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Abstract
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the model uncertainties. The combination of the ISS feedback and the MES algorithm gives
an indirect adaptive controller. We show the efficiency of this approach on a two-link robot
manipulator example.
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Extremum Seeking-Based Indirect Adaptive Control for Nonlinear

Systems with State-Dependent Uncertainties

Mouhacine Benosman and Meng Xia ∗

Abstract

We study in this paper the problem of adaptive trajec-
tory tracking for nonlinear systems affine in the con-
trol with bounded state-dependent uncertainties. We
propose to use a modular approach, in the sense that
we first design a robust nonlinear state feedback which
renders the closed loop input to state stable (ISS) be-
tween an estimation error of the uncertain parameters
and an output tracking error. Next, we complement this
robust ISS controller with a model-free multiparamet-
ric extremum seeking (MES) algorithm to estimate the
model uncertainties. The combination of the ISS feed-
back and the MES algorithm gives an indirect adaptive
controller. We show the efficiency of this approach on a
two-link robot manipulator example.

1 Introduction

Input-output feedback linearization has been proven to
be a powerful control design for trajectory tracking and
stabilization of nonlinear systems [1]. The basic idea
is to first transform a nonlinear system into a simpli-
fied linear equivalent system and then use the linear
design techniques to design controllers in order to sat-
isfy stability and performance requirements. One short-
coming of the feedback linearization approach is that it
requires precise system modelling [1]. When there exist
model uncertainties, a robust input-output linearization
approach needs to be developed. For instance, high-gain
observers [2] and linear robust controllers [3] have been
proposed in combination with the feedback linearization
techniques. Another approach to deal with model un-
certainties is using adaptive control methods. Of partic-
ular interest to us is the modular approach to adaptive
nonlinear control, e.g. [4]. In this approach, first the
controller is designed by assuming all the parameters
are known and then an identifier is used to guarantee
certain boundedness of the estimation error. The iden-
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tifier is independent of the designed controller and thus
this is called ‘modular’ approach.

On the other hand, extremum seeking (ES) method
is a model-free control approach, e.g.[5], which has been
applied to many industrial systems, such as electromag-
netic actuators [6, 7], compressors [8], and stirred-tank
bioreactors [9]. Many papers have dedicated to ana-
lyzing the ES algorithms convergence when applied to
a static or a dynamic known maps, e.g.[10, 5, 11, 12],
however, much fewer papers have been dealing with the
use of ES in the case of static or dynamic uncertain
maps. The case of ES applied to an uncertain static
and dynamic mapping, was investigated in [13], where
the authors considered systems with constant parame-
ter uncertainties. However, in [13], the authors used ES
to optimize a given performance (via optimizing a given
performance function), and complemented the ES al-
gorithm with classical model-based filters/estimators to
estimate the states and the unknown constant parame-
ters of the system, which is one of the main differences
with the approach that we want to present here (orig-
inally introduced by the authors for a specific mecha-
tronics application in [7, 14]), where the ES is not only
used to optimize a given performance but is also used
to estimate the uncertainties of the model, without the
need for extra model-based filters/estimators.
In this work, we build upon the existing ES results to
provide a framework which combines ES results and ro-
bust model-based nonlinear control to propose an ES-
based indirect adaptive controller, where the ES al-
gorithm is used to estimate, in closed-loop, the un-
certainties of the model. Furthermore, we focus here
on a particular class of nonlinear systems which are
input-output linearizable through static state feedback
[15]. We assume that the uncertainties in the lin-
earized model are bounded additive as guaranteed by
the ‘matching condition’ [16]. The control objective is to
achieve asymptotic tracking of a desired trajectory. The
proposed adaptive control is designed as follows. In the
first step, we design a controller for the nominal model
(i.e. when the uncertainties are assumed to be zero) so
that the tracking error dynamics is asymptotically sta-
ble. In the second step, we use a Lyapunov reconstruc-



tion method [17] to show that the error dynamics are
input-to-state stable (ISS) [15, 18] where the estimation
error in the parameters is the input to the system and
the tracking error represents the system state. Finally,
we use ES to estimate the uncertain model parameters
so that the the tracking error will be bounded and de-
creasing, as guaranteed by the ISS property. To validate
the results, we apply our results on a two-link robotic
manipulators [19].
Similar ideas of ES-based adaptive control for nonlin-
ear systems have been introduced in [6, 7]. In these
two works, the problem of adaptive robust control of
electromagnetic actuators was studied, where ES was
used to tune the feedback gains of the nonlinear con-
troller in [6] and ES was used to estimate the unknown
parameters in [7]. An extension to the general case of
nonlinear systems was proposed in [20, 21]. We relax
here the strong assumption, used in [20, 21], about the
existence of an ISS feedback controller, and propose a
constructive proof to design such an ISS feedback for
the particular case of nonlinear systems affine in the
control.

