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Abstract: In this paper, we propose an off-the-grid compressive sensing based method to
detect broken-bar fault in squirrel-cage induction motors. To validate our method, we first build
a dynamic model of squirrel-cage induction motor using multi-loop equivalent circuit to simulate
motor current under fault conditions. We then develop an off-the-grid compressive sensing
algorithm to extract the fault characteristic frequency from the simulated motor current by
solving an atomic norm minimization problem. Comparing to other fault detection methods via
motor current signature analysis, our method yields high resolution in extracting low-magnitude
fault characteristic frequency with only 0.7 second measurements. Simulation results validate
our proposed method.
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1. INTRODUCTION

The squirrel-cage induction motors suffer from a variety
of mechanical and electrical faults, of which about 10%
are related to broken-rotor-bar(BRB) fault Zhang et al.
(2011). The BRB fault can be caused by either imperfec-
tions in the manufacturing process, or non-smooth opera-
tions such as direct-on-line starting duty cycles and pul-
sating mechanical loads. Although the BRB fault generally
does not lead to instant failures to the induction motors,
it causes serious secondary effects, such as excessive vibra-
tions, poor starting performance, and torque fluctuation,
etc. Even worse, the broken part may hit stator windings
at high velocity, causing catastrophic failures on winding
insulation. Therefore, it is of great importance to detect
the BRB fault in time so as to reduce the cost of mainte-
nance and repair Santos et al. (2006).

In order to detect the BRB fault, signatures are extracted
from motor current, air-gap flux, torque, and vibration,
etc, for further analysis. Among these fault signatures,
motor current signature is gaining more attention for its
non-invasiveness and low cost. When there exists a BRB
fault in the squirrel-cage induction motor, the rotor oper-
ates asymmetrically, inducing extra frequency components
fsb = (1 ± 2κs)fs in the stator current Filippetti et al.
(1998), where s is the speed slip, typically ranges from
0.005 to 0.05 under steady operating condition; fs is the
power supply frequency; and κ = 1, 2, 3, ... is the harmonic
frequency index. Among these extra components, the (1−
2s)fs component is the strongest one and typically treated
as the indicator of a BRB fault. Thus frequency (1−2s)fs
1 Initial work was done while Dingguo Lu was an intern with Mit-
subishi Electric Research Laboratories, 201 Broadway, Cambridge,
MA 02139, USA.

is also termed the characteristic frequency. BRB fault
detection via motor current signature analysis(MCSA) is
basically detecting the characteristic frequency component
(1− 2s)fs.

However, it is challenging to detect the characteristic
component due to the following factors. First, the magni-
tude of characteristic frequency is relatively small, typical
30∼40dB lower than that of the fundamental power supply
frequency. Second, the characteristic frequency (1− 2s)fs
is very close the power supply frequency fs. Under steady
operating condition, the frequency distance between the
characteristic frequency and the fundamental frequency fs
can be as small as 0.01fs. It is generally difficult to distin-
guish the characteristic frequency from the fundamental
frequency using the traditional Fourier spectral analysis.
Although a big extension of measurement time may be
helpful, it requires near constant load to ensure both the
slip and motor current remain stable during the whole
measurement period, otherwise the load fluctuation will in-
terfere the accuracy of fault detection. This constant load
requirement in many cases can be troublesome because
the unavoidable load fluctuation in reality especially over
a long measurement period. Therefore, it is necessary to
develop a high frequency resolution analysis method using
very short time measurements to meet the real situations
in BRB detection.

In the past decades, researchers have developed different
MCSA methods such as Fourier transform spectral analy-
sis, short-time Fourier transform Bellini et al. (2001); Zhao
and Lipo (1996); Toliyat and Lipo (1995) and subsequent
high resolution spectral analysis using ESPRIT Xu et al.
(2012) and MUSIC Kim et al. (2013). Although existing
methods can achieve high resolution in BRB detection,



they have several limits. First, they still require seconds
of measurements under constant load. Any load fluctua-
tion within the measurement period could interfere the
accuracy of fault detection. Second, they are not capable
of detecting early-stage fault, of which the characteristic
frequency component is very weak.

