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Abstract

This brief studies the optimal codesign of nonlinear control systems: simultaneous design of
physical plants and related optimal control policies. Nonlinearity of the optimal codesign
problem could come from either a nonquadratic cost function or the plant. After formulating
the optimal codesign into a nonconvex optimization problem, an iterative scheme is proposed
in this brief by adding an additional step of system-equivalence-based policy improvement
to the conventional policy iteration. We have proved rigorously that the closed-loop system
performance can be improved after each step of the proposed policy iteration scheme, and
the convergence to a suboptimal solution is guaranteed. It is also shown that under certain
conditions, this additional policy improvement step can be conducted by solving a quadratic
programming problem. The linear version of the proposed methodology is addressed in the
context of linear quadratic regulator. Finally, the effectiveness of the proposed methodology
is illustrated through the optimal codesign of a load-positioning system.
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Optimal Co-Design of Nonlinear Control Systems
Based on A Modified Policy Iteration Method

Yu Jiang, Yebin Wang, Scott A. Bortoff, and Zhong-Ping Jiang

Abstract—This paper studies the optimal co-design of nonlin- by parameterizing the plant and the control policy [3]. The
ear control systems: simultaneous design of physical plastand resultant optimization problem for linear control systeiss
rela_ted optimal control policies. Nonll_neanty of the optlmal co- challenging due to the non-convexity [8]. When nonlinear
design problem could come from either a non-quadratic cost - X .
function or the plant. After formulating the optimal co-design §ystem d_)/nam!cs and no_n-quadratlc cost functlons are taken
into a non-convex optimization problem, an iterative schera iNto consideration, there is less hope of solving the proble
is proposed in this paper by adding an additional step of analytically. Indeed, even for fixed system parametersijrfgnd
system-equivalence-based policy improvement to the conveonal  the optimal control policy requires solving the well-known

policy iteration. We have proved rigorously that the closed Hamilton-Jacobi-Bellman (HJB) equation of which a closed-
loop system performance can be improved after each step of]c lution is hard to obtain i |
the proposed policy iteration scheme, and the convergence ta '0fM SolUtion 1S hard 1o obtain in géneral cases.

suboptimal solution is guaranteed. It is also shown that uner The primary goal of this paper is to develop an iterative
certain conditions, this additional policy improvement sep can methodology for nonlinear co-design problems: co-desifyn o
?ﬁ C?ndUCted by SOf|Vlt?]9 a quadréitlc F:rf]o%falmm'r!g P(;Cémem-d nonlinear control systems. The main idea is to modify the
rhe finear version or the proposed methodology IS adaressed oqnyentional policy iteration technique [9], [10], whictash

in the context of LQR. Finally, the effectiveness of the propsed been widely Bsedyin neural-netwo?k-ba[sgd [on}ine controlle

methodology is illustrated through the optimal co-design 6 a ! - .
load-positioning system. designs; see [11]-[16], and references therein. By adding a

Index Terms—Nonlinear system, Co-design. Optimal control, extra step calledystem—equiyalence—based policy improvement
Policy iteration. to redesign the control policy as well as system parameters
simultaneously at each iteration step, we prove that theedo
loop system performance can be improved sequentially until

|. INTRODUCTION the algorithm converges to a stationary point. We also show

Conventional design of nonlinear control systems decauplat, under certain conditions, the system-equivaleraseth
the plant and the control design processes, i.e., the plasglicy improvement can be cast to a quadratic programming
also referred as the open-loop system, is given a prioriavhgyroblem. Inspired from the iterative techniques [2], [3liro
designing the control policy. Such decoupling is however naovel method has two main advantages. First, it can be applie
necessary due to the fact that both the plant and the ce®a class of nonlinear systems with tunable system parasnete
trol policy jointly affect the closed-loop system perfomea. Second, in the linear quadratic setting, our approach hasimu
Slight adjustments of the plant may result in remarkable iness computational burden compared with methods in [2], [3]
provements of the system performance, as well as robustnesshe remainder of the paper is organized as follows. Section
Here, by “co-design”, we refer to the simultaneous design formulates the nonlinear co-design problem. Section 3
of both the plant and the control policy to optimize certaipresents the modified policy iteration scheme, and invatiigy
prescribed performance objectives. Similar research Wwask when the system-equivalence-based policy improvement can
been carried out under the names of “integrated structuieé reduced to a quadratic optimization problem. Section 4
and control design” [1], [2], “optimal redesign” [3], [4]n@ addresses the linear case of the proposed methodologyi- Appl
“simultaneous design” [5], [6], etc. The co-design problemation to a load-positioning system is illustrated in Smct.
can find a great number of engineering applications, sufinally, concluding remarks are provided in Section 6.
as aerospace crafts [5], [6], smart buildings [2], [4], and
electromechanical devices [7].