The rest of the paper is organized as follows. In
Section 2, we present notations, and some fundamental
definitions and results that will be needed in the sequel.
In Section 3, we provide our problem formulation. The
nominal controller design are presented in Section 4.
In Section 5, a robust controller is designed which
guarantees ISS from the estimation errors input to the
tracking errors state. In Section 6, the ISS controller
is complemented with an MES algorithm to estimate
the model uncertainties. Section 7 is dedicated to an
application example and the paper conclusion is given
in Section 8.

2 Preliminaries

Throughout the paper, we use ‖ · ‖ to denote the
Euclidean norm; i.e. for a vector x ∈ Rn, we have
‖x‖ , ‖x‖2 =

√
xT x, where xT denotes the transpose

of the vector x. The 1-norm of x ∈ Rn is denoted by
‖x‖1. We use the following norm properties for the need
of our proof:

1. for any x ∈ Rn, ‖x‖ ≤ ‖x‖1;

2. for any x, y ∈ Rn, ‖x‖ − ‖y‖ ≤ ‖x− y‖;

3. for any x, y ∈ Rn, xT y ≤ ‖x‖‖y‖.

Given x ∈ Rm, the signum function is defined as

sign(x) , [sign(x1), sign(x2), · · · , sign(xm)]T ,

where xi denotes the i-th (1 ≤ i ≤ m) element of x and

sign(xi) =

 1 if xi > 0
0 if xi = 0
−1 if xi < 0

We have xT sign(x) = ‖x‖1.
For an n × n matrix P , we denote by P > 0 if it

is positive definite. Similarly, we denote by P < 0 if
it is negative definite. We use diag{A1, A2, · · · , An}
to denote a diagonal block matrix with n blocks. For a
matrix B, we denote B(i, j) as the element that locates
at the i-th row and j-th column of matrix B. We denote
In as the identity matrix or simply I if the dimension is
clear from the context.

We use ḟ to denote the time derivative of f and
f (r)(t) for the r-th derivative of f(t), i.e. f (r) , drf

dt .
We denote by Ck functions that are k times differen-
tiable and by C∞ a smooth function. A continuous
function α : [0, a) → [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞
[15]. A continuous function β : [0, a)× [0,∞) → [0,∞)
is said to belong to class KL if, for a fixed s, the map-
ping β(r, s) belongs to class K with respect to r and,
for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s) → 0 as s →∞ [15].

Consider the system

ẋ = f(t, x, u)(2.1)

where f : [0,∞)×Rn×Rm → Rn is piecewise continuous
in t and locally Lipschitz in x and u, uniformly in t. The
input u(t) is piecewise continuous, bounded function of
t for all t ≥ 0.

Definition 2.1. ([15, 22]) The system (2.1) is said
to be input-to-sate stable (ISS) if there exist a class
KL function β and a class K function γ such that for
any initial state x(t0) and any bounded input u(t), the
solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖).

Theorem 2.1. ([15, 22]) Let V : [0,∞) × Rn → R be
a continuously differentiable function such that

α1(‖x‖) ≤V (t, x) ≤ α2(‖x‖)

∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖u‖) > 0

(2.2)

for all (t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are
class K∞ functions, ρ is a class K function, and W (x)
is a continuous positive definite function on Rn. Then,
the system (2.1) is input-to-state stable (ISS).



Remark 1. Note that other equivalent definitions for
ISS have been given in [22, pp. 1974-1975]. For
instance, Theorem 2.1 holds with all the assumptions
are the same except that the inequality (2.2) is replaced
by

∂V

∂t
+

∂V

∂x
f(t, x, u) ≤ −µ(‖x‖) + Ω(‖u‖)

where µ ∈ K∞
⋂

C1 and Ω ∈ K∞.

