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Optimal Co-Design of Nonlinear Control Systems
Based on A Modified Policy Iteration Method

Yu Jiang, Yebin Wang, Scott A. Bortoff, and Zhong-Ping Jiang

Abstract—This paper studies the optimal co-design of nonlin-
ear control systems: simultaneous design of physical plants and
related optimal control policies. Nonlinearity of the optimal co-
design problem could come from either a non-quadratic cost
function or the plant. After formulating the optimal co-design
into a non-convex optimization problem, an iterative scheme
is proposed in this paper by adding an additional step of
system-equivalence-based policy improvement to the conventional
policy iteration. We have proved rigorously that the closed-
loop system performance can be improved after each step of
the proposed policy iteration scheme, and the convergence to a
suboptimal solution is guaranteed. It is also shown that under
certain conditions, this additional policy improvement step can
be conducted by solving a quadratic programming problem.
The linear version of the proposed methodology is addressed
in the context of LQR. Finally, the effectiveness of the proposed
methodology is illustrated through the optimal co-design of a
load-positioning system.

Index Terms—Nonlinear system, Co-design, Optimal control,
Policy iteration.

I. I NTRODUCTION

Conventional design of nonlinear control systems decouples
the plant and the control design processes, i.e., the plant,
also referred as the open-loop system, is given a priori while
designing the control policy. Such decoupling is however not
necessary due to the fact that both the plant and the con-
trol policy jointly affect the closed-loop system performance.
Slight adjustments of the plant may result in remarkable im-
provements of the system performance, as well as robustness.
Here, by “co-design”, we refer to the simultaneous design
of both the plant and the control policy to optimize certain
prescribed performance objectives. Similar research workhas
been carried out under the names of “integrated structure
and control design” [1], [2], “optimal redesign” [3], [4], and
“simultaneous design” [5], [6], etc. The co-design problem
can find a great number of engineering applications, such
as aerospace crafts [5], [6], smart buildings [2], [4], and
electromechanical devices [7].

In recent years, one popular way to deal with the co-design
problem is to formulate it as a nonlinear optimization problem
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by parameterizing the plant and the control policy [3]. The
resultant optimization problem for linear control systemsis
challenging due to the non-convexity [8]. When nonlinear
system dynamics and non-quadratic cost functions are taken
into consideration, there is less hope of solving the problem
analytically. Indeed, even for fixed system parameters, finding
the optimal control policy requires solving the well-known
Hamilton-Jacobi-Bellman (HJB) equation of which a closed-
form solution is hard to obtain in general cases.

The primary goal of this paper is to develop an iterative
methodology for nonlinear co-design problems: co-design of
nonlinear control systems. The main idea is to modify the
conventional policy iteration technique [9], [10], which has
been widely used in neural-network-based online controller
designs; see [11]–[16], and references therein. By adding an
extra step calledsystem-equivalence-based policy improvement
to redesign the control policy as well as system parameters
simultaneously at each iteration step, we prove that the closed-
loop system performance can be improved sequentially until
the algorithm converges to a stationary point. We also show
that, under certain conditions, the system-equivalence-based
policy improvement can be cast to a quadratic programming
problem. Inspired from the iterative techniques [2], [3], our
novel method has two main advantages. First, it can be applied
to a class of nonlinear systems with tunable system parameters.
Second, in the linear quadratic setting, our approach has much
less computational burden compared with methods in [2], [3].

The remainder of the paper is organized as follows. Section
2 formulates the nonlinear co-design problem. Section 3
presents the modified policy iteration scheme, and investigates
when the system-equivalence-based policy improvement can
be reduced to a quadratic optimization problem. Section 4
addresses the linear case of the proposed methodology. Appli-
cation to a load-positioning system is illustrated in Section 5.
Finally, concluding remarks are provided in Section 6.