In recent years, one popular way to deal with the co-design
problem is to formulate it as a nonlinear optimization peshl ~ Consider a nonlinear control system
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p € R! as its component-wise upper and lower bounds, i.e., tteeProblem 2.1. In other words, we focus on algorithms of co-
ith components op is lower and upper bounded by tli¢h design process which take conventional designs as inpdts an
components o andp, respectively. For simplicity of notation, produce improved designs. The improved design outperforms
we denote the feasible set pfas? = {p | p < p < 5}, the conventional design in terms of the system performance.
The cost associated with system (1) is defined as
1. A MODIFIED POLICY ITERATION TECHNIQUE

_ > T —
J(p,u) —/0 [Q(x) tu R“] dt, ©(0)=z0€Q (2 In this section, we develop an iterative technique based
. » . . -~ on a modified policy iteration scheme to solve Problem 2.1.
whereQ(z) is a positive definite function oft, andZ = R*  \ye will also provide a parametrization method which gives

is a positive definite matrix. numerically a suboptimal solution to Problem 2.1.
Definition 2.1: Consider system (1) and the cost func-

tional (2). A feedback control policy(z) is admissiblewith
respect to the parameter vecioe P, if
1) the closed-loop system (1) with and u(z) is asymp-
totically stable ont2, and

A. A modified policy iteration algorithm

Suppose the initial vector of the system parametefs is
P, and assume an associated admissible control pelicis
known. The proposed policy iteration can be summarized in

2) the cost/(p, u) is finite. the following three steps, with= 0, 1
In Definition 2.1, the admissible control is assumed to Policy evaluation

state feedbgck. This technical assumption ma_kes the res ISoIve for the positive definite functiob (z), from
tant co-design problem exposed to well-established theori
including dynamics programming. Definirig, as the set of 0 = VVII[(f(x,pi) + gl pi)ui(z)]
all the admissible feedback _control pplicies with respect t +Q(z) + ul (z)Rui(z), Yz €Q, (4)
p, we assume that there exists a péip, uo(z)) such that .
uo € Uy,. The nonlinear co-design problem can be formulatedhereVV;" = oVi/0z.
as follows. 2) Gradient-based policy improvement
Problem 2.1 (Nonlinear co-design problem):Given the  Update the control policy by
system (1), find a paitp*,u*) € P x U,~ which minimizes 1
the cost function (2), i.e. ’ piz) = —5f 'g" (@, pi) VVi(), Vo e Q. )
(p*,u*) =arg min_ J(p,u). A3) 3) System-equivalence-based policy improvement
’ PEP ueU, ’ Simultaneously update the system parameters; 1@ and
Remark 2.1: Concisely formulated, Problem 2.1 is exihe control policy tou;,, by solving the following optimiza-

tremely difficult to be solved for at least two reasons. Firstion problem:

this optimization problem is generally non-convex and the . < (i (i
difficulty to solve a non-convex constrained optimizatioolp b Uiy (2 (8)) Rujq (2 (¢))dt (6)
lem is well-understood. Second, nonlinearities involuedhie st fe(@,pi1, tiv1) = fe(@, pis pi), Vo € Q(7)

problem make it almost impossible to find an analytic sofutio

even for fixedp. To the best of our knowledge, there arewhere

no currently available tools for solving general nonlinear o

design problems. fe(z,p,u) = f(z,p) + g(z,p)u(z), Ve €Q, Vpe P (8)
The co-design process seeks an optimal or suboptingidzl! is the solution of the system

solution which naturally resorts to an optimization proble o i i i .