In recent years, the development of compressive sensing
(CS) provides us a feasible solution to analyze high resolu-
tion frequency components even with few measurements.
Compressive sensing is an innovative method to capture
and represent sparse or compressible signals at a rate
well below its Nyquist sampling rate Baraniuk (2007);
Candès and Wakin (2008). This sampling rate reduc-
tion is achieved by measuring uncorrelated or random-
ized projections of the sparse signals and reconstructing
the sparse signal using improved signal models and non-
linear reconstruction algorithms. In spectral analysis this
sampling rate reduction means with a fewer amount of
measurements, we are able to reconstruct the same res-
olution frequency spectrum, or with the same amount of
measurements but higher resolution than the traditional
methods. In MCSA based fault detection, the motor cur-
rent spectrum with fault characteristic frequency exhibits
sparse characteristics in the frequency domain. Therefore,
the characteristic frequency component can be resolved
with high resolution using compressive sensing based tech-
niques. Considering the fact that the characteristic fre-
quency is distributed in the continuous frequency domain,
we consider the off-the-grid compressive sensing technique
Tang et al. (2013).

In order to verify our method, we build a dynamic model
using multi-loop equivalent circuit to simulate stator cur-
rent, in which a broken bar fault is modeled by an open
circuit while an early stage broken-bar fault is simulated
using an increased resistance of the fault branch. We
then develop an off-the-grid compressive sensing algorithm
to extract the characteristic frequency component in the
simulated stator current.

This paper is organized as follows. In Section 2, we describe
the dynamic model of induction machine for stator current
simulation under healthy and fault conditions. In Section
3, we introduce compressive sensing fundamentals and our
off-the-grid compressive sensing algorithm. Fault detection
results on simulated data are presented in Section 4.
Finally, we draw conclusions in Section 5.

2. DYNAMIC MODEL OF INDUCTION MOTOR

In squirrel-cage induction motors, the stator consists of
three sinusoidally distributed windings, displaced by 120◦

spatial angle. The rotor contains longitudinal conductive
bars connected at both ends by shorting rings, forming
a squirrel-cage like shape. As the induction motor is
operating, the stator windings set up a rotating magnetic
field through the rotor, inducing electrical current in the
rotor bars, producing force acting at a tangent orthogonal
to the rotor, and resulting in torque to turn the shaft.

In the following part of this section, we first develop a
dynamic model for motors in normal healthy condition,
then extend it to fault conditions. For simplicity, we

neglect magnetic saturation and assume linear magnetic
characteristics.

The equivalent circuit of squirrel-cage induction motor
is shown in Fig.1. Assuming there are n rotor bars, the
squirrel-cage rotor can then be modeled as n+ 1 indepen-
dent current loops, where n of them are identical circuit
loops under ideal condition, with each loop consisting
of two adjacent rotor bars connected by two end ring
portions. The remaining circuit loop is formed by one of
the end rings. So, the current distribution in rotor can be
specified in terms of (n + 1) independent loop currents,
i.e., n rotor-bar loop currents ij (1 ≤ j ≤ n) plus one end
ring loop current ie.

 

 

 

 b 

a 

0

c 

ua 

uc 

ub 

ia 

ib 

ic 

(a)

 

 

 

Re   Le Re   Le Re   Le 

Re   Le Re   Le Re   Le 

Rb   
Lb 

Rb   
Lb 

Rb   
Lb 

Rb   
Lb 

in i1 i2 … … 

(b)

Fig. 1. Equivalent circuit of (a)stator windings, and
(b)rotor in squirrel-cage induction motor

2.1 Stator Voltage and Flux Equations

Based on the equivalent circuit, the voltage and flux
linkage equations for the stator windings can be written
as:

Us = RsIs +
dΨs

dt
, (1)

