation of reinforcement
learning based adaptation of the speed limits is illustrated in
Fig. 18.

VII. ADVISORY SYSTEM REQUIREMENTS

In this section, we explore the technical details of the speed
advisory system in terms of the communication bandwidth,
computation and memory requirements. At the end we also
present a discussion of the system implementation in the
vehicle and in the cloud.

A. Communication Bandwidth Requirements

In the vehicle we implemented a 4G-LTE USB Modem to
communicate with the cloud, as stated in Sec. V-B. LTE mobile
wireless communication provides peak rates of 300Mb/s and
50Mb/s for download and upload, respectively, [33],[34]. The
study [35] on the performance of 4G LTE Networks in the
United States, however, shows that the average rates are 12.7
Mb/s and 5.6 Mb/s for download and upload. To assess the
required communication bandwidth, we consider the average
rates. The data sent from the vehicle to cloud is the origin,
destination and way points of the desired route. Assuming
maximum character length of M CL = 50 for an address, the
desired route information requires

Cy=(M+2)-MCL-BPB MeeN  (28)

number of bits, where M is the number of waypoints (ex-
cluding initial and final positions) on the route, N is the
set of natural numbers and BPB is the number of bits per
byte. For the highway and urban driving routes with two and
three waypoints, we require to maximally send 200 and 250
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of data from the vehicle to the cloud, respectively.

On the other hand, the received data from the cloud to
the vehicle consists of dj, vy, lat}, and lon}, Vp;, € P* as
presented in Sec. V-A. Assuming the transferred data is in
double precision floating point format (i.e., 8-byte) and N + 1
is the number of points in P*, the number of transferred data
bits is

Cp =32-BPB-(N+1) (29)

For the highway and urban driving routes, Ny = 365 and
Ny = 121 corresponding to 93.4 kbit and 30.9 kbit of
received data, respectively. Based on the average speeds of
LTE mobile networks, for the tested highway and urban
driving routes the upload times are C/"" < 0.4 msec,
CYrban < 0.3 msec, and the download times are C'fj'9" =
7.4 msec, CYrbean < 2.4 msec, respectively. The given values
only refer to the data transfer time and does not include the
latency in the communication protocol. The data transfer times
show that an internet connection with a moderate bandwidth
in the vehicle is adequate for the cloud based advisory system
implementation in terms of communication load.

B. Computation and Memory Requirements

In the proposed advisory system we solve the DP algorithm,
Eq. (20), in the cloud where the computing unit is armed with
powerful Inter Core i7 processor with 4 cores and clock speed
of 3.2 GHz and 16 GB RAM of memory. In the following,
we present an estimate number of computations performed and
present the total memory requirement in the cloud.

As presented in Fig. 5, the DP algorithm requires a recursive
computation of the state transition cost, gi(vg,ur, ADy),
from vy to vy for £ = 0,1,--- N — 1. These recursive
computations are the major source of computation load in the
cloud. To determine the total number of state transition cost
computations, first, we determine the total number of state
transitions.

To estimate the number of state transitions, we utilize the
2-dimensional, namely distance-velocity, computation space
which are quantized by ADj, and Av. The number of intervals
in distance dimension is N and the number of intervals in
velocity dimension is determined by

L _ "Hv*maxnoo"

Av (30)

where v*max — [pimer grimar ... ,v}‘vm”]T and the op-
erator [-] denotes the ceiling function. Then the discrete

for k=0,1,--- ,N. For a fixed k and 7 € {0,1,---, L}, the
number of possible transitions from v}, to Ly11 is (L+1). By
considering all transitions from each element of L£j to Ly
Vk € {0,1,--- N — 1}, we determine the total number of state
transitions as S, = N - (L +1)°.

Furthermore, the amount of computations for each transition
cost calculation is not the same. For instance, the computation
amount of feasible transition cost where the feasible states and
control characterized by vy, € Vi, C L, V41 € Vi1 C Lt
and uy € Up is different from the computation amount of
an unfeasible transition cost. A feasible transition cost is the
output of the vehicle backward simulator which requires a
significant number of computations denoted by S,;s. On the
other hand, the cost of an unfeasible state transition is infinity,
as given in Eq. (22), thereby requiring one computation. To
distinguish the feasible and unfeasible transitions, we define
an average velocity range in which the state transitions are
feasible as

1 N
Vi =+ ;u;‘mw — pmin (31)

Then, the number of intervals, R, in Vy, is R = [%-‘, and
the number of feasible state transitions are Sy, = N-(R + 1)°.
After distinguishing the feasible and unfeasible transitions, we
determine the total number of state transition cost computa-
tions as

Sie = ng < Sups + (Sg - ng)