II. PROBLEM FORMULATION

Consider a nonlinear control system

ẋ = f(x, p) + g(x, p)u (1)

wherex ∈ Ω ⊂ R
n is the system state vector,Ω is a compact

set containing the origin in its interior,u ∈ R
m is the control

input, p ∈ P ⊂ R
l is a vector of constant system parameters

to be designed,f : Rn ×R
l → R

n is a vector field satisfying
f(0, p) = 0 for all p ∈ P , and g : Rn × R

l → R
n×m. All

components off andg are locally Lipschitz functions inx for
each fixedp. The system parameter vectorp hasp ∈ R

l and
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p ∈ R
l as its component-wise upper and lower bounds, i.e., the

ith components ofp is lower and upper bounded by thei-th
components ofp andp, respectively. For simplicity of notation,
we denote the feasible set ofp asP = {p | p ≤ p ≤ p̄},

The cost associated with system (1) is defined as

J(p, u) =

∫ ∞

0

[

Q(x) + uTRu
]

dt, x(0) = x0 ∈ Ω (2)

whereQ(x) is a positive definite function onΩ, andR = RT

is a positive definite matrix.
Definition 2.1: Consider system (1) and the cost func-

tional (2). A feedback control policyu(x) is admissiblewith
respect to the parameter vectorp ∈ P , if

1) the closed-loop system (1) withp and u(x) is asymp-
totically stable onΩ, and

2) the costJ(p, u) is finite.

In Definition 2.1, the admissible control is assumed to be
state feedback. This technical assumption makes the resul-
tant co-design problem exposed to well-established theories
including dynamics programming. DefiningUp as the set of
all the admissible feedback control policies with respect to
p, we assume that there exists a pair(p0, u0(x)) such that
u0 ∈ Up0

. The nonlinear co-design problem can be formulated
as follows.

Problem 2.1 (Nonlinear co-design problem):Given the
system (1), find a pair(p∗, u∗) ∈ P × Up∗ which minimizes
the cost function (2), i.e.

(p∗, u∗) = arg min
p∈P,u∈Up

J(p, u). (3)

Remark 2.1: Concisely formulated, Problem 2.1 is ex-
tremely difficult to be solved for at least two reasons. First,
this optimization problem is generally non-convex and the
difficulty to solve a non-convex constrained optimization prob-
lem is well-understood. Second, nonlinearities involved in the
problem make it almost impossible to find an analytic solution
even for fixedp. To the best of our knowledge, there are
no currently available tools for solving general nonlinearco-
design problems.

The co-design process seeks an optimal or suboptimal
solution which naturally resorts to an optimization problem.
For the co-design problem, some work has been devoted to
establish the existence and uniqueness of an optimal solution,
and most of existing work assume the existence of optimal
solutions and study the mathematical characterization of an
optimal solution. Work [17] studies the existence of an optimal
solution of a system design problem using the Weierstrass
Theorem, which requires the compactness of the feasible
set. Some researchers have been endeavoring in developing
necessary conditions for local optimal solutions [18]–[21].
Nevertheless, their results can only be directly applied tosome
special cases. In terms of how to compute an optimal solution,
one of the earliest studies of Problem 2.1 can be found in
[22], where a gradient method was developed to numerically
search for the optimal solution. The stability and convergence
analysis of this method is however difficult to perform. This
paper assumes the existence of optimal solutions and focuses
on the iterative method that computes a suboptimal solution

to Problem 2.1. In other words, we focus on algorithms of co-
design process which take conventional designs as inputs and
produce improved designs. The improved design outperforms
the conventional design in terms of the system performance.

III. A MODIFIED POLICY ITERATION TECHNIQUE

In this section, we develop an iterative technique based
on a modified policy iteration scheme to solve Problem 2.1.
We will also provide a parametrization method which gives
numerically a suboptimal solution to Problem 2.1.

A. A modified policy iteration algorithm

Suppose the initial vector of the system parameters isp0 ∈
P , and assume an associated admissible control policyu0 is
known. The proposed policy iteration can be summarized in
the following three steps, withi = 0, 1, · · · .
1) Policy evaluation

Solve for the positive definite functionVi(x), from

0 = ∇V T
i [(f(x, pi) + g(x, pi)ui(x)]

+Q(x) + uTi (x)Rui(x), ∀x ∈ Ω, (4)

where∇V T
i = ∂Vi/∂x.