For the co-design problem, some work has been devoted to U= 1@ p) + 9@ ppila), 20 =20 (9

establish the existence and uniqueness of an optimal eojuti Remark 3.1: As a standard form of the policy itera-

and most of existing work assume the existence of optim@bn [23], (4) is used to solve a Lyapunov functidn. As

solutions and study the mathematical characterizationnof a system of first order nonlinear partial differential edpras,

optimal solution. Work [17] studies the existence of anati the closed-form solution of (4) is difficult to establishstead,

solution of a system design problem using the Weierstrassgood approximate solution is usually of practical interes

Theorem, which requires the compactness of the feasilidéven parameterizations of;; and V;, (4) is reduced to

set. Some researchers have been endeavoring in developiiggbraic equations, and thus the approximate solution can

necessary conditions for local optimal solutions [18]4[21be readily computed. The three steps (4)-(7) can be repeated

Nevertheless, their results can only be directly appliesbtme until convergence is attained. In the absence of the system-

special cases. In terms of how to compute an optimal soluti@guivalence-based policy improvement step, the algorihm

one of the earliest studies of Problem 2.1 can be found iieduced to the conventional policy iteration [9], [10], [24

[22], where a gradient method was developed to numericallyThe following theorem shows that the modified policy

search for the optimal solution. The stability and convamge iteration algorithm can improve the performance of interes

analysis of this method is however difficult to perform. This Theorem 3.1: Consider system (1) and its associated cost

paper assumes the existence of optimal solutions and fecu&). Suppose:; € U,,, and a positive definite solution of (4)

on the iterative method that computes a suboptimal solutierists, fori = 0,1,---. Then, the following hold:



1) p; € Up,, B. Parametrization and neural network approximation

2) wit1 € Up,,,, Unfortunately, the proposed policy iteration method idl sti
3) J(pit1,uit1) < J(pis pi) < J(pis us)- not directly applicable due to two obstacles. First, a linea
Proof: 1) First, we proveu; is stabilizing. Indeed, along partial differential equation needs to be solved in the the
the solutions of the system policy evaluation step. Second, in the system-equivalence
: based policy improvement step, we are facing a nonlinear
€= f(&pi) +9(Epipi(), £(0) =2 € (10)  gptimization problem of which the solution is non-triviat i
we have general. To avoid these difficulties, we provide a practical
i implementation method by parameterizing the control golic
Vi = VYV (&pi)+ 9(& i) (wi(€) + pa(€) — ui(§))] To begin with, let{¢;(z)}}_, € R and{y;(z)}?_, € R™
= —Q&) — pl(&)Rui(¢) be two sets of linearly independent, continuously differen
— () — ui(€))T R(1i (€) — ui(€)) < —Q(€) tiable functions and vector fields, respectively. In addifi

we assume thap;(0) = 0,V 1 < j < N and;(0) = 0,
Therefore,V; is a Lyapunov function for the system (10)V 1 < j <g.

and y; is stabilizing. Assumption 3.1: Given a pair(p;, 4;) such thati; € Up,,
DefineV}/ : Q — Ry, with V/(0) = 0, as the solution of and assumé;(x) € span{ir (x), 1 (x),--- ,¥q(z)}. Then,
0= (VV [(f(x,pi) + (@, pi) ] + Q) + pf Rpi. (11) Vi(z) € span{¢1(x),¢1(x), -+, on(2)},
Now, subtracting (4) from (11), similarly as in [10], we olsta pi) € span{yn(z), ¥u(x), -~ Yg(x)}.
. v oiaT . N wheref/i(x) andji;(z) are obtained from (4) and (5) with;
O - (VV; V‘IJ/}) [f(xapz) + g(xapz)ﬂz] replaced bylll
= (u; — pi)" R(ui — pq) - (12)  Under Assumption 3.1, we can find three sets of
Hence, integrating both sides of the above equation aloag eﬂ'ghtf {wi=1’fi=2’ oL wiN e {6 G, iy ’Civz}’ and
solutions of system (9), it follows that G0 Cias ™+ Cig by SUCh thata(w) = 375, ¢ ;9 (w),
_ N ~ o l m
s Vi(z) = Z_j:l w; ¢ (), fii(z) = Zj:q G i¥j (z).
VH(xg) — Vi(xg) = _/ (ui — ps) T R(u; — pg)dt < 0. Remark 3.2: If Assumption 3.1 is not satisfied, these
’ 0 B weights can still be numerically obtained based on neural

