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Abstract—A large wireless network with energy harvesting
transmitters is considered, where a group of K transmitters form
a cluster to cooperatively serve a desired user. Using stochastic ge-
ometry, simple closed-form expressions are derived to character-
ize the outage performance as a function of important parameters
such as the energy harvesting rate, buffer size and cluster size for
a given cluster geometry. The developed framework also allows
the K in-cluster transmitters to have different energy harvesting
capabilities. A comparison with simulation results reveals that
the derived expressions closely model the signal-to-interference-
and-noise ratio distribution at the receiver, particularly in the
low-outage regime. Lastly, the developed framework is used to
investigate the impact of different parameters such as cluster and
buffer size on outage performance.

Index Terms—Energy harvesting, stochastic geometry, cooper-
ative wireless networks.

I. INTRODUCTION

Recent trends in networking suggest that wireless networks

are expected to get more dense and heterogeneous in fu-

ture [1]. Due to exploding traffic demands and aggressive

frequency re-use, wireless link performance is generally be-

lieved to be interference-limited. However, if the interfering

transmitters are allowed to cooperate, these interfering signals

could instead be converted to useful ones. Motivated by this

information-theoretic insight [2], there has been tremendous

interest in designing cooperative transmission policies for

wireless networks (see [3]–[5] and references therein). Such a

cooperative setup generally consists of a group of transmitters

(henceforth referred to as a cluster) that cooperate by jointly

encoding the transmit symbol and/or sharing data/control

information (over backhaul links), while the rest of the trans-

mitters act as sources of interference. In this paradigm, the

gains from cooperation have been shown to scale with the

cluster size [5]. However, with the increase in cluster size,

the channel estimation/control overheads and the backhaul

requirements also grow, which essentially limit the gains from

cooperation [2].

In pursuit of a green and sustainable wireless network, and

given the advancement in solid state technologies, wireless

devices of the future are expected to be powered by the

environment [6]. To this end, there has been considerable

research on the front of energy harvesting [7], [8]. With

random energy arrivals and a finite energy storage capacity, the
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energy availability at the transmitters is rather unpredictable

and depends on the energy harvesting technology. This calls

for a rethinking of conventional communication protocols.

In this regard, several papers have proposed optimal trans-

mission policies assuming causal or non-causal knowledge

about energy arrivals for different setups. For example, a

point-point link [8], [9], an interference channel [10], and

a broadcast channel [11] have been considered. While prior

research has mostly investigated isolated setups, some recent

studies deal with the network-level dynamics in large non-
cooperative wireless networks powered by energy harvesting.

In [12] and [13], spatial throughput was derived for a self-

powered adhoc network by leveraging tools from stochastic

geometry. Similarly, stochastic geometry has also been used

for modeling cognitive networks with opportunistic energy

harvesting [14], as well as self-powered heterogeneous cellular

networks [15]. By modeling wireless networks in a stochastic

geometry framework, tractable analytical expression can be

developed to get general performance insights, thus obviating

the need of exhaustive simulations [16].

In this work, a large self-powered wireless network is

considered where all the transmitters access the medium

following a random-access protocol. To reap the benefits

of cooperation, they are grouped into clusters such that all

the in-cluster transmitters jointly serve a common receiver,

which is subjected to interference from out-of-cluster nodes.

To the best of our knowledge, the performance of such a

cooperative self-powered wireless network in a stochastic

geometry framework, has not been analyzed, and is therefore

the topic of this work. Using stochastic geometry, we derive

simple closed-form expressions that characterize the system

performance as a function of system parameters (e.g., energy

harvesting rate) and cluster geometry, amid interference and

noise. Unlike previous work, the developed framework also

allows the in-cluster transmitters to have different energy

harvesting capabilities. Simulation results indicate that the

derived expressions closely model the instantaneous signal-to-

interference-and-noise ratio (SINR) distribution at the receiver.

In addition, we also investigate the impact of energy harvesting

rate and buffer size on outage performance. We now describe

the system model in section II. The analytical expressions

are derived in section III. Section IV includes the simulation

results and the paper is concluded in section V.



II. SYSTEM MODEL

We now describe the system model in detail beginning with

the energy harvesting model.