2) Gradient-based policy improvement
Update the control policy by

µi(x) = −
1

2
R−1gT (x, pi)∇Vi(x), ∀x ∈ Ω. (5)

3) System-equivalence-based policy improvement
Simultaneously update the system parameters topi+1 and

the control policy toui+1 by solving the following optimiza-
tion problem:

min
pi+1∈P,ui+1

∫ ∞

0

uTi+1(x
[i](t))Rui+1(x

[i](t))dt (6)

s.t. fc(x, pi+1, ui+1) = fc(x, pi, µi), ∀x ∈ Ω (7)

where

fc(x, p, u) := f(x, p) + g(x, p)u(x), ∀x ∈ Ω, ∀p ∈ P (8)

andx[i] is the solution of the system

ẋ[i] = f(x[i], pi) + g(x[i], pi)µi(x), x[i](0) = x0. (9)

Remark 3.1: As a standard form of the policy itera-
tion [23], (4) is used to solve a Lyapunov functionVi. As
a system of first order nonlinear partial differential equations,
the closed-form solution of (4) is difficult to establish. Instead,
a good approximate solution is usually of practical interest.
Given parameterizations ofui and Vi, (4) is reduced to
algebraic equations, and thus the approximate solution can
be readily computed. The three steps (4)-(7) can be repeated
until convergence is attained. In the absence of the system-
equivalence-based policy improvement step, the algorithmis
reduced to the conventional policy iteration [9], [10], [24].

The following theorem shows that the modified policy
iteration algorithm can improve the performance of interest.

Theorem 3.1: Consider system (1) and its associated cost
(2). Supposeui ∈ Upi

, and a positive definite solution of (4)
exists, fori = 0, 1, · · · . Then, the following hold:
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1) µi ∈ Upi
,

2) ui+1 ∈ Upi+1
,

3) J(pi+1, ui+1) ≤ J(pi, µi) ≤ J(pi, ui).

Proof: 1) First, we proveµi is stabilizing. Indeed, along
the solutions of the system

ξ̇ = f(ξ, pi) + g(ξ, pi)µi(ξ), ξ(0) = x ∈ Ω (10)

we have

V̇i = ∇V T
i (ξ)[f(ξ, pi) + g(ξ, pi)(ui(ξ) + µi(ξ)− ui(ξ))]

= −Q(ξ)− µT
i (ξ)Rµi(ξ)

−(µi(ξ)− ui(ξ))
TR(µi(ξ)− ui(ξ)) ≤ −Q(ξ)

Therefore,Vi is a Lyapunov function for the system (10),
andµi is stabilizing.

DefineV µ
i : Ω → R+, with V µ

i (0) = 0, as the solution of

0 = (∇V µ
i )T [(f(x, pi) + g(x, pi)µi] +Q(x) + µT

i Rµi. (11)

Now, subtracting (4) from (11), similarly as in [10], we obtain

0 = (∇V µ
i −∇Vi)

T
[f(x, pi) + g(x, pi)µi]

− (ui − µi)
T
R (ui − µi) . (12)

Hence, integrating both sides of the above equation along the
solutions of system (9), it follows that

V µ
i (x0)− Vi(x0) = −

∫ ∞

0

(ui − µi)
TR(ui − µi)dt ≤ 0.

As a result,µi is admissible with an improved cost compared
with ui. Hence, both 1) and the second inequality in 3) hold.
Meanwhile, under the system equivalence condition (7), 2)
holds.

Second, subtracting (11) from

0 = ∇V T
i+1 [(f(x, pi+1) + g(x, pi+1)ui+1(x)]

+Q(x) + uTi+1(x)Rui+1(x), (13)

and considering the equality constraint (7), we obtain

0 = (∇Vi+1 −∇V µ
i )

T
fc(x, pi+1, ui+1)

+uTi+1Rui+1 − µT
i Rµi (14)

Integrating (14) along the trajectory ofx[i], we have

J(pi+1, ui+1)− J(pi, µi)

≤

∫ ∞

0

uTi+1(x
[i](t))Rui+1(x

[i](t))dt

−

∫ ∞

0

µT
i (x

[i](t))Rµi(x
[i](t))dt (15)

The right hand side of the inequality is apparently less
or equal to zero by the definition ofui+1. Hence, the first
inequality in 3) is proved. The proof is thus complete.

