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Abstract
Visual inference over a transmission channel is increasingly becoming an important problem
in a variety of applications. In such applications, low latency and bit-rate consumption are
often critical performance metrics, making data compression necessary. In this paper, we ex-
amine feature compression for support vector machine (SVM)-based inference using quantized
randomized embeddings. We demonstrate that embedding the features is equivalent to using
the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show
that universal embeddings-a recently proposed quantized embedding design-approximate a
radial basis function (RBF) kernel, commonly used for kernel-based inference. Our exper-
imental results demonstrate that quantized embeddings achieve 50% rate reduction, while
maintaining the same inference performance. Moreover, universal embeddings achieve a fur-
ther reduction in bit-rate over conventional quantized embedding methods, validating the
theoretical predictions.
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Abstract—Visual inference over a transmission channel is
increasingly becoming an important problem in a variety of
applications. In such applications, low latency and bit-rate
consumption are often critical performance metrics, making
data compression necessary. In this paper, we examine feature
compression for support vector machine (SVM)-based inference
using quantized randomized embeddings. We demonstrate that
embedding the features is equivalent to using the SVM kernel
trick with a mapping to a lower dimensional space. Furthermore,
we show that universal embeddings—a recently proposed quan-
tized embedding design—approximate a radial basis function
(RBF) kernel, commonly used for kernel-based inference. Our
experimental results demonstrate that quantized embeddings
achieve 50% rate reduction, while maintaining the same inference
performance. Moreover, universal embeddings achieve a further
reduction in bit-rate over conventional quantized embedding
methods, validating the theoretical predictions.

I. INTRODUCTION

Visual inference applications are increasingly adopting a

client/server model, in which inference is performed over

a transmission channel by a remote server. For example,

augmented reality, visual odometry, and scene understanding

are some example applications which are often performed

remotely, sometimes over the cloud. For the success of most of

these applications, latency and bit-rate consumption are critical

problems. Thus, efficient and low-complexity compression of

the transmitted signals is essential for their operation.

Most visual inference systems operate by extracting visual

features, such as the well-established SIFT, SURF, or HOG

features [1]–[3], among many others. However, these features

may sometimes consume more bandwidth than a compressed

image, making them ill-suited for use over a transmission

channel. Moreover, the complexity of image compression may

introduce significant latency and complexity in the system.

Recently it was shown, in the context of Nearest Neigh-

bor (NN)-based inference, that visual features can be com-

pressed to a rate much lower than the underlying image using

Locality-Sensitive-Hashing (LSH) based schemes—essentially

randomized embeddings followed by 1-bit quantization [4],

[5]. A more careful analysis of the properties of randomized

embeddings, when combined with scalar quantization, demon-

strated that carefully balancing the quantizer accuracy with the

dimensionality of the random projections can further reduce

the rate by more than 33% [6], [7]. A further 33% gain can

be obtained by replacing the scalar quantizer with a universal

scalar quantizer [8], [9]. The resulting universal embeddings

only represent a range of signal distances and can be tuned to

represent only the range of distances necessary for NN-based

computation, at a significant gain in the bit-rate.

In this paper we examine quantized embeddings in the

context of support vector machine (SVM)-based inferences.

We demonstrate that using universal embeddings to encode

features for an SVM classifier approximates a particular radial

basis function (RBF) kernel which, in turn, is a good approx-

imation for the commonly used and very successful Gaussian

RBF kernel. In particular, the bit-rate determines the quality of

the approximation. Our experiments using HOG features in an

example multiclass image classification task demonstrate that

randomized embeddings followed by appropriately designed

scalar quantization significantly reduces the bit-rate required

to code the features while maintaining high SVM-based infer-

ence accuracy. Furthermore, universal embeddings can further

improve the classification accuracy while reducing the bit-rate.

The paper is organized as follows. In the next section, we

present an overview of the quantized embeddings used in this

paper as well as a brief summary of SVM-based classification.

Section III discusses how embedding design affects their dis-

tance preserving performance, and highlights how randomized

embeddings can be viewed as approximating RBF kernels in

the context of kernel-based inference. Section IV presents

our experimental investigation which validates expectations

stemming from the theoretical discussion.