A. Energy Harvesting Model

We consider a large wireless network consisting of trans-

mitters or access points (APs) which harvest energy using

unconventional (e.g., solar) sources. None of the transmitters

are privy to non-causal information about energy arrivals,

which is assumed to be random and independent across

nodes. Without loss of generality, we now describe the energy

harvesting model for a typical transmitter equipped with an

energy buffer of size S ∈ N. The energy arrives at the

buffer with rate ρ following an independent and identically

distributed (i.i.d.) Bernoulli process, i.e., with probability ρ,

one unit of energy arrives at the buffer in time-slot t, while

1− ρ is the probability that no energy arrives at the buffer in

that slot. A node may choose to transmit with fixed power P
if it has sufficient energy in the buffer. No power control is

assumed, therefore each transmission depletes the buffer of P
units of energy. The energy arrivals are modeled using a birth-

death Markov process (cf. Fig. 1) along the lines of [12], [13].

Fig. 1. Finite-state birth-death Markov chain for an energy buffer of size S
with μ = ρ(1− pch) and ε = ρpch + (1− ρ)(1− pch).

For medium access, we consider a fully-distributed random

access protocol (slotted ALOHA) where in each time-slot,

a node (having sufficient energy) accesses the medium with

probability pch independently of other nodes. Let pS =
Pr{AS(t) ≥ P}, where AS(t) denotes the state (i.e., energy

level) of the buffer at time t. Here, pS denotes the probability

that a node has requisite amount of energy available in the

buffer of size S. Without loss of generality, we assume P = 1
for ease of exposition in the rest of the sequel. We now

define ptr, the transmission probability of an arbitrary node,

and express it as a function of system parameters.

Lemma 1: For energy arrivals with rate ρ > 0, finite energy

buffer of size S ∈ N, and channel access probability pch > 0,

we have ptr = pchpS in steady state, where

pS =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ
ρ+pch−ρpch

S = 1

ρ
pch

(
1−

(
ρ(1−pch)
pch(1−ρ)

)S
)

1− ρ
pch

(
ρ(1−pch)
pch(1−ρ)

)S S > 1, ρ �= pch

S
S+1−ρ S > 1, ρ = pch.

(1)

Proof: It can be proved by solving the balance equations

for the Markov chain shown in Fig. 1 (e.g., see [12]).

Note that 0 < ptr ≤ pch since lim
ρ→1

ptr = pch, where

ρ = 1 corresponds to the case when the node is powered by

conventional power sources. Furthermore, we consider pch to

be fixed throughout the network. Therefore, the transmission

probability of a node varies as a function of the energy

harvesting rate and buffer size. In other words, the higher the

ptr of an AP, the more superior the energy harvesting capability

(i.e., harvesting rate and/or buffer size).

B. Network Model

In our setup, a cluster of K cooperating APs jointly serve a

desired user over the same time-frequency resource block. It

is assumed that each user is served by the K closest APs.

The AP locations are drawn from a homogeneous PPP of

intensity λ, which we denote as φ(λ). Similarly, the user

locations are modeled using another PPP φu(λu), which is

assumed to be independent of φ(λ). We further assume that

the AP density is sufficiently high relative to the user density

such that with a high probability, no two users share the same

set of closest APs. Leveraging Slivnyak’s theorem [16], we

consider a typical user located at origin, and characterize the

performance in the presence of co-channel interference and

noise.

Let {di}∞i=1 model the Euclidean distance between the typi-

cal user and the points belonging to a realization of φ. For each

in-cluster AP, we also define normalized distances {ωi}Ki=1,

where ωi = di/dK . We now describe the channel model in

detail. Let hi be the small-scale fading coefficient for the wire-

less link between node i and the receiver. It is assumed that

all the links experience i.i.d. block-flat Rayleigh fading such

that hi∼Nc(0, 1), while the corresponding channel power gain

Hi = |hi|2 is exponential with unit mean (i.e., Hi∼exp(1)).
Assuming perfect channel knowledge, each in-cluster AP i
uses linear beamforming with coefficient vi = h∗

i /|hi| to

transmit the same information symbol s where E[|s|2] = 1
(along the lines of [17]). Note that this transmission scheme

does not require joint encoding at the transmitters and thus

avoids excessive information flow among the in-cluster APs.

