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Abstract
We show a great potential of nonbinary (NB) LDPC convolutional codes in low- latency
decoding for HDM. We show that NB-LDPC can provide considerable performance improve-
ment compared to conventional BICM-ID, which requires soft-decision feedback.
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1. Introduction

Capacity-achieving low-density parity-check (LDPC) codes have been used for modern optical communications sys-
tems [1-8]. Further performance improvement can be provided by introduction of high-dimensional modulation
(HDM) [9-15], which directly increases the minimum Euclidean distance by extending the modulation dimension.
For HDM, a conventional bit-interleaved coded-modulation (BICM) does not perform well compared to BICM with
iterative demodulation (BICM-ID) [15]. However, BICM-ID requires labeling optimization and a soft-decision feed-
back to the demodulator. Hence, BICM-ID can be less practical due to the high complexity and large latency. By
contrast, with nonbinary (NB)-LDPC codes, turbo demodulation is not needed as addressed in [12]. This is a great ad-
vantage of NB-LDPC compared to BICM-ID. However, the major obstacle lies in the fact that the decoder complexity
increases with the Galois field size. This complexity issue may be mitigated by an introduction of LDPC convolu-
tional codes (CC) with windowed decoding [4, 5], as suggested in our theoretical analysis [8]. In this paper, we show
a significant performance gain provided by NB-LDPC-CC for HDM in comparison to BICM-ID.

2. LDPC-coded HDM
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Fig. 1: Schematic of binary LDPC-HDM and NB-LDPC-HDM.

Let abBD HDM [13] be defined such that there are M = 2% constellation points and each constellation point has
coordinates in 8 dimensions. The system diagrams for binary (B) LDPC-HDM and NB-LDPC-HDM schemes are
depicted in Fig. 1. For B-LDPC-HDM, at the transmitter side, o consecutive coded bits will be modulated to an abfD
HDM block; at the receiver side, the HDM demodulator, BICM-ID, and B-LDPC decoder accomplish the iterative
demodulation and decoding. Let N, be the number of turbo demodulations for BICM-ID. For example with N = 0,



there is no feedback from the LDPC decoder to the demodulator, leading to the conventional BICM. Although this
feedback mechanism improves the performance for HDM, the decoding latency increases significantly.

For NB-LDPC-HDM, if the Galois field size ¢ is the same as the HDM modulation order M, one coded symbol
generates one modulated block and the demodulator output can be directly used as input for the NB-LDPC decoder.
This motivates us to use NB-LDPC even though a larger Galois field size increases the decoding complexity. When
combining convolutional codes with windowed decoding, the complexity issue can be compensated as analyzed in [8].

3. Performance Results
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Fig. 2: Post-LDPC BER performance for 4D and 8D modulations.

We evaluate the bit-error-rate (BER) performances of binary and nonbinary LDPC codes over different HDM in
terms of Ey, /Ny, where Ej, is the energy per bit and N is the noise spectrum density. The BER performance with 1D
modulation, i.e., binary phase-shift keying (BPSK), is also evaluated as a reference. We consider the protograph-based
LDPC-CC over GIF(2), GIF(4), and GIF(16) with a code rate of 0.78 and a binary codeword length of 38400. Using
quasi-cyclic design technique proposed in [16], we designed a girth-8 (3,15,20,L) LDPC-CC, where check-node
degrees are 15, variable-node degrees are 3, truncation length is 20, and graph-lifting factor L is chosen according
to the Galois field size (¢ = 2,4,16). We use 2b4D and 4b8D modulation schemes [13], whose minimum Euclidean
distances are, respectively, 1.25dB and 3.01 dB better than the BPSK modulation.

Fig. 2(a) shows the BER performances of binary and nonbinary LDPC codes over GIF(4) with 4D modulation. We
can observe the significant benefit by combining NB-LDPC-CC with HDM. By contrast, the NB-LDPC-CC has a very



marginal gain for 1D modulation. For B-LDPC-HDM, by using turbo demodulation denoted by GIF (2)-2b4D-ID, the
BER performance can be improved by 0.4dB. Note that we keep the total number of iterations constant for LDPC
decoders when using BICM-ID. It is shown that there is a marginal gain observed when Nj, is increased from 4 to 10.
The NB-LDPC-HDM shows 0.5 dB gain compared to BICM, and is even better than BICM-ID. Although the decoding
complexity is doubled from binary LDPC codes to nonbinary LDPC codes over GIF(4) for fast-Fourier-transform
g-ary sum-product algorithm (FFT-QSPA), the NB-LDPC-HDM does not need to perform turbo demodulation and
windowed decoding can reduce the latency.

We then show BER performance of 8D modulation with LDPC codes over GF (2), GIF(4), and GIF(16), in Fig. 2(b).
It is shown that the GIF(2)-4b8D and the GIF(4)-4b8D have almost the same BER performance. With BICM-ID
(GIF(2)-4b8D-ID), a 0.8dB gain is observed when Ny, = 10 compared to that of the GIF(2)-4b8D. As expected, the
GIF(16)-4b8D provides the best performance for 4b8D schemes. More than 1dB gain is observed for the GIF(16)-
4b8D compared to the GIF(2)-4b8D. We can also see a significant performance advantage by more than 0.3dB over
BICM-ID.

4. Conclusions

We investigate the combination of nonbinary LDPC convolutional codes (NB-LDPC-CC) with high-dimensional mod-
ulation (HDM) schemes. We showed that when the Galois field size is the same as the modulation order, nonbinary
LDPC codes with HDM can provide considerable performance improvement, even better than BICM-ID. Although
decoder complexity for nonbinary codes increases with larger Galois field size, we do not need soft-decision feedback
loop from decoder to demodulator. This feature is a great advantage for hardware implementation. In addition, the use
of LDPC convolutional codes can facilitate high-throughput decoder by windowed decoding.
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