II. BACKGROUND OVERVIEW

A. Support Vector Machines

Support vector machines (SVMs) are binary linear clas-

sifiers used in supervised learning problems that identify

separating hyperplanes in a training data set. Given a training

set S = {(x(i), z(i), i = 1, . . . ,m} of data points x(i) ∈ R
N

and binary labels z(i) ∈ {−1,+1}, the SVM training problem

can be cast as that of finding the hyperplane identified by

(w, b) by solving

min
w∈RN ,b∈R

1

2
‖w‖22 s.t. z(i)(wTx(i) + b) ≥ 1, i = 1, . . . ,m.

(1)

Problem (1) is commonly reformulated and solved in its

unconstrained form given by

min
w∈RN ,b∈R

1

m

m∑

i=1

ℓ(w, b;x(i), z(i)) +
λ

2
‖w‖22, (2)



where ℓ(w, b;x(i), z(i)) is the hinge loss function

ℓ(w, b;x(i), z(i)) = max{0, 1− z(i)(wTx(i) + b)}, (3)

and λ is a regularization parameter.

In some applications, it may be beneficial to find separating

hyperplanes in a higher dimensional lifting space of the

data. Let ψ(·) be a nonlinear lifting function from R
N to

some higher dimensional space. Any positive semi definite

function K(x,u) defines an inner product and a lifting ψ(·)
so that the inner product between lifted datapoints can be

quickly computed using K(x,u) = 〈ψ(x), ψ(u)〉. Since the

SVM training algorithm can be written entirely in terms of

inner products 〈x,u〉, we can replace all inner products with

K(x,u) without ever lifting the data using ψ(·), a techniques

known as the kernel trick.

In some cases, it is possible to compute or approximate

certain kernels by explicitly mapping the data to a low-

dimensional inner product space. For example, Rahimi and

Recht [10] propose a randomized feature map φ(·), that

transforms the data into a low-dimensional Euclidean space.

Using φ : RN → R
M , M ≪ N, as the feature map, the kernel

K(x,u) can be computed in the lower-dimensional space as

K(x,u) = φ(x)Tφ(u). (4)

Such randomized feature maps have strong connections to the

field of randomized embeddings, which we describe next.

B. Randomized Embeddings

An embedding is a mapping of a set S to another set

V that preserves some property of S in V . Embeddings

enable algorithms to operate on the embedded data, allowing

processing and inference, so long as the processing relies on

the preserved property.

In particular, Johnson-Lindenstrauss (JL) embed-

dings [11]—the most celebrated example—preserve the

distances between pairs of signals. The JL lemma states that

one can design an embedding f(·) such that for all pairs of

signals x,x′ ∈ S ⊂ R
N , their embedding, y = f(x) and

y′ = f(x′), with y,y′ ∈ R
M satisfies

(1− ǫ)‖x− x′‖22 ≤ ‖y − y′‖22 ≤ (1 + ǫ)‖x− x′‖22 (5)

for some ǫ, as long as M = O
(

logP
ǫ2

)
, where P is the number

of points in S . Later work further showed that the JL map can

be realized using a linear map f(x) = Ax, where the matrix

A can be generated using a variety of random constructions

(e.g., [12], [13]).

The main feature of the JL lemma is that the embedding

dimension M depends logarithmically only on the number

of points in the set, and not on its ambient dimension N .

Thus, the embedding dimension can typically be much lower

than the ambient dimension, with minimal compromise on the

embedding fidelity, as measured by ǫ. Any processing based on

distances between signals—which includes the majority of in-

ference methods—can operate on the much lower-dimensional

space V .
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Fig. 1. (a) Conventional 3-bit (8 levels) scalar quantizer with saturation level
S = 4∆. (b) Universal scalar quantizer. (c) The embedding map g(d) for
JL-based embeddings (blue) and for universal embeddings (red).

C. Quantized JL Embeddings

While dimensionality reduction through embedding can

be very useful in reducing the complexity of processing or

inference algorithms, in a number of applications the desirable

goal is also to reduce the transmission rate before processing.