Ψs = LsIs + MsrIr, (2)

where the stator voltage

Us = [ua ub uc]
T
, (3)

with
ua = U0 cos(2πfst+ φ0), (4)

the stator current

Is = [ia ib ic]
T
, (5)

the stator winding flux

Ψs = [ψa ψb ψc]
T
, (6)

the stator resistance

Rs =

[
Rs 0 0
0 Rs 0
0 0 Rs

]
, (7)

the stator inductance

Ls =

[
Ls Mab Mac

Mba Ls Mbc

Mca Mcb Ls

]
, (8)

the stator-rotor mutual inductance

Msr =

[
ma1 ma2 · · · man mae

mb1 mb2 · · · mbn mbe

mc1 mc2 · · · mcn mce

]
, (9)

and the rotor current

Ir = [i1 i2 · · · in ie]T . (10)

Here we use bold capital letters for matrices, regular
capital letters for constant parameters and small letters
for time-variant parameters. It is important to note that
the stator winding resistance in (7) and the inductance of



stators in (8) are constant under our assumption, while
the stator-rotor mutual inductance in (9) varies with the
angular position of rotor. This is because the mutual
inductance is related to the relative position between the
stator windings and the rotor bars, which changes during
operation.

2.2 Rotor Voltage and Flux Equations

The voltage and flux linkage equations for the rotor loops
can be written as:

Ur = RrIr +
dΨr

dt
, (11)

Ψr = LrIr + MrsIs, (12)

where the rotor voltage

Ur = [u1 u2 · · · un ue]T = [0]
(n+1)×1 , (13)

the rotor flux

Ψr = [ψ1 ψ2 · · · ψn ψe]T , (14)

the rotor resistance

Rr =



R0 −Rb 0 · · · 0 −Rb Re

−Rb R0 −Rb

. . . 0 0 Re

0 −Rb R0

. . . 0 0 Re

...
. . .

. . .
. . .

...
...

...
0 0 0 · · · R0 −Rb Re

−Rb 0 0 · · · −Rb R0 Re

Re Re Re · · · Re Re nRe


, (15)

with R0 = 2(Rb +Re), the rotor inductance

Lr =



Lr + L0 M12 − Lb M13 · · · M1n − Lb Le

M21 − Lb Lr + L0 M23 − Lb

. . . M2n Le

M31 M32 − Lb Lr + L0

. . . M3n Le

...
. . .

. . .
. . .

...
...

Mn1 − Lb Mn2 Mn3 · · · Lr + L0 Le

Le Le Le · · · Le nLe


, (16)

with L0 = 2(Lb + Le), and the rotor-stator mutual
inductance Mrs = MT

sr.

2.3 Mechanical Equations

The mechanical equation of the induction motor can be
expressed as:

Te − Tl = J
dωr
dt

, (17)

where Te represents the electromagnetic torque, Tl is the
load, J stands for the rotor inertia, and ωr is the angular
velocity. Using the basic principle of energy convertion, the
electromagnetic torque can be calculated as:

Te = ITs
dMsr

dθr
Ir. (18)

The angular velocity can be expressed in terms of change
rate of rotor’s angular position θr as follows:

ωr =
dθr
dt
. (19)

In summary, equations (1) ∼ (19) form a dynamic model of
induction motors with unknown stator and rotor currents.
Given the motor parameters, we can use standard methods

for solving differential equations to simulate the stator
current during dynamic operation. In this paper, we use
the fourth-order Runge-Kutta method Butcher (1987).

2.4 Motor Parameters

Under normal healthy condition, the inductances and
resistances in (7), (8), (9), (15) and (16) can be calculated
Luo et al. (1993); Boucherma et al. (2006). To save the
space of this paper, we skip the details of parameter
calculations.

When one bar is fully broken, the related branch becomes
open circuit. Then the totally number of circuit loops is
reduced by one since the related two loops are replaced by
a new loop with doubled end-ring segments, as shown in
Fig. 2(a). Consequently, in (11)∼(16) the corresponding
loops should be removed or rebuilt with the equivalent
parameters.
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Fig. 2. Equivalent circuit of fault conditions: (a)Fully
broken bar, and (b)Early-stage broken bar

If the bar is not fully broken, but in an early stage of
broken fault condition, we can simulate this intermediate
damage state by increasing the corresponding bar resis-
tance to a certain value R′b, as shown in Fig. 2(b). The
more severe the damage, the larger the resistance R′b. As a
result, the related entries in our model should be modified.
For example, if the bar shared by the jth and the (j+ 1)th

loops is damaged, then the corresponding resistance sub-
block Rrj,(j+1)

= [R0, − Rb;−Rb, R0] in (15) should be

modified to [R0 −Rb +R′b, −R′b;−R′b, R0 −Rb +R′b].

