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Abstract
A recurrent neural network language model (RNN-LM) can use a long word context more than
can an n-gram language model, and its effective has recently been shown in its accomplishment
of automatic speech recognition (ASR) tasks. However, the training criteria of RNN-LM are
based on cross entropy (CE) between predicted and reference words. In addition, unlike the
discriminative training of acoustic models and discriminative language models (DLM), these
criteria do not explicitly consider discriminative criteria calculated from ASR hypotheses and
references. This paper proposes a discriminative training method for RNN-LM by additionally
considering a discriminative criterion to CE. We use the log-likelihood ratio of the ASR
hypotheses and references as an discriminative criterion.

The proposed training criterion emphasizes the effect of misrecognized words relatively
compared to the effect of correct words, which are discounted in training. Experiments on a
large vocabulary continuous speech recognition task show that our proposed method improves
the RNN-LM baseline. In addition, combining the proposed discriminative RNN-LM and
DLM further shows its effectiveness.
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ABSTRACT

A recurrent neural network language model (RNN-LM) can use a
long word context more than can ann-gram language model, and
its effective has recently been shown in its accomplishment of auto-
matic speech recognition (ASR) tasks. However, the training criteria
of RNN-LM are based on cross entropy (CE) between predicted and
reference words. In addition, unlike the discriminative training of
acoustic models and discriminative language models (DLM), these
criteria do not explicitly consider discriminative criteria calculated
from ASR hypotheses and references. This paper proposes a dis-
criminative training method for RNN-LM by additionally consider-
ing a discriminative criterion to CE. We use the log-likelihood ratio
of the ASR hypotheses and references as an discriminative criterion.
The proposed training criterion emphasizes the effect of misrecog-
nized words relatively compared to the effect of correct words, which
are discounted in training. Experiments on a large vocabulary con-
tinuous speech recognition task show that our proposed method im-
proves the RNN-LM baseline. In addition, combining the proposed
discriminative RNN-LM and DLM further shows its effectiveness.

Index Terms— Speech recognition, recurrent neural network,
language model, discriminative criterion, log-likelihood ratio

1. INTRODUCTION

Neural network methods have garnered much attention in the field
of automatic speech recognition (ASR). One of the most successful
examples is the deep neural network (DNN) used in acoustic mod-
eling, and neural networks have been recently introduced and used
for language processing. Among them, the recurrent neural network
based language model (RNN-LM) has become popular due to its
high performance [1, 2] as well as the availability of open source
software [3, 4]. RNN is a neural network (NN) that contains one
or more hidden layers with recursive inputs. Although their com-
putational costs are high, RNN-LM greatly improves ASR perfor-
mance. The greatest difference between RNN-LM and conventional
n-gram models is the available word context length. The role of a
language model is to estimate posterior probabilities of target words
based on previous words context. A long context provides much in-
formation. However, the simple use of a long context (i.e., 4-gram
or 5-gram) by a conventionaln-gram language model encounters
data sparsity problems. To address these problems, RNN-LM first
maps a high-dimensional 1-of-N representation of a target word to a
low-dimensional continuous space in a hidden layer and directly es-
timates the posterior probability of the target word. The hidden-layer
units from the previous frame are then connected to the input vector

in the next frame. These recursive inputs collect the history of words
in the low-dimensional hidden-layer units. RNN-LM implicitly con-
siders the entire history of words, whereas widely usedn-gram mod-
els consider only previous(n−1) words. Although there are several
trials [5, 6, 7], using RNN-LM directly for decoding is essentially
difficult because feed-forward propagation of RNN is much more
expensive than using a table lookup method with an n-gram model.
Therefore, RNN-LM is typically used for post-processing such as
N-best or lattice rescoring.

However, the training criteria of RNN-LM are based on cross en-
tropy (CE) between predicted and reference words. That is, the CE
criterion does not explicitly consider discriminative criteria calcu-
lated from ASR hypotheses and references. On the other hand, dis-
criminative criteria show the effectiveness in GMM-based acoustic
model and feature transformation training at accomplishing various
ASR tasks [8, 9, 10, 11]. Moreover, those for DNN acoustic mod-
eling can also reduce ASR errors, while maintaining a fundamental
high frame-level discriminability [12, 13, 14, 15, 16]. RNN-LM CE
criterion is discriminative in the sense of considering the posterior
distribution of a target word given history, but a discriminative crite-
rion of RNN-LM that considers ASR hypotheses can further correct
ASR errors. In recent years, [17] and [18] have applied sequence
discriminative training to RNN acoustic modeling and natural lan-
guage understanding, respectively. In this study, we propose a new
discriminative training method for RNN-LM.