In such applications, quantized embeddings have been shown

to be highly successful at preserving Euclidean distances

while significantly reducing the bit-rate requirements. Specifi-

cally, [6] considers a finite-rate uniform scalar quantizer Q(·),
as shown in Fig. 1(a), with stepsize ∆ = S2−B+1, where S is

the saturation level of the quantizer, and B the number of bits

per coefficient. Using such a quantizer, a JL map f(x) = Ax

can be quantized to q = Q(Ax) and satisfy

(1− ǫ)‖x− x′‖2 − S2−B+1

≤ ‖q− q′‖2 ≤

(1 + ǫ)‖x− x′‖2 + S2−B+1, (6)

assuming the saturation level S is set such that saturation

does not happen or is negligible. This quantized JL (QJL)

embedding uses a total rate of R =MB bits.

The design of QJL embeddings exhibits a trade-off between

the number of bits B per coefficient and the embedding space

dimension M , i.e., the number of coefficients. For a fixed rate

R, a larger B and smaller M will increase the error due to the

JL embedding, ǫ, while a larger M and smaller B will increase

the error due to quantization. The design choice should balance

the two errors. For example, the optimal B was experimentally

determined to be 3 or 4 for NN-based inference examples

in [6], [7]. This is not a universal optimum; the optimal B
depends on the application.

D. Universal Embeddings

More recently, [8], [9] introduced an alternative approach

using a non-monotonic quantizer combined with dither instead

of a finite-range uniform one. This approach only preserves

distances up to a radius, as determined by the embedding

parameters.

Universal embeddings exhibit a different design trade-off.

Given a fixed total rate, R, the quality of the embedding

depends on the range of distances it is designed to preserve. At

a fixed bit-rate, increasing the range of preserved distances also

increases the ambiguity of how well the distance are preserved.

Specifically, universal embeddings use a map of the form

q = Q(Ax+w), (7)



where A ∈ R
M×N is a matrix with entries drawn from an i.i.d.

standard normal distribution, Q(·) is the quantizer, and w ∈
R

M is a dither vector with entries drawn from a [0,∆] uniform

i.i.d. distribution. An important difference with conventional

embeddings is that the quantizer Q(·) is not a conventional

quantizer shown in Fig. 1(a). Instead, the non-monotonic 1-

bit quantizer in Fig. 1(b) is used. This means that values that

are very different could quantize to the same level. However,

for local distances that lie within a small radius of each value,

the quantizer behaves as a regular quantizer with dither and

stepsize ∆. This behavior is highlighted in Fig. 1(c).

Universal embeddings have been shown to satisfy

g (‖x− x′‖2)− τ ≤ dH (f(x), f(x′)) ≤ g (‖x− x‖2) + τ,
(8)

where dH(·, ·) is the Hamming distance of the embedded

signals and g(d) is the map

g(d) =
1

2
−

+∞∑

i=0

e
−

(

π(2i+1)d√
2∆

)2

(π(i+ 1/2))
2 . (9)

Similarly to JL embeddings, universal embeddings hold with

overwhelming probability as long as M = O
(

logP
τ2

)
, where,

again, P is the number of points in S .

Furthermore, the map g(d) can be bounded as follows

g(d) ≥
1

2
−

1

2
e
−

(

πd√
2∆

)2

, (10)

g(d) ≤
1

2
−

4

π2
e
−

(

πd√
2∆

)2

, (11)

g(d) ≤

√
2

π

d

∆
, (12)

and is very well approximated using

g(d) ≈

{
d
∆

√
2
π
, if d ≤ ∆

2

√
π
2

0.5 otherwise
(13)

III. QUANTIZED EMBEDDINGS FOR KERNEL MACHINES

A. Embedding Ambiguity Analysis

Typical embedding guarantees, such as (5), (6), and (8),

characterize the ambiguity of the embedded distance as a

function of the original signal distance. A general embedding

guarantee has the form

(1− ǫ)g (dS(x,x
′))− τ

≤ dW (f(x), f(x′)) ≤

(1 + ǫ)g (dS(x,x
′)) + τ, (14)

where g : R → R is an invertible function mapping distances

in S to distances in W and ǫ and τ quantify, respectively, the

multiplicative and the additive ambiguities of the map. For JL

and QJL, that map is g(d) = d. In universal embeddings the

map is given by (9).