3 Problem Formulation

3.1 Nonlinear system model We consider here
affine uncertain nonlinear systems of the form:

(3.3)
ẋ = f(x) + ∆f(x) + g(x)u, x(0) = x0

y = h(x)

where x ∈ Rn, u ∈ Rp, y ∈ Rm (p ≥ m), represent
respectively the state, the input and the controlled
output vectors, x0 is a given initial condition, ∆f(x) is
a vector field representing additive model uncertainties.
The vector fields f , ∆f , columns of g and function h
satisfy the following assumptions.

Assumption 1. The function f : Rn → Rn and the
columns of g : Rn → Rp are C∞ vector fields on a
bounded set X of Rn and h : Rn → Rm is a C∞ vector
on X. The vector field ∆f(x) is C1 on X.

Assumption 2. System (3.3) has a well-defined (vec-
tor) relative degree {r1, r2, · · · , rm} at each point x0 ∈
X, and the system is linearizable, i.e.

∑m
i=1 ri = n.

Assumption 3. The desired output trajectories yid

(1 ≤ i ≤ m) are smooth functions of time, relating de-
sired initial points yid(0) at t = 0 to desired final points
yid(tf ) at t = tf .

3.2 Control objectives Our objective is to design
a state feedback adaptive controller so that the track-
ing error is uniformly bounded, whereas the tracking
upper-bound can be made smaller over the ES learning
iterations. We stress here that the goal of the ES is
not stabilization but rather performance optimization,
i.e. estimating online the uncertain part of the model
and thus improving the performance of the overall con-
troller. To achieve this control objective, we proceed
as follows. First, we design a robust controller which
can guarantee the input-to-state stability (ISS) of the
tracking error dynamics w.r.t the estimation errors in-
put. Then, we combine this controller with a model-free
extremum-seeking algorithm to iteratively estimate the
uncertain parameters, to optimize online a desired per-
formance cost function.

4 Nominal Controller Design

Under Assumption 2 and nominal conditions, i.e. when
∆f(x) = 0, system (3.3) can be written as

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t),(4.4)

where

(4.5)
y(r)(t) = [y(r1)

1 (t), y
(r2)
2 (t), · · · , y(rm)

m (t)]T

ξ(t) = [ξ1(t), · · · , ξm(t)]T

ξi(t) = [yi(t), · · · , y
(ri−1)
i (t)], 1 ≤ i ≤ m

The functions b(ξ), A(ξ) can be written as functions of
f , g and h, and A(ξ) is non-singular in X̃, where X̃ is
the image of the set of X by the diffeomorphism x → ξ
between the states of system (3.3) and the linearized
model (4.4).

At this point, we introduce one more assumption
on system (3.3).

Assumption 4. The additive uncertainties ∆f(x) in
(3.3) appear as additive uncertainties in the input-
output linearized model (4.4)-(4.5) as follows (see also
[16])

y(r)(t) = b(ξ(t)) + A(ξ(t))u(t) + ∆b(ξ(t)),(4.6)

where ∆b(ξ(t)) is C1 on X̃.

If we consider the nominal model (4.4)first, then we
can define a virtual input vector v(t) as

v(t) = b(ξ(t)) + A(ξ(t))u(t).(4.7)

Combining (4.4) and (4.7), we can obtain the following
input-output mapping

y(r)(t) = v(t).(4.8)

Based on the linear system (4.8), it is straightforward
to apply a stabilizing controller for the nominal system
(4.4) as

un = A−1(ξ) [vs(t, ξ)− b(ξ)] ,(4.9)

where vs is a m × 1 vector and the i-th (1 ≤ i ≤ m)
element vsi is given by

vsi = y
(ri)
id −Ki

ri
(y(ri−1)

i − y
(ri−1)
id )− · · · −Ki

1(yi − yid).
(4.10)

Denote the tracking error as ei(t) , yi(t)− yid(t), we
obtain the following tracking error dynamics

e
(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · ·+ Ki

1ei(t) = 0,(4.11)

where i ∈ {1, 2, · · · , m}. By selecting the gains Ki
j

where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}, we
can obtain global asymptotic stability of the tracking
errors ei(t). To formalize this condition, we make the
following assumption.



Assumption 5. There exists a non-empty set A where
Ki

j ∈ A such that the polynomials in (4.11) are Hurwitz,
where i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , ri}.

To this end, we define z = [z1, z2, · · · , zm]T ,
where zi = [ei, ėi, · · · , e

(ri−1)
i ] and i ∈ {1, 2, · · · , m}.