Another discriminative model within N-best rescoring frame-
work is known as a discriminative language modeling (DLM) [19,
20, 21]. DLM is a corrective training method based on n-gram
counts obtained from reference and ASR hypothesis examples of
training data. It can correct errors that are inherent to a decoder in an
efficient manner especially for words of short context. However, the
context of DLM is limited to ann-gram (usually a tri-gram) that is
identical to that in a typicaln-gram language model. In addition, a
long context cannot be used for error correction because of data spar-
sity. Our proposed method is based on a RNN-LM framework, and
can consider a long context with the consideration of ASR hypothe-
ses. Moreover, combining DLM and our discriminative RNN-LM
can improve the performance from the DLM itself, which realizes
short and long context discriminative language modeling.

The remainder of this paper is organized as follows. Section 2
describes the conventional RNN-LM [1]. Our proposed discrimi-
native approach is described in Section 3. Section 4 describes our
experiments involving a large vocabulary continuous speech recog-
nition (LVCSR) task and reveals that the proposed method improves
speech recognition performance.
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Fig. 1. Recurrent neural network language model (RNN-LM) topol-
ogy. |V|-dimensional input vectorxt is a 1-of-|V| representa-
tion of the t-th word of the utterance. Output vectoryt is an
|V|-dimensional posterior probability vector corresponding to input
words conditioned on the previous context. The hidden layer has a
low-dimensional vectorst. Hidden-layer units in the previous frame
st−1 are recursively concatenated to the input vectorxt.

2. RNN-LM

Fig. 1 shows the topology of RNN-LM having one hidden layer,
which we used for the following experiments. Hidden-layer units
in the previous frame are recursively connected to the input vector.
Weight matricesU andV (≜ Θ) are model parameters to be esti-
mated in a training phase.

2.1. Cross-entropy training

We train the RNN-LM according to the cross-entropy (CE) criterion
that minimizes the objective functionFCE. CE is calculated from a
posterior of the predicted wordyt = [yt(1), · · · , yt(n), · · · , yt(|V|)]⊤
with vocabularyV, and a reference label sequenceC = {ct|t =
1, · · · , T}, as follows:

FCE(C) = −
|V|∑
n=1

T∑
t=1

δ(n, ct) log yt(n), (1)

wherect is an index of the reference label at thet-th word. δ(·, ·) is
a Kronecker delta function. The output layer has a softmax function
yt:

yt(n) =
exp(at(n))∑
n′ exp(at(n′))

, (2)

wheren is an index of elements in the output (softmax) layer andat

is an activation of then-th word.

2.2. Update rule

We discuss gradient-descent-based update rules for training param-
eterΘ. Based on the chain rule property of neural network (i.e.,
∂/∂Θ = ∂/∂at(n) · ∂at(n)/∂Θ), we focus on the differentiation
of the objective functionFCE w.r.t of the activationat(n) as

∂FCE

∂at(n)
= −[δ(n, ct)− yt(n)] ≜ εt(n), (3)

because∂/∂at(n) log yt(n
′) = δ(n, n′) − yt(n). This equation

means that the difference of the reference word and posteriorεt(n),
which is an error of wordn at positiont, is propagated to the esti-
mation of the model parametersΘ. Since there is a recurrent con-
nection, it will be solved by the back propagation through time [1].
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Fig. 2. Weight discount procedure of the proposed method. The
weight of training data is discounted (i.e.,1 − β) for the correct
data. A, B, C, and D are words, @ is a NULL token that follows
the alignments of a correct word sequence and ASR hypothesis are
fixed. Sdenotes a substitution and Idenotes an insertion error. For
insertion, repeated entry of the previous frame is used.