The received signal at the user can be expressed as

y(t) =

K∑
i=1

√
�i(t)d

−η
i hi(t)vi(t)s(t) + i(t) + n(t) (2)

where the indicator function �i(t) models the uncertainty in

transmission such that Pr{�i(t) = 1} = ptr,i and Pr{�i(t) =
0} = 1 − ptr,i ≡ qtr,i. The receiver noise n(t) is assumed to

be i.i.d. zero-mean complex Gaussian with variance σ2. Here,

the interference term i(t) =
∞∑

i=K+1

√
�i(t)d

−η
i hi(t)v̂i(t)si(t)

consists of the signals transmitted by the out-of-cluster APs.

Note that v̂i is independent of hi as it is matched to the

intended receiver of the interfering APs. It can be seen that

E|hivi|2 = 1 for the in-cluster links while E|hiv̂i|2 = 1
also for the interfering links. Assuming that interference is



treated as noise for decoding, a successful packet reception

at the receiver can be characterized using the instantaneous

SINR which is expressed below (dropping the time index for

simplicity)

SINRu =

∣∣∣∣ K∑
i=1

√
�id

−η
i |hi|s

∣∣∣∣
2

I + σ2
>

K∑
i=1

�id
−η
i Hi

I + σ2
≡ γ (3)

where I =
∞∑

i=K+1

�id
−η
i Hi denotes the instantaneous aggre-

gate interference power. In the sequel, we will use γ, a lower

bound on the instantaneous received SINR, for performance

analysis. Later, numerical results show that this bound is tight

for most settings of interest.

Notation: For ease of exposition, we recall that qtr ≡ 1−ptr

and define Ξ = {qtr,i, · · · , qtr,K} ∪ {qtr,o}, where {ptr,i}Ki=1

model the in-cluster transmission probabilities while ptr,o

gives the transmission probability of out-of-cluster APs. We

further define Q =
K∏
i=1

qtr,i, Ω = {ωη
1 , · · · , ωη

K}, Ω̂ =

{ ωη
1

qtr,1
, · · · , ωη

K

qtr,K
} and

αi(Ω) = (−1)
i

+∑[(
K

K − i

)
Ω

]
(4)

where
+∑

[·] gives the sum of the elements of the set that it

operates on. With a slight abuse of notation,
(

K
K−i

)
Ω

is defined

to be the set of all products of the elements of Ω taken K − i
at a time. The summation in (4) is taken over the elements

of the set
(

K
K−i

)
Ω

. Similarly, the definition of αi(Ω̂) follows

from (4) with the set Ω now replaced by Ω̂.

III. STOCHASTIC GEOMETRY ANALYSIS

In this section, we derive closed-form expressions for the

complementary cumulative distribution function (CCDF) of γ
as a function of network parameters and cluster geometry.

Theorem 1: For a cluster of size K, the CCDF of γ,

F̄γ (K, θ) = Pr{γ > θ}, can be expressed in terms of the

interference intensity (λ), noise power (σ2), energy harvesting

parameters (Ξ) and cluster geometry
({di}Ki=1

)
as

F̄γ(K, θ) =

Q
K∑
j=1

⎛
⎜⎜⎜⎜⎝

K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωη

j )
i

ωη
j

(
K∏
l �=j

ωη
l − ωη

j

)
⎞
⎟⎟⎟⎟⎠Δj(θ) (5)

where

Δj(θ) = e−dη
j θσ

2

e−πptr,oλd
2
KF(ωη

j θ,η) (6)

and

F (U, V ) =
2U

V − 2
2F1

(
1, 1− 2

V
, 2− 2

V
,−U

)
(7)

where 2F1(·) is the Gauss hypergeometric function.

Proof: Using (3), we write F̄γ (K, θ) = Pr{γ > θ} =

E
[
Pr
{
SK > θdηK

(
I + σ2

)}]
where SK =

K∑
i=1

�iĤi and

Ĥi = Hiω
−η
i . To proceed further, we first find the CCDF of

SK , where SK is a sum of K independent random variables.