Then, from (4.11), we can obtain

ż = Ãz,

where Ã ∈ Rn×n is a diagonal block matrix given by

Ã = diag{Ã1, Ã2, · · · , Ãm},(4.12)

and Ãi (1 ≤ i ≤ m) is a ri × ri matrix given by

Ãi =



0 1
0 1

0
. . .

... 1
−Ki

1 −Ki
2 · · · · · · −Ki

ri

 .

As discussed above, the gains Ki
j can be chosen so that

the matrix Ã is Hurwitz. Thus, there exists a positive
definite matrix P > 0 such that (see e.g. [15])

ÃT P + PÃ = − I.(4.13)

5 Robust Controller Design

We now consider the uncertain model (3.3), i.e. when
∆f(x) 6= 0. The corresponding linearized model is given
by (4.6) where ∆b(ξ(t)) 6= 0. The global asymptotic
stability of the error dynamics (4.11) cannot be guaran-
teed anymore due to the additive uncertainty ∆b(ξ(t)).
We use Lyapunov reconstruction techniques to design a
new controller so that the tracking error is guaranteed
to be bounded given that the estimate error of ∆b(ξ(t))
is bounded. The new controller for the uncertain model
(4.6) is defined as

uf = un + ur,(5.14)

where the nominal controller un is given by (4.9) and
the robust controller ur will be given later on based on
particular forms of the uncertainty ∆b(ξ(t)). By using
the controller (5.14), from (4.6) we obtain

y(r)(t) = b(ξ(t)) + A(ξ(t))uf + ∆b(ξ(t))
= b(ξ(t)) + A(ξ(t))un + A(ξ(t))ur + ∆b(ξ(t))

= vs(t, ξ) + A(ξ(t))ur + ∆b(ξ(t)),
(5.15)

where (5.15) holds from (4.9). Thus, we have

e
(ri)
i (t) + Ki

ri
e(ri−1)(t) + · · ·+ Ki

1ei(t)
= A(ξ(t))ur + ∆b(ξ(t))(5.16)

Further, the dynamics for z is given by

ż = Ãz + B̃δ,(5.17)

where Ã is defined in (4.12), δ is a m × 1 vector given
by

δ = A(ξ(t))ur + ∆b(ξ(t)),(5.18)

and the matrix B̃ ∈ Rn×m is given by

B̃ =


B̃1

B̃2

...
B̃m

 ,(5.19)

with B̃i (1 ≤ i ≤ m) given by a ri×m matrix such that

B̃i(l, q) =
{

1 if l = ri and q = i
0 otherwise

If we apply V (z) = zT Pz as a Lyapunov function for
the dynamics (5.17), where P is the solution of the
Lyapunov equation (4.13), then we obtain

V̇ (t) =
∂V

∂z
ż

= zT (ÃT P + PÃ)z + 2zT PB̃δ

= − ‖z‖2 + 2zT PB̃δ,(5.20)

where δ given by (5.18) depends on the robust controller
ur.

Next, we will design the controller ur based on
the particular forms of the uncertainties that appear
in (4.6), i.e. ∆b(ξ(t)). For notational convenience,
the unknown parameter vector/matrix is denoted by ∆
and the estimate for the unknowns is denoted by ∆̂(t).
Further, the estimation error vector/matrix is given by
e∆(t) = ∆ − ∆̂(t), where the dimensions of ∆ (and in
turn, ∆̂(t) and e∆(t) will be clear from the context.

5.1 The case of bounded state-dependent un-
certainties We consider the case where the unknown
‖∆b(ξ(t))‖ is upper bounded by a function of the state
ξ(t), i.e.

‖∆b(ξ(t))‖ ≤ ‖∆‖‖L(ξ)‖,(5.21)

where ∆ ∈ Rm×m is constant, and L(ξ) is a known
bounded state function. Assume, for now, that we
can obtain the estimate of ∆(i, j), which may be time-
varying and is denoted by ∆̂(i, j), for i, j = 1, 2, . . . ,m.



Let ∆̂(t) be the matrix with the element ∆̂(i, j). We
use the following robust controller

ur = −A−1(ξ)B̃T Pz‖L(ξ)‖2

−A−1(ξ)‖∆̂(t)‖‖L(ξ)‖sign(B̃T Pz).(5.22)

Similar to the previous case, the closed-loop error
dynamics can be written in the form of

ż = f(t, z, e∆),(5.23)

where e∆(t) is the system input and z(t) is the system
state.