Corollary 3.1: There exists a constantJ∗ ≥ 0, such that
lim
i→∞

J(pi, ui) = J∗.

Proof: By Theorem 3.1, we know the sequence
{J(pi, ui)}

∞
i=1 is monotonically decreasing. Also, the se-

quence is bounded from below because all its elements are
non-negative. Therefore, the limit exists.

B. Parametrization and neural network approximation

Unfortunately, the proposed policy iteration method is still
not directly applicable due to two obstacles. First, a linear
partial differential equation needs to be solved in the the
policy evaluation step. Second, in the system-equivalence-
based policy improvement step, we are facing a nonlinear
optimization problem of which the solution is non-trivial in
general. To avoid these difficulties, we provide a practical
implementation method by parameterizing the control policy.

To begin with, let{φj(x)}Nj=1 ∈ R and{ψj(x)}
q
j=1 ∈ R

m

be two sets of linearly independent, continuously differen-
tiable functions and vector fields, respectively. In addition,
we assume thatφj(0) = 0, ∀ 1 ≤ j ≤ N and ψj(0) = 0,
∀ 1 ≤ j ≤ q.

Assumption 3.1: Given a pair(p̂i, ûi) such that̂ui ∈ Up̂i
,

and assumêui(x) ∈ span{ψ1(x), ψ1(x), · · · , ψq(x)}. Then,

V̂i(x) ∈ span{φ1(x), φ1(x), · · · , φN (x)},

µ̂i(x) ∈ span{ψ1(x), ψ1(x), · · · , ψq(x)}.

whereV̂i(x) and µ̂i(x) are obtained from (4) and (5) withui
replaced bŷui.

Under Assumption 3.1, we can find three sets of
weights {wi,1, wi,2, · · · , wi,N}, {ci,1, ci,2, · · · , ci,q}, and
{cµi,1, c

µ
i,2, · · · , c

µ
i,q}, such that ûi(x) =

∑q
j=1 c

µ
i,jψj(x),

V̂i(x) =
∑N

j=1 wi,jφj(x), µ̂i(x) =
∑l

j=q c
µ
i,jψj(x).

Remark 3.2: If Assumption 3.1 is not satisfied, these
weights can still be numerically obtained based on neural
network approximation methods, such as the off-line ap-
proximation using Galerkin’s method [25]. In addition, for
uncertain nonlinear systems, these weights can be trained us-
ing approximate-dynamic-programming-based online learning
methods [26], [15]. Notice that, when these approximation
methods are used,Ω is required to be a compact set to
guarantee the boundedness of the approximation error.

Assumption 3.2: There exist matrices of functions
Ej(x) ∈ R

n×n with j = 0, 1, · · · , l, Ai(x) ∈ R
n with

j = 0, 1, · · · , l, andB(x) ∈ R
n×m, such that the following

hold for ∀x ∈ R
n and∀p̂i ∈ P .

1) The following matrix is invertible

E(x, p̂i) := E0(x) +
l

∑

j=1

Ej(x)p̂i,j , (16)

wherep̂i,j represents thejth component of the vector̂p.
2) MatricesE(x, p′) andE(x, p′′) commute, for∀p′, p′′ ∈

P , i.e.,

E(x, p′)E(x, p′′) = E(x, p′′)E(x, p′). (17)

3) Functionsf(x, p̂i) andg(x, p̂i) can be decomposed as

f(x, p̂i) = E−1(x, p̂i)



A0 +

l
∑

j=1

Aj p̂i,j



 (18)

g(x, p̂i) = E−1(x, p̂i)B (19)

4) The following rank condition is satisfied

rank (θ0,1, · · · , θl,l, ζ0,1, · · · , ζl,q) < l + q (20)
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where θi,j = vec(EiAj), 0 ≤ i, j ≤ l, and ζi,j =
vec(EiBψj), 0 ≤ i, j ≤ q.