Note that Ĥi is exponentially distributed with mean ω−η
i ,

whereas the indicator function follows a Bernoulli distribution

with mean ptr,i, independently of Ĥi. The CCDF of SK can

be expressed as (x ≥ 0)

F̄Sk
(x) =

Q

K∑
j=1

⎛
⎜⎜⎜⎜⎝

K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωη

j )
i

ωη
j

(
K∏
l �=j

ωη
l − ωη

j

)
⎞
⎟⎟⎟⎟⎠ e−ωη

j x (8)

where the above expression can be obtained by finding the

characteristic function of SK , applying partial fraction ex-

pansion and then taking the inverse transform, similar to the

approach in [18]. Conditioning on the aggregate interference

power I, we can write F̄γ|I(K, θ) = F̄SK
(K, θdηK(I+σ2)). Us-

ing (8), and unconditioning w.r.t. I, we can express F̄γ(K, θ)
(for θ ≥ 0) as

F̄γ(K, θ) =

Q
K∑
j=1

⎛
⎜⎜⎜⎜⎝

K−1∑
i=0

(
αi(Ω̂)− αi(Ω)

)
(ωη

j )
i

ωη
j

(
K∏
l �=j

ωη
l − ωη

j

)
⎞
⎟⎟⎟⎟⎠E[e−ωη

j d
η
Kθ(I+σ2)]

(9)

where the expectation in (9) is over aggregate interference

power I, i.e., over both fading and interferer locations. To eval-

uate the expectation E[e−dj
ηθ(I+σ2)] = e−dj

ηθσ2

E[e−dj
ηθI],

we first find the Laplace transform of I, which we denote by

LI(s) = E
[
e−sI

]
.

LI(s) = E

⎡
⎢⎣e−s

( ∑
di∈φ(λ)\B(g)

�iHid
−η
i

)⎤
⎥⎦

(a)
= E

⎡
⎣ ∏
di∈φ(λ̂)\B(g)

E
[
e−sHid

−η
i

]⎤⎦
(b)
= E

⎡
⎣ ∏
di∈φ(λ̂)\B(g)

1

1 + sd−η
i

⎤
⎦

= exp

(
−2πλ̂

∫ ∞

g

x

1 + s−1xη
dx

)
(10)

where B(g) denotes a disc of radius g centered at origin,

and is used to model an interference-free guard zone around

the user. This is because the cluster is assumed to consist

of the K closest nodes and interference is due to the nodes

located outside this protection zone. The inner expectation



in (a) is over fading power while the outer expectation is

over the PPP φ of intensity λ outside B(g). Next, we exploit

the property of independent thinning of a PPP to deal with

the transmission indicator and consider a (thinned) PPP with

effective density λ̂ = ptr,oλ. As the fading is i.i.d. across links

and from further conditioning over the location, we obtain

(b). The last equation follows by invoking the probability

generating functional (PGFL) [16] of the PPP and some simple

algebraic steps. With further algebraic manipulations, (10) can

be expressed in terms of hypergeometric function, which with

s = dηj θ, gives

LI(s)|s=dη
j θ

= exp

(
−πλ̂g2F

(
dηj
gη

θ, η

))
(11)

where F(·, ·) is given by (7). Evaluating the expectation in

(9) using (11), and further substituting g = dK , λ̂ = ptr,oλ
and dj = ωjdK , we obtain the result in Theorem 1.

Remark 1: Note that the above theorem allows the in-

cluster APs to have possibly different energy harvesting rates

or buffer size, and is therefore useful for getting general

insights about the performance when the cluster consists of

heterogeneous APs. Furthermore, all the interfering APs can

be assumed to have the maximum harvesting rate in order

to get a lower bound on performance. Some special cases of

Theorem 1 are listed below.

• θ −→ 0. In the low-outage regime, the performance

is dominated by the energy harvesting parameters and

the cluster size. In particular, as θ → 0 in (5), we get

lim
θ→0

F̄γ(K, θ) = 1 − Q, where Q defines a limit on

the performance and infact represents the exact outage

probability in the asymptotic regime. This observation

also holds for Theorem 2.

• {qtr,i}Ki=1 = qtr,o ≡ qtr. When all the APs have similar

energy harvesting capabilities, i.e., qtr,i = qtr,o ≡ qtr, the

CCDF in (5) simplifies to

F̄γ(K, θ) =

K∑
j=1

⎛
⎜⎜⎜⎜⎝

K−1∑
i=0

αi(Ω)
(
qtr

i − qtr
K
)
(ωη

j )
i

ωη
j

(
K∏
l �=j

ωη
l − ωη

j

)
⎞
⎟⎟⎟⎟⎠Δj(θ)

(12)

where Δj(θ) is given by (6).