3. DISCRIMINATIVE TRAINING OF RNN-LM

3.1. Discriminative criterion of RNN-LM

To introduce the discriminative training into RNN-LM, we start from
the word-level likelihood ratio objective functionFLR1:

FLR(C,H) = −
∑
t

log
yt(ct)

yt(ht)β
, (4)

whereht is an index of thet-th word of the 1-best ASR hypoth-
esis aligned with the reference sequenceC, andH = {ht|t =
1, · · · , T} denotes the 1-best ASR sequence.β is a scaling fac-
tor, and the meaning of this factor will be discussed later. Note
that this log likelihood ratio has a property of a discriminative crite-
rion (used in Minimum classification error (MCE) training [22]2 and
DLM [19]) so that minimizingFLR(C,H) corresponds to correct
misrecognizedht approaches to referencect.

Equation (4) can also be rewritten as

FLR(C,H) = −
∑
n

∑
t

δ(n, ct) log yt(n)− βδ(n, ht) log yt(n)

= FCE(C)− βFCE(H).

(5)

Therefore, Equation (4) can be interpreted as a weighted difference
of CE for the correct label and ASR hypothesis.

3.2. Update rule

For our proposed model, the update rule corresponds to (3) is also
derived from the differentiation of (5) such that

∂FLR(C,H)

∂at(n)
= −[δ(n, ct)− βδ(n, ht)− (1− β)yt(n)]. (6)

In our implementation, we assume(1 − β)yt(n) asyt(n) for sim-
plicity, thus we obtain

∂FLR(C,H)

∂at(n)
≈ −[δ(n, ct)− βδ(n, ht)− yt(ct)]. (7)

1This is not a sequence discriminative training but a word-level discrim-
inative training based on an alignment between reference and 1-best ASR
hypothesis.

2We can also consider an MMI-type discriminative criterion by summing
up all possible hypotheses in the denominator.



Fig. 2 shows a weight discount of the proposed method. First, align-
ments of correct word sequences and ASR hypotheses are fixed us-
ing dynamic programming. Second, the weight for the correct label
is discounted (i.e.,1− β) and the model is re-trained with these dis-
counted weights. Note that we assume thatδ(n, ct)−βδ(n, ht) = 0
whenδ(n, ct)− βδ(n, ht) < 0 to avoid that the value of target ref-
erence word becomes negative.

3.3. Use of word-level confidence measure

Word-level confidence measureνt (0 ≤ νt ≤ 1), which is calculated
from a confusion network, can be used to adjust the discount factor
β. Errors with high confidence are more problematic and should
be weighted more than errors with low confidence. Equation (7) is
modified as follow.

∂FLR(C,H)

∂at(n)
= −[δ(n, ct)− β(1− νt(ht))δ(n, ht)− yt(ct)].

(8)

Thus, we can control the discount value according to the confidence
in the update rule.

3.4. Smoothing with original cross-entropy model

Finally, RNN-LM models are obtained by smoothing parameters ob-
tained by the proposed discriminative methodULR,V LR with the
original CE modelUCE,V CE such that

{U ,V } ← τ{UCE,V CE}+ (1− τ){ULR,V LR}, (9)

whereτ is a smoothing factor. This avoids over-training.

4. EXPERIMENTS

4.1. Experimental setup

We evaluated the observed performance improvement on the Corpus
of Spontaneous Japanese (CSJ) [23], which is one of the most widely
used LVCSR tasks to build Japanese ASR systems. Vocabulary size
is about 70k. We used three types of test sets wherein each set con-
sists of lecture-style examples from 10 speakers. Test sets E1, E2,
and E3 contain 22,682, 23,226, and 14,896 words, respectively.

We trained the DNN-HMM with CE training using 23 dimen-
sional mel-filter bank coefficients +∆+∆∆. The number of context-
dependent HMM states was 3,500 and the DNN contained seven hid-
den layers and 2,048 nodes per layer in accordance with settings used
in a previous study [24]. The initial learning rate was 0.01 and de-
creased to 0.001 at the end of training. After a CE DNN acoustic
model was obtained, boosted MMI discriminative training for DNN
[15] was conducted. We used Povey’s implementation of DNN train-
ing tools in a Kaldi toolkit [25].