However, in practical inference applications the inverse

is desired. Processing computes distances in the embedding

domain, assuming they are approximately equal with the

corresponding signal distances in the signal space S . The

more ambiguous this correspondence is, the more the inference

algorithm is affected. To expose the ambiguity in original

space S , we rearrange and approximate (14) for small ǫ, τ
using

d̃S −
τ + ǫdW (f(x), f(x′))

g′
(
d̃S

)

. dS(x,x
′) .

d̃S +
τ + ǫdW (f(x), f(x′))

g′
(
d̃S

) , (15)

where d̃S = g−1 (dW (f(x), f(x′))) estimates the signal

distance given the embedding distance. Thus, the additive and

multiplicative ambiguities remain approximately additive and

multiplicative and get scaled by the gradient of the map g′(·).

In JL and QJL embeddings, this gradient is constant

throughout the map since the map is linear. In universal

embeddings, however, the gradient is inversely proportional

to ∆ in the range of distances preserved, and approximately

zero beyond that:

g′(d) ≈

{
1
∆

√
2
π
, if d ≤ ∆

2

√
π
2

0 otherwise
(16)

Thus, universal embeddings have ambiguity proportional to ∆
for a range of distances also proportional to ∆ and approxi-

mately infinite ambiguity beyond that. Taking their ratio, one

can easily derive the following remark:

Remark In universal embeddings, the embedding ambiguity

over the preserved distances is approximately equal to 2τ times

the range of preserved distances.

For the majority of inference applications, only local dis-

tances need to be preserved by the embedding. For example,

NN methods only require that the radius of distances pre-

served is such that the nearest neighbors can be determined.

For SVM-based inference, this can be formalized using the

machinery of kernel-based SVMs.

B. Quantized Embeddings Imply Radial Basis Function Ker-

nels

Radial basis function (RBF) kernels, also known as shift

invariant kernels, for SVMs have been very successful in a

number of applications, as they regularize the learning to

improve inference [14]. Their defining property is that the

kernel function K(x,x′) is only a function of the distance

of the two points, i.e., K(x,x′) = κ(‖x− x′‖2).

While [10] demonstrates that randomized feature maps can

approximate certain radial basis kernels, the constructed maps

are not quantized, and, therefore, not very useful for trans-

mission. Universal embeddings, however, also approximate

a shift-invariant kernel. This kernel further approximates the

commonly used Gaussian radial basis kernel.



Proposition 3.1: Let φ(x) : RN → {−1, 1}M be a mapping

function defined as φ(x) = Q(Ax+ e), with q = φ(x). The

kernel function K(x,x′) given by

K(x,x′) =
1

2M
qTq′ (17)

is shift invariant and approximates the radial basis function

K(x,x′) ≈
1

2
− g (‖x− x′‖2) , (18)

with g(d), as defined in (9). Furthermore, this RBF approxi-

mates the Gaussian RBF.

Proof By expressing the Hamming distance in {+1,−1}M

as a Euclidian distance in R
M , i.e., using dH (φ(x), φ(x′)) =

1
4M ‖q− q′‖22, we obtain

1

4M
‖q− q′‖22 =

1

4M
‖q‖22 +

1

4M
‖q′‖22 −

1

2M
qTq′

=
1

4
+

1

4
−

1

2M
qTq′ (19)

⇒ K(x,x′) =
1

2M
qTq′ =

1

2
− dH (φ(x), φ(x′)) . (20)

Exploiting the bounds in (8), we can approximate the kernel

K(x,x′) using

1

2
− g(d) + τ

≤ K(x,x′) =
1

2
− dH (φ(x), φ(x′)) ≤

1

2
− g(d) + τ, (21)

where d = ‖x−x′‖2 is the distance between the two signals.

Thus, the kernel approximates the RBF kernel K(x,x′) =
1
2 − g(‖x − x′‖) within τ . Furthermore, using (9), (11) and

(10), we can further approximate the kernel K(x,x′) as

1

2
e
−

(

πd√
2∆

)2

− τ ≤ K(x,x′) ≤
4

π2
e
−

(

πd√
2∆

)2

+ τ. (22)

In other words, the resulting kernel is an approximation of

the Gaussian RBF kernel, KG(x,x
′) = ce

−

(

‖x−x
′‖√

2σ

)2

, with

σ = ∆
π

. Note that in practice the constant scaling c does not

matter in the kernel computation and is typically set to 1.

Note that the approximation is not very accurate near the

origin, where d ≈ 0, but d 6= 0. In that region, the Gaussian

RBF is flatter, while our kernel is steeper. An appropriate

approximation there is the first order polynomial RBF kernel

K(x,x′) = c‖x−x′‖2. However, the ambiguity due to τ will

dominate that effect in practice.