Now, we are ready to replace the system-equivalence-based
policy improvement by the following optimization problem.

Problem 3.1: Find the optimal coefficientsci+1,j , 1 ≤ j ≤
q and the vector̂pi+1 ∈ P from

min
ci+1,j ,1≤j≤q

q
∑

j=1

q
∑

k=1

ci+1,jci+1,k

×

∫ ∞

0

ψj(x
[i])TRψk(x

[i])dt (21)

s.t. γi =
l

∑

j=1

p̂i+1,jαi,j +

q
∑

j=1

ci+1,jβi,j , (22)

p̂i+1∈P , (23)

where

αi,j = θj,0 − θ0,j + p̂i,k

l
∑

k=1

θj,k

+cµi,k

q
∑

k=1

ζj,k − p̂i,k

l
∑

k=0

θk,j ,

βi,j = −ζ0,j − p̂i,k

l
∑

k=1

ζk,j ,

γi = p̂i,k

l
∑

k=1

θk,0 − p̂i,k

l
∑

k=1

θ0,k − cµi,k

q
∑

k=1

ζ0,k.

Lemma 3.1: Under Assumptions 3.1 and 3.2, the following
hold.

1) Let ci+1,j and p̂i+1 be the solution of Problem 3.1, and
define the control policy.

ûi+1(x) =

q
∑

j=1

ci+1,jψj(x). (24)

Then, the system equivalence condition (7) holds, i.e.,

fc(x, p̂i+1, ûi+1) = fc(x, p̂i, µ̂i). (25)

2) Problem 3.1 is equivalent to a quadratic optimization
problem with linear constraints.

Proof: 1) Under Assumptions 3.1 and 3.2, the equivalence
condition (7) becomes

f(x, p̂i+1) + g(x, p̂i+1)ûi+1(x)

= f(x, p̂i) + g(x, p̂i)µ̂i(x)

⇔ E(x, p̂i)



A0+p̂i+1,j

l
∑

j=1

Aj+ci+1,j

q
∑

j=1

Bjψi+1





= E(x, p̂i+1)



A0 + p̂i,j

l
∑

j=1

Aj + cµi,j

q
∑

j=1

Bjψi+1





⇔ γi =

l
∑

j=1

p̂i+1,jαi,j +

q
∑

j=1

ci+1,jβi,j .

2) Under Assumption 3.2 4), defineV as the null space of

span (αi,1, αi,2, · · · , αi,l, βi,1, βi,2, · · · , βi,q, γi) .

Then,V is a linear space with a non-zero dimension, and (7)
is equivalent to

[p̂i+1,1, p̂i+1,2, · · · , p̂i+1,l, ci+1,1, ci+1,2, · · · , ci+1,q,−1] ∈ V

which is a linear equality constraint.
The following proposition summarizes the performance

improvement. The proof is omitted here because it is nearly
identical to the proof of Theorem 3.1.

Proposition 3.1: Under Assumptions 3.1 and 3.2,

1) ûi+1 is admissible with respect topi+1,
2) J(p̂i+1, ûi+1) ≤ J(p̂i, µ̂i) ≤ J(p̂i, ûi), and
3) there existsĴ∗ ≥ 0, such that lim

i→∞
J(p̂i, ûi) = Ĵ∗.

IV. T HE LQR CASE: SPECIALIZATION TO LINEAR

SYSTEMS

In this section, we study the co-design of a linear tim-
invariant (LTI) control system where the control policy is
chosen to be the linear quadratic regulator (LQR). The co-
design of the LTI plant and the LQR is a special yet important
case where the proposed methodology can be applied.