Another source of computation load is due to the calculations
of ¢r(vg) (Eq. (23)) for which the number of computations
is equal to the number of feasible state transitions, Sg = Syg.
Ignoring the P set manipulation and backtracking computa-
tions, the total number of computations in the cloud is then
approximated by,

(32)

ST ~ Stt + S¢ (33)

As given in the preceding section, the highway and urban
driving routes have Ny = 365 and Ny = 121, respectively.
For both routes, ||[v*™2*|, = 70 mph, Av = 2 mph, and
Vip = 10 mph and we assume that the backward simulator
incurs an average 100 computations, i.e., S,ps = 100. Based
on these route specific parameters we report the number of
computations of each route in Tab. XI. In the cloud, that
many calculations take 3.2 sec for highway driving and 1.8
seconds for urban driving. In addition to the computation
requirement, the DP algorithm also sets a certain memory size
requirement on the computing unit. When we consider only the



TABLE XI
COMPUTATION NUMBERS AND CALCULATION TIME OF THE TESTS

Highway Driving | Urban Driving
Sq -] 473040 156816
Ste [ 13141 4356
Subs [—] 100 100
St [— 1773999 588060
St [— 1787140 592416
Calc. Time [sec] 3.2 1.8

size of state transition cost information, the computation unit is
required to store S, number of values, i.e., in double precision
floating point format (8-Bytes), we require M, = 8 - 5,
Bytes of memory space. For the highway and urban driving
routes with the values in Tab. XI, it amounts to 3.8 MB and
1.3 MB memory space, respectively. To determine the total
memory consumed by the DP algorithm, we have utilized
the Microsoft’s task manager software and observed that the
highway route uses 9.72 MB while the urban driving route
requires 5.63 MB of total memory.

C. Assessment on the Implementation of the Advisory System

In this section we assess the advantages of the advisory
system implementation in the cloud rather than in the vehicle.
The microcontoller units (MCUs) are in general armed with
much less powerful processors and with smaller size of mem-
ory than personal computers (PCs). In a typical car, the clock
speed of MCUs are in the range of 40-180 MHz with 256 KB -
1 MB RAM memory and 1MB - 4MB flash memory [36],[37].
However, as shown in the preceding section DP requires 9.72
MB of free memory space for highway driving, i.e., for long
trips the memory size of the MCUs would be insufficient. Even
if the MCUs would have enough memory, the clock speed of
MCUs used in automotive applications are approximately 20x
slower than the processor used in the cloud which has 3.2 GHz
clock speed and 4 cores in the current framework and, roughly,
the computation time of DP algorithm in the vehicle would
be 256 sec and 144 sec for the urban and highway driving
routes, respectively. That much latency is too large for real
time implementations of the advisory system and unacceptable
with reinforcement learning algorithm.

In addition, the cloud provides flexibility in the construction
of the computing resource and it is independent of the vehicle,
i.e., we can extend the computing resource in the cloud as
much as we require with addition of multiple computing
processor units (CPUs) and even with graphical processor
units (GPUs) to perform general purpose parallel computations
without any change in the vehicle. On the other hand, the
number of MCUs in the vehicle is rather limited [38].

Another advantage of the cloud framework is the low
implementation cost. Although for a single vehicle the im-
plementation cost of the system in the cloud and in the
car is comparable, as the number of vehicles increases the
implementation cost of the system in the cloud would be sig-
nificantly cheaper since the cloud can handle the computations
of multiple cars simultaneously.

VIII. CONCLUSION

Besides the mechanical design, the smart utilization of
information can significantly reduce vehicle energy consump-
tion. The usage of cloud computing for vehicle applications
rendered the real-time computation intensive driving profile
optimization possible. Although having a complex structure
within itself, the cloud has a simple interaction with the
vehicle, indeed, the only information sent to the cloud are
the waypoints of the desired route and the received data
carries the velocity information of the points along the route.
The tests have been executed in highway and urban drivings
and performed by several drivers. The baseline and advisor
following driving characteristics are averaged which leads to
more accurate assessment of the test results. The test results
have shown that for highway driving in average 12.6% fuel
economy improvement is achieved while the improvement is
7.4% for urban driving. Compared to the highway tests, in
urban driving it is harder to follow the advised velocity profile
due to external disturbances (other vehicles on the traffic,
traffic lights, etc.).

The demonstrated application of the cloud computing for
velocity profile optimization is a novel approach and the
preliminary results promise significant reduction in fuel con-
sumption. We believe that the increase in the number of
agents (e.g., other vehicle on the network, pedestrians) and the
infrastructures (e.g., traffic lights) communicating with cloud
will render the approach even more powerful.
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