Theorem 5.1. Consider the system (3.3), under As-
sumptions 1-5 and the assumption that ∆b(ξ(t)) satis-
fies (5.21), with the feedback controller (5.14), where un

is given by (4.9) and ur is given by (5.22). Then, the
closed-loop system (5.23) is ISS from the estimation er-
rors input e∆(t) ∈ Rm×m to the tracking errors state
z(t) ∈ Rn.

Proof. By substitution (5.22) into (5.18), we obtain δ =
−B̃T Pz‖L(ξ)‖2−‖∆̂(t)‖‖L(ξ)‖sign(B̃T Pz)+∆b(ξ(t)).
We consider V (z) = zT Pz as a Lyapunov function for
the error dynamics (5.17), where P > 0 is a solution of
(4.13). We can derive that

λmin(P )‖z‖2 ≤ V (z) ≤ λmax(P )‖z‖2,(5.24)

where λmin(P ) > 0, λmax(P ) > 0 denote respectively
the minimum and the maximum eigenvalues of the
matrix P . Then, from (5.20), we obtain

V̇ = − ‖z‖2 + 2zT PB̃∆b(ξ(t))

− 2‖zT PB̃‖2‖L(ξ)‖2 − 2‖zT PB̃‖1‖∆̂(t)‖‖L(ξ)‖.

Since ‖zT PB̃‖ ≤ ‖zT PB̃‖1, we have

V̇ ≤ − ‖z‖2 + 2zT PB̃∆b(ξ(t))

− 2‖zT PB̃‖2‖L(ξ)‖2 − 2‖zT PB̃‖‖∆̂(t)‖‖L(ξ)‖.

Then based on the assumption (5.21) and the fact that
zT PB̃∆b(ξ(t)) ≤ ‖zT PB̃‖‖∆b(ξ(t))‖, we obtain

V̇ ≤ − ‖z‖2 + 2‖zT PB̃‖‖∆‖‖L(ξ)‖

− 2‖zT PB̃‖2‖L(ξ)‖2 − 2‖zT PB̃‖‖∆̂(t)‖‖L(ξ)‖
= − ‖z‖2 − 2‖zT PB̃‖2‖L(ξ)‖2

+ 2‖zT PB̃‖‖L(ξ)‖(‖∆‖ − ‖∆̂(t)‖).

Because ‖∆‖ − ‖∆̂(t)‖ ≤ ‖e∆‖, we obtain

V̇ ≤ − ‖z‖2 − 2‖zT PB̃‖2‖L(ξ)‖2

+ 2‖zT PB̃‖‖L(ξ)‖‖e∆‖.

Further, we can obtain

V̇ ≤ − ‖z‖2 − 2(‖zT PB̃‖‖L(ξ)‖ − 1
2
‖e∆‖)2 +

1
2
‖e∆‖2

≤ − ‖z‖2 +
1
2
‖e∆‖2.

Thus, we have the following relation

V̇ ≤ −1
2
‖z‖2, ∀‖z‖ ≥ ‖e∆‖ > 0,

Then from (5.24), we obtain that system (5.23) is ISS
from input e∆ to state z as guaranteed by Theorem 2.1.

6 Multi-parametric ES-based uncertainties
estimation

Let us define now the following cost function

J(∆̂) = F (z(∆̂))(6.25)

where F : Rn → R, F (0) = 0, F (z) > 0 for z 6= 0. We
need the following assumptions on J .

Assumption 6. The cost function J has a local mini-
mum at ∆̂∗ = ∆.

Assumption 7. The initial error e∆(t0) is sufficiently
small, i.e. the original parameter estimate vector or
matrix ∆̂ are close enough to the actual parameter
vector or matrix ∆.

Assumption 8. The cost function J is analytic and its
variation with respect to the uncertain parameters is
bounded in the neighborhood of ∆̂∗, i.e. ‖ ∂J

∂∆̂
(∆̃)‖ ≤ ξ2,

ξ2 > 0, ∆̃ ∈ V(∆̂∗), where V(∆̂∗) denotes a compact
neighborhood of ∆̂∗.

Remark 2. Assumption 6 simply states that the cost
function J has at least a local minimum at the true
values of the uncertain parameters.