To this end, consider the LTI control system

E(p)ẋ = A(p)x +Bu (26)

wherex ∈ R
n is the system state,u ∈ R

m the control input,
p ∈ R

l ⊂ P is the vector of system parameters. Given any
p′ ∈ P , it is assumed that the matrixE(p′) is invertible and the
constant pair of matrices(A(p′), B) is stabilizable. In addition,
we further assume that there exist constant matricesE0, E1,
· · · , Eq, andA0, A1, · · · , Aq, such that

E(pi) = E0 +

q
∑

j=1

Ejpi,j ,

A(pi) = A0 +

q
∑

j=1

Ajpi,j , ∀pi ∈ P .

The cost associated with (26) is defined as

J(p, u) =

∫ ∞

0

(

xTQx+ uTRu
)

dt, x(0) = x0. (27)

whereQ = QT ≥ 0, R = RT > 0, and the pair(A(p), Q1/2)
is assumed detectable for anyp ∈ P .

In the LQR co-design problem, we seek a linear state-
feedback control policy in the form ofu = Kx, and a set of
system parameters such that the cost (27) can be minimized.
Therefore, the problem can also be formulated as:

Problem 4.1 (LQR co-design problem):

min
pi+1∈P, Ki+1

Jq(pi+1,Ki+1)=

∫ ∞

0

xT0 e
AT

i+1t

×
(

Q+KT
i+1RKi+1

)

×eAi+1tx0dt (28)

where, fori = 0, 1, · · · ,

Ai := E−1(pi)[A(pi) +BKi], ∀pi ∈ P , ∀Ki ∈ R
m×n

Again, Problem 4.1 is non-convex, and finding a global
minimum is not practical in general cases. Here, we give the
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LQR version of the policy iteration methodology proposed in
the previous section.

Let p0 ∈ P and assumeK0 ∈ R
m×n is such that

E−1(p0) [A(p0) +B(p0)K0] is Hurwitz. Then, conduct the
following steps iteratively until convergence is attained.
1) Policy evaluation

Solve forPi = PT
i > 0 from the Lyapunov equation

0 = AT
i Pi + PiAi +Q +KT

i RKi. (29)

2) Gradient-based policy improvement
Update the feedback gain matrix

Kµ
i = −R−1BTE−T (pi)Pi. (30)

3) System-equivalence-based policy improvement
Simultaneously update the system parameters topi+1 and

the feedback gain matrix toKi+1, by solving the following
optimization problem:

min
p∈P,Ki+1

∫ ∞

0

xT0 e
AµT

i
tKT

i+1RKi+1e
Aµ

i
tx0dt (31)

s.t. A(pi+1) +BKi+1 = E(pi+1)A
µ
i (32)

whereAµ
i = E−1(pi) [A(pi) +BKµ

i ] .
Remark 4.1: The optimization problem described in (31)-

(32) is a quadratic programming problem. Also, similar as-
sumptions as 2) 4) in Assumption 3.2 can be imposed to
guarantee there are non-trivial feasible solutions to the problem
other than(pi,K

µ
i ).

The following corollary is a direct result from Theorem 3.1.
Corollary 4.1: Consider system (1) and its associated cost

(2). Supposeui is admissible with respect topi ∈ P . Then,
the following hold:

1) Ai+1 = Aµ
i is Hurwitz,

2) Jq(pi+1,Ki+1) ≤ Jq(pi,K
µ
i ) ≤ Jq(pi,Ki), and

3) there existsJ∗
q ≥ 0, such that lim

i→∞
Jq(pi,Ki) = J∗

q .

Remark 4.2: In the absence of Step 3) and with fixed
system parameters, the two steps described by (29) and (30)
become the algorithm derived in [27]. Clearly, these two steps
involve much less computational burden compared with the
co-design methods for linear systems proposed in [3], [2], in
which a linear matrix inequality with fixed system parameters
needs to be solved at each iteration step.

V. A N APPLICATION TO A LOAD-POSITIONING SYSTEM

Consider the load-positioning system

ẍL = (u− dLẋL)(
1

mL
+

1

mB
) +

kB
mB

xB

+
kBn

mB
x3B +

dB
mB

ẋB (33)

ẍB = (dLẋL − u)
1

mB
−
kB
mB

xB

−
kBn

mB
x3B −

dB
mB

ẋB (34)

wherexL is the relative displacement of the load with respect
to the platform,xB is the absolute displacement of the plat-
form, anddL, mB, mL, kB, kBn anddB are constant system

parameters. Notice that the system (33)-(34), withkBn = 0,
is studied in [28].