Although the size of the original language model was 70k, the
vocabulary size of RNN-LM was limited to 10k, which corresponds
to the number of input layer dimensions (i.e.,|V|). The number
of hidden-layer units was 30. RNN-LM was constructed using the
RNN-LM toolkit [3]. The language model score was obtained by
linear interpolation of the RNN-LM score and the original n-gram
model score. The weight of interpolation was 0.5 and 100-best hy-
potheses for each utterance were used for rescoring. We combined
the RNN-LM and the proposed discriminative RNN-LM with DLM.

Table 1. WER [%] on CSJ using a DNN acoustic model with a
conventionaln-gram and discriminative language model (DLM).

E1 E2 E3 Avg.
baseline 12.81 10.64 11.13 11.53
+DLM 12.60 10.52 10.82 11.31

Table 2. WER [%] on CSJ using a DNN acoustic model with RNN-
LM-based and DLM-based rescoring.

E1 E2 E3 Avg.
+RNN-LM 11.97 10.18 10.51 10.89

+RNN-LM+DLM 11.74 9.98 10.03 10.58

Table 3. WER [%] on CSJ with the proposed discriminative RNN-
LM (d-RNN-LM).

β τ η E1 E2 E3 Avg.
0.05 0.85 0.1 11.99 10.19 10.50 10.89

0.05 11.84 10.07 10.61 10.84
0.9 0.1 11.91 10.02 10.51 10.81

0.05 11.84 10.03 10.49 10.79
0.10 0.85 0.1 12.20 10.45 10.69 11.11

0.05 11.86 10.09 10.47 10.81
0.9 0.1 11.93 10.19 10.41 10.84

0.05 11.90 10.04 10.39 10.78
0.15 0.85 0.1 12.06 10.38 10.49 10.98

0.05 11.93 10.09 10.40 10.81
0.9 0.1 11.98 10.17 10.39 10.85

0.05 11.98 10.03 10.39 10.80

Table 4. WER [%] on CSJ with the proposed discriminative RNN-
LM (d-RNN-LM) and DLM rescoring.

β τ η E1 E2 E3 Avg.
0.05 0.85 0.1 12.00 10.20 10.51 10.90

0.05 11.68 9.98 10.04 10.57
0.9 0.1 11.72 10.01 10.04 10.59

0.05 11.63 9.90 10.05 10.53
0.10 0.85 0.1 12.07 10.19 10.70 10.99

0.05 11.75 10.03 10.28 10.69
0.9 0.1 11.77 10.03 10.12 10.64

0.05 11.64 9.94 10.08 10.55
0.15 0.85 0.1 11.81 10.07 10.26 10.71

0.05 11.63 10.00 10.14 10.59
0.9 0.1 11.61 9.95 10.01 10.52

0.05 11.60 9.95 9.99 10.51

4.2. Baseline results

Table 1 shows the baseline results when using the discriminatively
trained DNN acoustic model, which was state-of-the-art perfor-
mance for this CSJ corpus [20, 24]. Using DLM rescoring, the word
error rate (WER) was improved by 0.22% on average.

For this high baseline, RNN-LM rescoring significantly im-
proved the WER, as shown in Table 2 by 0.64% on average. In
addition to RNN-LM, the DLM was also effective for this result,
which shows the effectiveness of the discriminative model.



Table 5. WER [%] on CSJ with the proposed discriminative RNN-
LM (d-RNN-LM) using word-level confidence measures.

β τ η E1 E2 E3 Avg.
0.05 0.85 0.1 12.15 10.34 10.49 10.99

0.05 11.88 10.08 10.54 10.83
0.9 0.1 11.93 10.17 10.44 10.85

0.05 11.84 10.03 10.46 10.78
0.10 0.85 0.1 12.39 10.43 10.92 11.25

0.05 11.89 10.13 10.52 10.85
0.9 0.1 12.02 10.17 10.51 10.90

0.05 11.93 10.09 10.35 10.79
0.15 0.85 0.1 12.18 10.41 10.60 11.06

0.05 11.95 10.11 10.31 10.79
0.9 0.1 12.01 10.21 10.45 10.89

0.05 11.95 10.04 10.35 10.78

Table 6. WER [%] on CSJ with the proposed discriminative RNN-
LM (d-RNN-LM) using word-level confidence measures and DLM
rescoring.