Comparing to other models such as the d-q model Santos
et al. (2006), this equivalent circuit model is straightfor-
ward to understand and flexible to simulate intermediate
fault state. It is important to note that this model may
become ill-conditioned when the ratio between R′b and Rb
is too large. A small step size inversely proportional to
the ratio in the fourth-order Runge-Kutta method is then
necessary for proper simulation results.

3. COMPRESSIVE SENSING BASED DETECTION

3.1 Background of Compressive Sensing

In the Shannon/Nyquist sampling theorem, the sampling
rate (the so-called Nyquist rate) should be at least twice
the signal bandwidth in order to exactly recover the orig-
inal signal. Compressive sensing is an innovative method
to capture and represent sparse or compressible signals at
the rate well below Nyquist rate Candès and Wakin (2008);
Baraniuk (2007). This sampling rate reduction is achieved
by using uncorrelated projection measurements, improved
signal models, and non-linear reconstruction algorithms.
Assume the signal under observation x can be represented
by a sparse coefficient vector α with basis A as x = Aα.



Measurements are made on x through a projection matrix
Φ as follows

y = Φx = ΦAα = Σα. (20)

According to the CS theory, if Σ satisfies the re-
stricted isometry property, α can be reconstructed with
overwhelming probability close to 1 by solving an L1-
minimization problem Candès and Wakin (2008)

min ||α||1 s.t. y = Σα. (21)

In order to apply the CS theory to real applications,
researchers typically adopt a discretization procedure to
reduce the continuous parameter space to a finite set of
grid points. This strategy generally yields state-of-the-art
performance for problems where the true parameters lie
on the grid. However, in cases where the true parameters
do not fall into the finite grid, the signal cannot often
sparsely represented by the discrete basis. In this situation,
off-the-grid compressive sensing provides us a solution by
generalizing the discrete basis to a continuous one Tang
et al. (2013).

Suppose we observe the signal

xj =

K∑
k=1

cke
i2πfkj , j ∈ {0, .., n− 1}, (22)

with unknown K(K � n) frequencies f1, ..., fK ∈ [0, 1] on
an index set {j} of size m(K < m ≤ n) selected uniformly
at random.

Let ∆f be the minimum wrap-around distance of frequen-
cies on the unit circle

∆f = min
k 6=j
|fk − fj | . (23)

If ∆f ≥ 4
(n−1) , there exists a constant cµ such that

m ≥ cµ max

{
log2 n

δ
,K log

K

δ
log

n

δ

}
(24)

is sufficient to guarantee that we can recover x and localize
the frequencies with probability at least 1− δ with respect
to the random samples and signs. Further numerical simu-
lations suggest that, although without theoretical support,
the separable frequency distance can be as small as 1

n
Tang et al. (2013). The signal recovery process is realized
by solving an atomic-norm minimization problem

min
x
g(x) :=

1

2
‖y −Φx‖22 s.t. ‖x‖A ≤ c, (25)

where y corresponds to observed noisy measurements, c is
a constant bound and the atomic norm ‖x‖A under the
set of atoms A = {ei2πft+φ} is defined as

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
. (26)

In our BRB fault detection problem, suppose the fre-
quencies wk lie in [−W,W ], and stator current x(t) is a
continuous signal of the form

x(t) := ia(t) =

K∑
k=1

cke
i2πwkt. (27)

By taking regularly spaced Nyquist samples at t ∈
{0, 1/2W, ..., (n− 1)/2W}, we observe

xj =

K∑
k=1

cke
i2π

wk
2W j =

K∑
k=1

cke
i2πfkj , (28)

with fk = wk

2W ∈
[
− 1

2 ,
1
2

]
, which is exactly the same as

(22) after a trivial translation of the frequency domain.

With off-the-grid compressive sensing, we are able to
perform fault detection by extracting sparse characteristic
frequency component in the stator current signal with
improved performance.