Of course, QJL are approximations of the standard inner

product kernel K(x,x′) = xTx′. The accuracy of the approx-

imation depends on the rate used for the embedding and the

allocation of the rate between projection dimensionality M
and bits per dimension B, as described in Sec. II-C.
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Fig. 2. Block diagram illustrating the feature compression, classifier training,
and object detection stages of a binary classification task. Every training
image is assigned a binary label z ∈ {−1,+1} indicating whether or not
it corresponds to the target object class.

C. Feature Compression For Classification

Quantized and universal embeddings are quite useful for

visual inference over a network. In this section, we put

everything together and formulate the object classification

task using binary linear SVMs. These SVMs are trained on

image feature vectors, or descriptors, that are compressed

using quantized embeddings.

Fig. 2 shows a block diagram of our classification frame-

work for a single object class C. Given a database of training

images at the server, indexed by i ∈ {1 . . . ,m} and cor-

responding labels z(i) ∈ {−1,+1}, we first extract feature

vectors x(i) ∈ R
N from every image. We then generate

quantized or universal embeddings q(i) of the feature vectors,

as described in Sections II-C and II-D.

The quantized embeddings of image features q(i) are then

used to train an SVM classifier to find a separating hyperplane,

identified by the vector w and bias term b, by solving (2). The

separating hyperplane divides the embedding space into points

that generate positive versus negative labels.

When a visual query is executed, the client computes

quantized embeddings q′ from features extracted from the

query image, and transmits the quantized embeddings over a

channel to the server. Classification is performed at the server

according to the sign of wTq′ + b, such that,

if wTq′ + b > 0, then query image ∈ C. (23)

The same framework can be extended to multiclass classi-

fication by computing a new separating hyperplane identified

by (w(j), b(j)) for each class Cj for j ∈ {1, . . . , J}. However,

classification is now performed by choosing the class that

induces the largest positive margin to the query point, i.e.

query image ∈ Cj∗ , where j∗ = argmax
j

w(j)Tq′ + b(j).

(24)

IV. EXPERIMENTAL RESULTS

We test the performance of our compressed feature repre-

sentation on a multiclass classification problem. The goal is

to identify the class membership of query images belonging

to one of 8 different classes.

To set up this problem, we extract Dalal-Triggs Histogram

of Oriented Gradients (HOG) features [3] from 15 training

and 15 test images. The HOG algorithm extracts a 36 element

feature vector (descriptor) for every 8×8 pixel block in an im-

age. The descriptors encode local 1-D histograms of gradient
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Fig. 3. Classification accuracy as a function of the bit-rate achieved using
(a) quantized JL (QJL) embeddings; and (b) universal embeddings. (c)
Classification accuracy as a function of the quantization step size ∆ used
in computing the universal embeddings.

directions in small spatial regions in an image. Every HOG

feature is compressed using either quantized JL embeddings

or universal quantized embeddings. The compressed features

are then stacked to produce a single compressed feature vector

for each image. Next, the compressed features of the training

images are used to train a binary linear SVM classifier. In

the testing stage, compressed HOG features of the test/query

images are computed and classification is performed using the

trained SVM classifier. In our simulations, we used tools from

the VLFeat library [15] to extract HOG features and train the

SVM classifier.

We consider eight image classes. One is the persons from

the INRIA person dataset [3], [16]. The other seven—car,

wheelchair, stop sign, ball, tree, motorcycle, and face—

extracted from the Caltech 101 dataset [17], [18]. All images

are standardized to 128×128 pixels centered around the target

object in each class.

Fig. 3(a) shows the classification accuracy obtained by

quantized JL embeddings of HOG descriptors using the trained

SVM classifier. The black square corresponds to 1-bit scalar

quantization of raw non-embedded HOG descriptors, using a

bit-rate of 36 bits—one bit for each element of the descriptor.

The figure shows that 1-bit quantized JL embeddings allow

us to achieve a 50% bit-rate reduction, compared to non-

embedded quantized descriptors, without reduction in per-

formance (classification accuracy). This is obtained using

an 18-dimensional JL embedding of every HOG descriptor,

followed by 1-bit scalar quantization. Furthermore, increasing

the embedding dimension, and, therefore, the bit-rate, above

18 improves the inference performance beyond that of the 1-

bit quantized non-embedded HOG features. Note that, among

all quantized JL embeddings, 1-bit quantization achieves the

best rate-inference performance.