β τ η E1 E2 E3 Avg.
0.05 0.85 0.1 11.84 10.28 10.41 10.84

0.05 11.56 10.03 10.12 10.57
0.9 0.1 11.66 9.99 10.11 10.59

0.05 11.63 9.94 10.06 10.54
0.10 0.85 0.1 11.71 10.00 10.22 10.64

0.05 11.65 10.02 10.27 10.65
0.9 0.1 11.65 9.95 10.19 10.60

0.05 11.66 9.94 10.14 10.58
0.15 0.85 0.1 11.76 10.04 10.18 10.66

0.05 12.01 10.20 10.57 10.93
0.9 0.1 11.63 9.84 10.01 10.49

0.05 11.69 9.99 10.14 10.61

4.3. Proposed method

Table 3 shows the proposed discriminative RNN-LM (d-RNN-LM).
Three parameters exist in the prosed method and parametric studies
were conducted. In nearly all cases, average WER was better than
that of the RNN-LM result in Table 2. This result suggest that the
parameter tuning was not so difficult. Table 4 shows that DLM was
effective when used with the proposed method because the explicit
use of short context by then-gram model was powerful whereas the
proposed method implicitly used short context.

Table 5 shows the proposed method using word-level confidence
measures. Unfortunately, little performance gain was observed, but
similar tendencies were noticeable. DLM was also effective as
shown in Table 6.

Although the performance gain of the proposed method was
small in our experiments overall, this is simply due to very high base-
line of this setting. We believe that this modeling increases model
estimation robustness for a task that contains many errors.

5. CONCLUSION AND FUTURE WORK

We proposed a discriminative training method for RNN-LM. In ad-
dition to the CE training of correct examples, discriminative training
against ASR hypotheses was proposed. The proposed discrimina-

tive training yielded a difference of CE that was similar to the dif-
ference statistics revealed in the discriminative training of acoustic
modeling. Experimental results showed that our proposed method
improved the performance of an LVCSR task. Combining the pro-
posed discriminative RNN-LM, which uses short and long context
implicitly, and the DLM, which uses short context explicitly, was
also effective because the two complement one another. Future re-
search will examine sequential discriminative training and the use of
N-best hypotheses in the training.
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[4] M. Sundermeyer, R. Schlüter, and H Ney, “rwthlm - The
RWTH Aachen University neural network language modeling
toolkit,” in Proceedings of INTERSPEECH, 2014, pp. 2093–
2097.

[5] Y. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Efficient one-pass
decoding with NNLM for speech recognition,”IEEE Signal
Processing Letters, vol. 21, pp. 377–381, 2014.

[6] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass
decoding with recurrent neural network language model for
speech recognition,” inProceedings of ICASSP, 2014, pp.
6414–6418.

[7] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent
neural network language model inference for first pass speech
recognition,” inProceedings of ICASSP, 2014, pp. 6404–6407.

[8] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran,
G. Saon, and K. Visweswariah, “Boosted MMI for model
and feature-space discriminative training,” inProceedings of
ICASSP, 2008, pp. 4057–4060.

[9] M. Gales, S. Watanabe, and E. Fosler-Lussier, “Structured
discriminative models for speech recognition: An overview,”
IEEE Signal Processing Magazine, vol. 29, pp. 70–81, 2012.

[10] Y. Tachioka, S. Watanabe, and J.R. Hershey, “Effectiveness of
discriminative training and feature transformation for reverber-
ated and noisy speech,” inProceedings of ICASSP, 2013, pp.
6935–6939.

[11] Y. Tachioka, S. Watanabe, J. Le Roux, and J.R. Hershey,
“Sequential maximum mutual information linear discriminant
analysis for speech recognition,” inProceedings of INTER-
SPEECH, 2014, pp. 2415–2419.



[12] G. Wang and K.C. Sim, “Sequential classification criteria for
NNs in automatic speech recognition,” inProceedings of IN-
TERSPEECH, 2011, pp. 441–444.

[13] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum
Bayes risk training of deep neural network acoustic models us-
ing distributed Hessian-free optimization,” inProceedings of
INTERSPEECH, 2012, pp. 485–488.

[14] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocabulary
speech recognition,” inProceedings of INTERSPEECH, 2012.
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