Note that Theorem 1 can be used for analyzing cooperative

setups in the presence of interference and noise, for a given

cluster geometry. For a homogeneous network, we next pro-

vide a more general result in terms of normalized distances

by unconditioning w.r.t. dK .

Theorem 2: For a given set of normalized distances

{ωi}Ki=1, the CCDF of γ, F̄ ′
γ(K, θ), as a function of cluster

size K and transmission probability ptr, in the interference-

limited regime (σ2 → 0), is given by

F̄ ′
γ(K, θ) =

K∑
j=1

⎛
⎜⎜⎜⎜⎝

K−1∑
i=0

αi(Ω)
(
qtr

i − qtr
K
)
(ωη

j )
i

ωη
j

(
K∏
l �=j

ωη
l − ωη

j

)
⎞
⎟⎟⎟⎟⎠
(
1 + F (

ωη
j θ, η

))−K
.

(13)

Proof: We begin the proof along the lines of [17] by

leveraging a known result on PPP distance distribution. As

shown in [19], the distance dK , between a typical user and

its K th closest AP, follows a generalized Gamma distribution,

i.e.,

fdK
(r) = 2(rΓ(K))

−1
(ptrλπr

2)
K
e−ptrλπr

2

(14)

where Γ(K) is the Gamma function. Plugging σ2 = 0 in (6),

and taking expectation w.r.t. dK , we get

E[Δj(θ)]

=

∫
r>0

e−πptrλr
2F(ωη

j θ,η) 2(ptrλπr
2)

K
e−ptrλπr

2

rΓ(K)
dr

=

∞∫
0

e−υυK−1

Γ(K)
(
1 + F(ωη

j θ, η)
)K dυ

=
1(

1 + F(ωη
j θ, η)

)K (15)

where the last equation is obtained by using a dummy variable

υ = r2
(
1 + F (

ωη
j θ, η

))
πptrλ in the integral, and then using

the definition of the Gamma function Γ(K) =
∞∫
0

e−xxK−1dx.

By taking expectation of (12) w.r.t. dK , and using (15), we

can recover the expression in Theorem 2.

Remark 2: Note that unlike Theorem 1, the CCDF expres-

sion in Theorem 2 is independent of the AP intensity λ.

The probability of finding the closest AP around the receiver

increases with λ, but so does the interference such that the two

effects cancel out. Some special cases are postulated below.

• ptr → 1. It is worth noting that without energy harvesting

and a random medium access protocol, i.e., as ptr → 1
in (13), we can retrieve the expression for the CCDF of

γ in a traditional cooperative network as given in [17],

which Theorem 2 generalizes.

• K = 1. For the non-cooperative case, the expression in

(13) simplifies to F̄ ′
γ(1, θ) = (1 − qtr)(1 + F(θ, η))

−1
.

Furthermore, with qtr = 0, we can retrieve the CCDF

expression for the signal-to-interference ratio (SIR) in a

traditional non-cooperative network as given in [20].

IV. SIMULATION RESULTS

In this section, we compare the analytical model with simu-

lation results and investigate the impact of several parameters

on outage performance.



A. Validation and Comparisons

We first consider the case with heterogeneous in-cluster

APs, and plot F̄γ (K, θ), the CCDF of γ, for various values

of K in Fig. 2. The analytical (an) CCDF is obtained using

Theorem 1, while the simulated (sim) curve is obtained by

Monte Carlo simulations for the given set of parameters.

The analytical model is validated since there is a complete

agreement between analytical and simulation results. For com-

parison, the curve for the CCDF of the exact (ex) SINR

obtained using Monte Carlo simulations, is also included. It

can be seen that the lower bound γ closely models the SINR

distribution, particularly in the low-outage regime where most

systems typically operate.
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Fig. 2. CCDF of γ for various values of K given pch = 0.7, λ = 0.1, σ2 =
0.01, η = 4 and {di}4i=1 = {2, 3, 4, 5}. Plot includes analytical (an) and
simulation (sim) results for γ as well as the simulated CCDF of exact (ex)
SINRu. Energy harvesting parameters are {ρi}4i=1 = {0.4, 0.45, 0.5, 0.55},
ρo = 0.55 and S = 2.