Remark 3. Assumption 7 indicates that out results
will be of local nature, i.e. our analysis holds in a
small neighborhood of the actual values of the uncertain
parameters.

We can now state the following result.

Lemma 6.1. Consider the system (3.3) with the cost
function (6.25), under Assumptions 1-8 and the as-
sumption that ∆b(ξ(t)) = [∆1, . . . ,∆m]T , with the feed-
back controller (5.14), where un is given by (4.9) and
ur is given by (5.22), and ∆̂(t) is estimated through the
MES algorithm

ẋi = ai sin(ωit +
π

2
)J(∆̂)

∆̂i(t) = xi + ai sin(ωit−
π

2
), i ∈ {1, 2, . . . ,m}

(6.26)



with ωi 6= ωj, ωi + ωj 6= ωk, i, j, k ∈ {1, 2, . . . ,m}, and
ωi > ω∗, ∀ i ∈ {1, 2, . . . ,m}, with ω∗ large enough,
ensures that the norm of the error vector z(t) admits
the following bound

‖z(t)‖ ≤ β(‖z(0)‖, t) + γ(β̃(‖e∆(0)‖, t) + ‖e∆‖max)

where ‖e∆‖max = ξ1
ω0

+
√∑m

i=1 a2
i , ξ1 > 0, e∆(0) ∈ De,

ω0 = maxi∈{1,2,...,m} ωi, β ∈ KL, β̃ ∈ KL and γ ∈ K.

Proof. Based on Theorem 5.1, we know that the track-
ing error dynamics (5.23) is ISS from the input e∆(t)
to the state z(t). Thus, by Definition 2.1, there exist a
class KL function β and a class K function γ such that
for any initial state z(0), any bounded input e∆(t) and
any t ≥ 0,

‖z(t)‖ ≤ β(‖z(0)‖, t) + γ( sup
0≤τ≤t

‖e∆(τ)‖).(6.27)

Now, we need to evaluate the bound on the estimation
vector ∆̂(t), to do so we use the results presented in
[10]. First, based on Assumption 8, the cost function
is locally Lipschitz, i.e. there exists η1 > 0 such that
|J(∆1)−J(∆2)| ≤ η1‖∆1−∆2‖, for all ∆1,∆2 ∈ V(∆̂∗).
Furthermore, since J is analytic, it can be approximated
locally in V(∆̂∗) by a quadratic function, e.g. Taylor
series up to the second order. Based on this and on
Assumptions 6 and 7, we can obtain the following bound
([10, p. 436-437],[14])

‖e∆(t)‖ − ‖d(t)‖ ≤ ‖e∆(t)− d(t)‖ ≤ β̃(‖e∆(0), t‖) +
ξ1

ω0
,

where β̃ ∈ KL, ξ1 > 0, t ≥ 0, ω0 = maxi∈{1,2,...,m} ωi,
and d(t) = [a1 sin(ω1t + π

2 ), . . . , am sin(ωmt + π
2 )]T . We

can further obtain that

‖e∆(t)‖ ≤ β̃(‖e∆(0), t‖) +
ξ1

ω0
+ ‖d(t)‖

≤ β̃(‖e∆(0), t‖) +
ξ1

ω0
+

√√√√ m∑
i=1

a2
i .

Together with (6.27) yields the desired result.

7 Mechatronic Example

We consider here a two-link robot manipulator example.
The dynamics for the manipulator in the nominal case,
is given by (see e.g. [19])

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ,(7.28)

where q , [q1, q2]T denotes the two joint angles and
τ , [τ1, τ2]T denotes the two joint torques. The matrix
H is assumed to be non-singular and is given by

H ,

[
H11 H12

H21 H22

]

Table 1: System Parameters for the manipulator exam-
ple.

Parameter Value
I2

5
12 [kg ·m2]

m1 10 [kg]
m2 5 [kg]
`1 1 [m]
`2 1 [m]
`c1 0.5 [m]
`c2 0.5 [m]
I1

10
12 [kg ·m2]

g 9.8 [m/s2]

where
(7.29)
H11 = m1`

2
c1

+ I1 + m2[`21 + `2c2
+ 2`1`c2 cos(q2)] + I2

H12 = m2`1`c2 cos(q2) + m2`
2
c2

+ I2

H21 = H12

H22 = m2`
2
c2

+ I2

The matrix C(q, q̇) is given by

C(q, q̇) ,

[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

]
,

where h = m2`1`c2 sin(q2). The vector G = [G1, G2]T

is given by
(7.30)
G1 = m1`c1g cos(q1) + m2g[`2 cos(q1 + q2) + `1 cos(q1)]
G2 = m2`c2g cos(q1 + q2)