The control objective is to track a step command. For this
purpose, we definex1 = xL−yd, with yd the desired constant
output,x2 = ẋL + ẋB, x3 = xB, andx4 = ẋB. Then, the
system is converted to

ẋ1 = x2 (35)

ẋ2 = −

(

1

mL
+

1

mB

)

dLx2 +
kB
mB

x3

+
kBn

mB
x33 +

dB
mB

x4 +

(

1

mL
+

1

mB

)

u (36)

ẋ3 = x4 (37)

ẋ2 =
dL
mB

x2 −
kB
mB

x3 −
kBn

mB
x33

−
dB
mB

x4 −
1

mB
u (38)

The cost to be minimizes is chosen as

J(p, u) =

∫ ∞

0

(

1000x21 + x22 + x23 + x24 + u2
)

dt (39)

where p = [mL,mB, dL, kB, dB]
T , and their bounds are

shown in the second and the third columns in Table I.
To perform the policy evaluation and the gradient

policy improvement,{φj}20j=1 are selected to be second
and fourth order polynomials ofx. Also, {ψj}

20
j=1 =

{x1,x2,x3,x4,x31,x32,x33,x34,x1x22,x1x23,x1x24,x2x21,x2x23,x2x24,
x3x

2
1,x3x22,x3x24, x2x

2
1,x2x21,x2x24}. The initial control

policy is set to beu0 = −x1. The constant weights
are computed using Galerkin approximation [25], with
Ω = {x||x1| ≤ 1.5, |x2| ≤ 1.5, |x3| ≤ 1.5, |x4| ≤ 2}.
From (32),24 equality constraints with25 variables can be
derived.

To make a fair comparison between the conventional policy
iteration without co-design and the modified policy iteration
with co-design, steps (4)-(5) of these two cases are imple-
mented exactly the same. For the modified policy iteration
case, the additional quadratic programming problem at the
system-equivalence-based policy improvement step is solved
by invoking the MATLAB functionquadprogwith medium-
scale option on. Simulation is performed on a desktop with
Windows 7 and an Intel Core 2@3.0GHz processor, and the
results are summarized by Figures 1-3. From Figure 1, we
see that the modified policy iteration algorithm converges
within three iterations and gives a system costJ = 409.5055.
As a comparison, the conventional policy iteration algorithm
converges within six iterations and gives a system costJ =
501.62. Clearly, by applying the proposed co-design technique,
the system performance has been improved by27.085%. As
for the computation time, the conventional and modified policy
iterations take 7.66sec and 10.88sec, respectively to run ten
iterations. In Figure 2, it can be found that a shorter settling
time can be achieved while less control energy is required
after co-design, compared with conventional optimal control
design. Finally, value functions obtain with and without co-
design are compared on the(x1, x3) plane and are shown in
Figure 3.
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Fig. 1. Illustration of the convergence property of the modified policy
iteration technique.
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Fig. 2. Tracking performance to a step command.
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Fig. 3. Comparison of the value functions.

TABLE I
SYSTEM PARAMETERS

Variable Min value Max value Initial value Optimized value

mL 1 3 2 1.13

mB 15 25 20 15

dL 10 20 15 10

kB 10 20 15 11.25

dB 0.1 1 0.5 0.375

VI. CONCLUSIONS

In this paper, a novel iterative technique has been proposed
to solve the nonlinear co-design problem. The key idea is to
modify conventional policy iteration by adding an additional
step of system-equivalence-based policy improvement, and
rigorous mathematical proofs were given. The proposed co-
design methodology has been illustrated through the appli-
cation to a load-positioning system. It will be interestingto
extend the proposed method for the co-design of dynamic
systems with static uncertainties via adaptive dynamics pro-
gramming [29]–[37] and robust adaptive dynamic program-
ming [26], [38]–[40].
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