As a resulty; is admissible with an improved cost comparefi€twork approximation methods, such as the off-line ap-
with u;. Hence, both 1) and the second inequality in 3) hol@roximation using Galerkin’s method [25]. In addition, for
Meanwhile, under the system equivalence condition (7), gncertain nonlinear systems, these weights can be traisled u

holds. ing approximate-dynamic-programming-based online iegrn
Second, subtracting (11) from methods [26], [15]. Notice that, when these approximation
, methods are used} is required to be a compact set to
0 = VViii((f(z,pit1) + 9(z, pis1)uit1 ()] guarantee the boundedness of the approximation error.
+Q(x) + ufy 1 (z)Ruiy (), (13) Assumption 3.2: There exist matrices of functions
o ) _ ) E;j(x) € R¥™™ with j = 0,1,---,1, A;(x) € R™ with
and considering the equality constraint (7), we obtain j=0,1,---,1, and B(z) € R"™*™ such that the following
0 = (VWirr — VA fulz,pit1, uist) hO:ILd f_cI)_II:‘V:cf EHR . andV]zi.e.P.. fibl
+uiT+1Rui+1 — TRy, (14) ) The following matrix is invertible
!
Integrating (14) along the trajectory of!, we have E(z,p;) == Eo(z) + Z Ej()pi (16)
j=1
J(pit1s wiv1) — J(pi, pi) ’
>~ (i i wherep; ; represents thgth component of the vectgr.
< Uiy (@ (8)) Rujpr (2 (1)) dt 2) MatricesE(z,p') and E(z, p”) commute, forvp’, p’ €
0 P, ie
T (4l (L) T
= [ (@) Ry (2 (t))dt (15)
/0 E(x,p)E(z,p") = E(x,p")E(z,p"). a7

The right hand side of the inequality is apparently less 3y Functionsf(z,p;) andg(x,p;) can be decomposed as
or equal to zero by the definition af; ;. Hence, the first

inequality in 3) is proved. The proof is thus complete. m !

Corollary 3.1: There exists a constant* > 0, such that [l pi) = E7 (z,py) (Ao + ZAjZai,j> (18)
lim J(p;,u;) = J*. j=1

“Proof: By Theorem 3.1, we know the sequence g(x,pi) = B~ (x, i) B (19)

{J(p“ul.) i1 Is monotonically decreasing. _AISO’ the se 4) The following rank condition is satisfied
guence is bounded from below because all its elements are

non-negative. Therefore, the limit exists. [ | rank (0o 1, , 011,01, ,Cq) <l+q (20)



where HZ-J- = VGC(EiAj),O < 1,7 < l, and Ci,j =
VeC(EiB’l/)j)vo <1%,)<4q

Now, we are ready to replace the system-equivalence-based
policy improvement by the following optimization problem.

Then,V is a linear space with a non-zero dimension, and (7)

is equivalent to

pi+1,1,ﬁz‘+1,2, ce ,ﬁi+1,l, Ci+1,1,Ci+1,2y "+ , Cit+1,q» —1] eV

Problem 3.1: Find the optimal coefficients;, ;, 1 < j < which is a linear equality constraint. ]

q and the vectop,,1 € P from

q q
E E Ci+1,5Ci+1,k

j=1k=1

8 / ) ¥ (@ Ry (2)dt  (21)
0
l

min
cit1,5,1<5<q

q

st. v = Zﬁiﬂ,jai,j + Zciﬁ-l,jﬁi,ja (22)
j=1 j=1

ﬁi-’-l EP, (23)

where
l

i = 0j0—00;+bik Y _ Ok
k=1

q l
’ A
+ D Gk =ik Y Ok,
k=1 k=0

!
Bi; = —Co,j — Dik Z Chij
=1

I ! q
Yi = Dik Z Or,0 — Pik Z 0o, — ci'y Z Go,k-
k=1 k=1 k=1

hold.

1) Letciy1,; andp; 4 be the solution of Problem 3.1, and

define the control policy.

q
i1 () =Y i, 05(2).
j=1

Lemma 3.1: Under Assumptions 3.1 and 3.2, the following =, and Ao, A,
Lt ql 1) Lt

(24)

The following proposition summarizes the performance
improvement. The proof is omitted here because it is nearly
identical to the proof of Theorem 3.1.

Proposition 3.1: Under Assumptions 3.1 and 3.2,

1) 4;41 is admissible with respect to; 1,

2) J(Pit1,iv1) < J(Pis i) < J(pi, ), and

3) there exists/* > 0, such thatil_ig)lO J(pi, ;) = J*.