In our simulations, we assume that the parameters take
values according to [19] summarized in Table 1. The
system dynamics (7.28) can be rewritten as

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)] ,(7.31)

Thus, the nominal controller is given by

τn = [C(q, q̇)q̇ + G(q)]
+ H(q) [q̈d −K2(q̇ − q̇d)−K1(q − qd)] ,(7.32)

where qd = [q1d, q2d]T , denotes the desired trajectory
and the feedback gains K1 > 0, K2 > 0, are chosen such
that the tracking error will go to zero asymptotically.
For simplicity, we use the feedback gains Ki

j = 1 in
(4.10) for i = 1, 2 and j = 1, 2 in our simulations. The
reference trajectory is given by the following function
from the initial time t0 = 0 to the final time tf , where

qid(t) =
1

1 + exp (−t)
, i = 1, 2



Table 2: Parameters used in MES
Q1 Q2 a1 a2 ω1 ω2 tf

5 5 0.05 0.04 7.4 7.5 4

Now we introduce an uncertain term to the nonlinear
model (7.28). In particular, we assume that there exist
additive uncertainties in the model (7.31), i.e.

q̈ = H−1(q)τ −H−1(q) [C(q, q̇)q̇ + G(q)] + ∆b(q).
(7.33)

We assume additive uncertainties on the gravity vector,
such that

∆b(q) = ∆×G(q),(7.34)

so that we have ‖∆b(q)‖ ≤ ‖∆‖‖G(q)‖. For simplicity,
we assume that ∆ is a diagonal matrix given by ∆ =
diag{∆1,∆2}. The robust controller term τr is designed
according to (5.22), where H = A−1, L = G, and finally
the two unknown parameters ∆1 and ∆2 are estimated
by the MES, as shown in the next section.

7.1 MES Based uncertainties estimation First,
we choose the following performance cost function

(7.35)
J = Q1

∫ tf

0
(q − qd)T (q − qd)dt

+Q2

∫ tf

0
(q̇ − q̇d)T (q̇ − q̇d)dt,

where Q1 > 0 and Q2 > 0 denote the weighting
parameters. Then, the two unknown parameters ∆1

and ∆2 are estimated by the MES (which is a discrete
version of (6.26))
(7.36)
xi(k + 1) = xi(k) + aitf sin(ωitfk +

π

2
)J

∆̂i(k + 1) = xi(k + 1) + ai sin(ωitfk − π

2
), i = 1, 2

where k = 0, 1, 2, · · · denotes the iteration index, xi

and ∆̂i (i = 1, 2) start from zero initial conditions. We
simulate the system with ∆1 = −1 and ∆2 = −3. The
parameters that were used in the cost function (7.35)
and the MES (7.36) are summarized in Table 2. As
shown in Fig. 7.1, the ISS-based controller combined
with ES greatly improves the tracking performance.
Fig. 2 shows that the cost function starts at an initial
value around 6 and decreases below 0.5 within 100
iterations and the value of the cost function is decreasing
over the iterations. Moreover, the estimate of the
unknown parameters converge to a neighborhood of the
true parameter values, as shown in Fig. 3.

8 Conclusion

In this paper, we studied the problem of extremum
seeking-based indirect adaptive control for nonlinear
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Figure 1: Obtained trajectories vs. Reference Trajec-
tories for q1 (in the top plot) and q̇1 (in the bottom
plot)
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Figure 2: The cost function vs. the number of iterations
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Figure 3: Estimate of parameter ∆1 (in the top plot)
and parameter ∆2 (in the bottom plot)

systems affine in the control with bounded additive
state-dependent uncertainties. We have proposed a ro-
bust controller which renders the feedback dynamics ISS
w.r.t the parameter estimation errors. Then we have
combined the ISS feedback controller with a model-free
ES algorithm to obtain a learning-based adaptive con-
troller, where the ES is used to estimate the uncertain



part of the model. We have presented the stability proof
of this controller and have shown a detailed application
of this approach on a two-link robot manipulator ex-
ample. Future works will deal with the case where the
uncertainties to be estimated are time-varying.
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