Moreover, we can also observe that the SINR distribution

at the receiver improves with K due to an additional transmit

diversity gain. Also, the outage performance is limited by the

energy harvesting capabilities as the CCDF converges to 1−Q
in the low-outage regime (θ → 0) for any given cluster.

Next, we consider the case where the APs have identical

energy harvesting capabilities. In Fig. 3, we plot F̄ ′
γ(K, θ),

the CCDF of γ with the absolute in-cluster distances averaged

out. It can be seen that there is a complete match between the

analytical curve based on Theorem 2 and the simulated CCDF

obtained via Monte Carlo simulations. Similar to Fig. 2, the

CCDF of the exact SIR at the receiver is also included.

As demonstrated above, the considered framework can be

used to get general performance insights for a large class of

self-powered wireless networks. We next study how the energy

harvesting parameters limit the outage performance.

B. Impact of Energy buffer size on performance

To get general performance insights, we use the asymptotic

outage probability Q as a performance metric and consider
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Fig. 3. CCDF of γ in the interference-limited regime for K ∈ {1, 2}. The
plot includes the analytical (an) curve based on Theorem 2 as well as the
simulated (sim) CCDF of γ. The simulated CCDF of the exact SIR at the
receiver is also included. The simulation parameters are ω1 = 1 for K = 1
and {ωi}2i=1 = {0.5, 1} for K = 2, pch = 0.95 and η = 4. The energy
harvesting parameters are ρ = 0.9 and S = 2 for all APs.

the case where the APs have identical energy harvesting ca-

pabilities. It should be noted that it is possible to particularize

the subsequent analysis for a given outage threshold θ and/or

for the case of heterogeneous APs. In Fig. 4, the asymptotic

outage probability Q is plotted against the energy buffer size

S (in log scale) for various values of the cluster size K. It can

be seen that outage can be considerably reduced by increasing

the buffer size until a limit, beyond which the curves tend to

flatten out1. It appears that appreciable performance gains can

be extracted with a relatively small buffer size. Moreover, the

benefits of having a high-capacity buffer tends to increase with

the cluster size as depicted by the increasing steepness of the

slopes (when S is small) as K is increased. In addition, we can

also observe that the outage is reduced by roughly an order

of magnitude with every addition in the cluster size.

C. Impact of Energy harvesting rate on performance

In Fig. 5, the asymptotic outage probability Q is plotted

against the energy harvesting rate ρ for various values of

energy buffer size S. It can be seen that outage reduces

with the increase in energy harvesting rate at the transmitters.

Moreover, using a larger energy buffer brings about further

reduction in outage due to enhanced energy availability at the

transmitters. Furthermore, the gains from using a larger buffer

size are more evident at relatively high energy harvesting rates.

Fig. 5 also corroborates the previous observation (cf. Fig.

4) that substantial performance can be extracted by using a

relatively small buffer size. For example, S = 10 suffices

for this setup. In addition, if the energy harvesting rate ρ
exceeds the channel access probability pch, and the buffer size

1This saturation kicks in because as S → ∞, ptr is limited by min{ρ, pch},
which renders Q independent of S in the limit S → ∞.
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Fig. 4. Impact of energy buffer size S on asymptotic outage probability Q
for various values of K at fixed ρ = 0.75 and pch = 0.8.

is allowed to increase, the outage performance limit becomes

independent of the energy harvesting rate ρ. This is because

under these conditions, the energy harvesting system tends to

behave like a traditionally powered system.
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Fig. 5. Impact of energy harvesting rate ρ on asymptotic outage probability
Q for various values of energy buffer size S at fixed pch = 0.8. The curves
are plotted for cluster size K ∈ {1, 3, 6}.

V. CONCLUSION

We have derived closed-form expressions to characterize the

outage performance at a receiver, in a self-powered clustered

wireless network, in the presence of interference and noise.

The developed framework is applicable to a general class of

networks, with the traditional cooperative and non-cooperative

networks as special cases. It can be used to get general

performance insights even when the in-cluster nodes have dif-

ferent energy harvesting capabilities. Moreover, we have also

investigated the impact of energy buffer size on performance.

Simulation results reveal that the outage performance improves

with the buffer size. Furthermore, most performance gains

can be extracted using a relatively small buffer size, with the

improvement becoming more pronounced for large clusters.
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