IV. THE LQR CASE: SPECIALIZATION TO LINEAR
SYSTEMS

In this section, we study the co-design of a linear tim-
invariant (LTI) control system where the control policy is
chosen to be the linear quadratic regulator (LQR). The co-
design of the LTI plant and the LQR is a special yet important
case where the proposed methodology can be applied.

To this end, consider the LTI control system

E(p)t = A(p)x + Bu (26)

wherex € R" is the system state; € R" the control input,

p € R C P is the vector of system parameters. Given any
p’ € P, itis assumed that the matr&(p’) is invertible and the
constant pair of matricesA(p’), B) is stabilizable. In addition,
we further assume that there exist constant matricgsE,

-++, Agq, such that

q
Eo+ > Ejpij,

E(p) =
=1
q

Alpi) = AO"’ZAjpi,jv Vp; € P.
=1

Then, the system equivalence condition (7) holds, i'e'The cost associated with (26) is defined as

Je(®, Pig1,tit1) = fe(@, Pis fli)-

problem with linear constraints.

(25)

2) Problem 3.1 is equivalent to a quadratic optimization

J(p,u) = /000 (2"Qz +u"Ru) dt, z(0)=xzo. (27)

whereQ = QT >0, R = R” > 0, and the paif A(p), Q'/?)

Proof: 1) Under Assumptions 3.1 and 3.2, the equivalen¢g gssumed detectable for apye P.

condition (7) becomes

f(@,piv1) + (@, pig1) iy ()
= f(xaﬁl) + g(xaﬁl):&l(x)
! q

< E(x,pi)|Ao+pit1,y Yy Aj+cirry Y Bitin

J=1 J=1

I q
= E(z,pis1)| Ao+ iy Aj+c'; > Bjthia
j=1

j=1

! q
& %‘ZE ﬁz‘+1,jai,j+§ Cit1,jBi,5-
=1 =1

2) Under Assumption 3.2 4), defing as the null space of

span (o1, 06,2, -+, 1, ity Bias -+ Bisgs Vi) -

In the LQR co-design problem, we seek a linear state-
feedback control policy in the form af = Kz, and a set of
system parameters such that the cost (27) can be minimized.
Therefore, the problem can also be formulated as:

Problem 4.1 (LQR co-design problem):

oo
T ATt
Jq(pi+1,Ki+1):/ Tg e it
0

X (Q + Kg;lRKiJrl)

xedit1tpodt

min
Pi+1€P, Kit1
(28)
where, fori =0,1,---,
A; == E7Y(p)[A(pi) + BK), Vp; € P, VK; € R™*"

Again, Problem 4.1 is non-convex, and finding a global
minimum is not practical in general cases. Here, we give the



LQR version of the policy iteration methodology proposed iparameters. Notice that the system (33)-(34), with, = 0,
the previous section. is studied in [28].

Let pp € P and assumeK, € R™*™ is such that The control objective is to track a step command. For this
E~Y(po) [A(po) + B(po)Ko] is Hurwitz. Then, conduct the purpose, we defing; = =, — y4, with 3,4 the desired constant
following steps iteratively until convergence is attained output,zo, = @y + @p, x3 = g, andxy = &p. Then, the
1) Policy evaluation system is converted to

Solve for P, = P! > 0 from the Lyapunov equation

il = X2 (35)
0= ATP, + PA; + Q + K'RK,. (29) . 1 1 5
To = — (— + —) drre + —x3
2) Gradient-based policy improvement mrL. mp B
i i kBn d 1 1
Update the feedback gain matrix +mix§ + m_BaC4 + (m_ + m_) u  (36)
_ 1T T B B L B
K{'=—-R "B E " (p;) P (30) i3 = a4 (37)
3) System-equivalence-based policy improvement o d_LxQ _ k_Bx?) _ @xg
Simultaneously update the system parameters; te and mp mp mp
the feedback gain matrix té&’;,,, by solving the following —d—B;v4 _ Lu (38)
optimization problem: mp mp
0 “ The cost to be minimizes is chosen as
min / :COTeAiTtKﬁlRKiHeA?txodt (31)
pEP,Kit1 0