Fig. 3(b) compares the classification accuracy of universal

embeddings for varying values of the step size parameter ∆
with that of the 1-bit quantized JL embeddings and the 1-bit

quantized non-embedded HOG descriptors. With the choice

of ∆ = 1.4507, the universal embedded descriptors further

improve the rate-inference performance over the quantized

JL embeddings. In particular, they also achieve the same

classification accuracy as any choice of quantization for non-

embedded HOG descriptors, or, even, unquantized ones, at

significantly lower bit-rate—points not shown in the figure, as

they are out of the interesting part of the bit-rate scale.

Figure 3(c) illustrates the effect of the parameter ∆ by

plotting the classification accuracy as a function of ∆ for

different embedding rates. The figure shows that, similar to the

findings in [9], if ∆ is too small or too large, the performance

suffers.

As evident, an embedding-based system design can be

tuned to operate at any point on the rate vs. classification

performance frontier, not possible just by quantizing the raw

HOG features. Furthermore, with the appropriate choice of

∆, universal embeddings improve the classification accuracy

given the fixed bit-rate, compared with quantized JL em-

beddings, or reduce the bit-rate required to deliver a certain

inference performance.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346 – 359, Jun. 2008.

[3] D. Navneet and B. Triggs, “Histograms of oriented gradients for human
detection,” in International Conference on Computer Vision & Pattern

Recognition, vol. 2, June 2005, pp. 886–893.
[4] K. Min, L. Yang, J. Wright, L. Wu, X.-S. Hua, and Y. Ma, “Compact

projection: Simple and efficient near neighbor search with practical
memory requirements,” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), San Francisco, CA, June 13–18 2010.
[5] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual

correspondences using random projections,” in Proc. IEEE International

Conference on Image Processing (ICIP), San Diego, CA, October 12-15
2008.

[6] M. Li, S. Rane, and P. T. Boufounos, “Quantized embeddings of scale-
invariant image features for mobile augmented reality,” in Proc. IEEE

International Workshop on Multimedia Signal Processing (MMSP),
Banff, Canada, Sept. 17–19 2012.

[7] S. Rane, P. T. Boufounos, and A. Vetro, “Quantized embeddings: An
efficient and universal nearest neighbor method for cloud-based image
retrieval,” in Proc. SPIE Applications of Digital Image Processing

XXXVI, San Diego, CA, August 25-29 2013.
[8] P. T. Boufounos, “Universal rate-efficient scalar quantization,” IEEE

Trans. Info. Theory, vol. 58, no. 3, pp. 1861–1872, March 2012.
[9] P. T. Boufounos and S. Rane, “Efficient coding of signal distances

using universal quantized embeddings,” in Proc. Data Compression

Conference (DCC), Snowbird, UT, March 20-22 2013.
[10] A. Rahimi and B. Recht, “Random features for large-scale kernel

machines,” 2007.
[11] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings

into a Hilbert space,” Contemporary Mathematics, vol. 26, pp. 189 –
206, 1984.

[12] D. Achlioptas, “Database-friendly Random Projections: Johnson-
lindenstrauss With Binary Coins,” Journal of Computer and System

Sciences, vol. 66, pp. 671–687, 2003.
[13] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of

Johnson and Lindenstrauss,” Random Structures & Algorithms, vol. 22,
no. 1, pp. 60–65, 2003.

[14] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between
regularization operators and support vector kernels,” Neural networks,
vol. 11, no. 4, pp. 637–649, 1998.

[15] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.

[16] “INRIA Person Dataset,” http://pascal.inrialpes.fr/data/human/.
[17] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual Mod-

els from Few Training Examples: An Incremental Bayesian Approach
Tested on 101 Object Categories,” in Proc. IEEE Conf. on Comp. Vision

and Pattern Recognition (CVPR), Workshop on Generative-Model Based

Vision., June 2004, pp. 178–178.
[18] “Caltech 101 dataset,” http://www.vision.caltech.edu/Image Datasets/

Caltech101/.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2015-070.pdf
	page 2
	page 3
	page 4
	page 5