—_ OO 2 2 2 2 2
where A" = E~*(p;) [A(pi) + BK[]. o where p = [mr,mp,dr, kp,dp]”, and their bounds are
Remark 4.1: The optimization problem described in (31)shown in the second and the third columns in Table .
(32) is a quadratic programming problem. Also, similar as- To perform the policy evaluation and the gradient

sumptions as 2) 4) in Assumption 3.2 can be imposed f@licy improvement,{¢;}22, are selected to be second
guarantee there are non-trivial feasible solutions to tbelpm and fourth order polynomials ofc. Also, {%}?21 =

other than(p;, K}"). {21,00,73,04,03,03,03 03,0123, 21 23,21 2% 2003 w273 1007,

The following corollary is a direct result from Theorem 3.14:342 25202 2327, x222,202%,2023}. The initial control
Corollary 4.1: Consider system (1) and its associated copblicy is set to beuy, = —z;. The constant weights
(2). Supposey; is admissible with respect tp; € P. Then, are computed using Galerkin approximation [25], with

the following hold: Q = {zf|lz1] < 1.5,z < 1.5,|zs| < 1.5, |z4] < 2}.
1) A1 = AY is Hurwitz, From (32),24 equality constraints witl25 variables can be
2) Jq(pi+1,Ki+1) < Jq(pi,KZH) < Jq(pi,Ki), and derived.
3) there exists/; > 0, such thatilirgo Jy(pi, Ki) = J;. To make a fair comparison between the conventional policy

Remark 4.2: In the absence of Step 3) and with ﬁxed'teration without co-design and the modified policy itevati

system parameters, the two steps described by (29) and (\gﬁf] co-design, steps (4)-(5) of these two cases are imple-

become the algorithm derived in [27]. Clearly, these tqusterm:’med exactly_the same. Fpr the modiﬂed policy iteration
involve much less computational burden compared with U Cael the a\_ddltlonal quadrat|c_ programming problem at the
co-design methods for linear systems proposed in [3], 2], §ystem-equwalence-based policy improvement step isedolv

which a linear matrix inequality with fixed system paramstePY INvoking the MATLAB functionquadprogwith medium-
needs to be solved at each iteration step. scale option on. Simulation is performed on a desktop with

Windows 7 and an Intel Core 2@3.0GHz processor, and the
results are summarized by Figures 1-3. From Figure 1, we

V. AN APPLICATION TO A LOAD-POSITIONING SYSTEM see that the modified policy iteration algorithm converges

Consider the load-positioning system within three iterations and gives a system cést 409.5055.
1 kp As a comparison, the conventional policy iteration alduonit
ip = (u— dL:bL)(m— + m—) +o—1p converges within six iterations and gives a system cbst
kbn s d; B B 501.62. Clearly, by applying the propc_)sed co-design technique,
+—azp+ —ip (33) the system performance has been improve@h985%. As
mp mp . . . . .
) . 1 kg for th_e computation time, the conventional and modlfledq;;oll
ip = (dpip—u)— — —=zxp iterations take 7.66sec and 10.88sec, respectively toenn t
mp  MB iterations. In Figure 2, it can be found that a shorter segtli
_kﬂxi’é _ d_B;bB (34) time can be achieved while less control energy is required
mp mp after co-design, compared with conventional optimal acaintr

wherez, is the relative displacement of the load with respectesign. Finally, value functions obtain with and without co
to the platform,z s is the absolute displacement of the platdesign are compared on tlie;, z3) plane and are shown in
form, anddy, mp, mr, kg, kg, anddg are constant systemFigure 3.
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TABLE |
SYSTEM PARAMETERS
Variable | Min value | Max value | Initial value | Optimized value
mp, 1 3 2 1.13
mp 15 25 20 15
dr, 10 20 15 10
kp 10 20 15 11.25
dp 0.1 1 0.5 0.375

VI. CONCLUSIONS

In this paper, a novel iterative technique has been proposed
to solve the nonlinear co-design problem. The key idea is to
modify conventional policy iteration by adding an additidn
step of system-equivalence-based policy improvement, and
rigorous mathematical proofs were given. The proposed co-
design methodology has been illustrated through the appli-
cation to a load-positioning system. It will be interestity
extend the proposed method for the co-design of dynamic
systems with static uncertainties via adaptive dynamics pr
gramming [29]—-[37] and robust adaptive dynamic program-
ming [26], [38]-[40].
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