3.2 Off-the-Grid Compressive Sensing Algorithm

There are several reconstruction algorithms to reconstruct
the sparse signal, with different computational complexity
and accuracy Tang et al. (2013); Rao et al. (2013). These
algorithms minimize a least-square loss function that mea-
sures the difference between the signal representation and
the observations, subject to a constraint in terms of an
atomic norm as in (25). In general, it takes long time
for those algorithms to converge to the extract sparse fre-
quency. In our fault detection applications, since we have
some prior knowledge about the frequency distribution,
i.e., the characteristic frequency, if there exists any, should
be close to the fundamental frequency, we can predefine
the atoms for fast reconstruction. For example, the stator
current consists fundamental power supply frequency and
possible fault characteristic frequency which is close to
the power supply frequency. In our simulation, we refine
frequency grid in the neighborhood of the fundamental
frequency with neighborhood radius 5Hz while only con-
sider coarse grid elsewhere. Based on this idea, we propose
a conditional gradient method with predefined atoms for
efficient reconstruction.

The algorithm is summarized as follows.

Algorithm 1 Condition gradient with predefined atoms

(1) Input: Measurements y, predefined A, estimated
bound c , frequency tolerance ε;

(2) Initialize: a0 ∈ A, τ ← 0, A0 ← [a0], c0 ← [c],
x0 ← [A0c0];

(3) REPEAT
aτ+1 ← arg mina∈A 〈5g(xτ ),a〉; {FORWARD}
Ãτ+1 ← [Ac aτ+1];
γτ+1 ← arg minγ∈[0,1] g[xτ + γ(caτ+1 − xτ )];
{LINE SEARCH}
c̃τ+1 ← [(1− γτ+1)cτ ; cγτ+1];
Merge adjacent frequencies within ε

(4) UNTIL convergence
(5) Output: cτ , Aτ ;

4. SIMULATION

4.1 Algorithm Validation

To examine our algorithm, we consider a noise free signal
represented as follows:

x(t) = 1.0 cos(2π50t+ φ1) + 0.1 cos(2π150t+ φ3)

+ 0.01 cos(2π48.62t+ φ2). (29)

As we can see, the signal is composed of three frequency
components: a fundamental power supply frequency com-
ponent at 50 Hz with a unit magnitude, a third harmonic



frequency component with 1/10 unit magnitude and a
characteristic fault frequency component at 48.62 Hz with
1/100 unit magnitude. The initial phases are randomly
chosen from [0, 2π). The Fourier frequency spectrum is
shown in the upper part of Fig. 3 where we measure 0.7
second current signal with sampling rate of 1kHz. Because
of the leakage of fundamental frequency energy, it is not
feasible to detect the fault characteristic frequency compo-
nent using the traditional Fourier transform method since
the frequency component is very close to the fundamental
frequency and its magnitude is too low. When we use off-
the-grid compressive sensing technique on the same 0.7
second signal, we reconstruct all three components exactly,
in both magnitude and frequency, as shown in the lower
part of Fig. 3. This result agrees with the aforementioned
off-the-grid theory in Section 3.
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Fig. 3. Fourier spectrum (upper) and CS reconstruction
(lower)

4.2 Off-the-Grid CS Based Fault Detection

To further test our method, we simulate the stator current
under both healthy condition and fault condition using our
multi-loop circuit model. The model parameters are ex-
tracted from a 1.5kW three-phase squirrel-cage induction
motor with parameters listed in Table 1.

Table 1. Motor parameters

n fs(Hz) Rs(Ω) Re(µΩ) Rb(µΩ)

29 50 3.43 37 133.4

Ls(H) Lr(mH) Lb(µH) Le(µH) J(kg ·m2)

0.51563 5.443 1.08 0.01 0.0014

Under healthy condition, the simulated stator current of
phase-A and the rotor speed are shown in Fig. 4. We notice
that after about 0.5 second transient operation, the motor
runs in a steady state with a constant speed.

For fault condition, we consider three different situations:
two consecutive broken bars, one broken bar and one
early-stage broken bar. For fully broken bar situations, we
employ the equivalent circuit model as shown in Fig.2(a).
While for the early-stage broken bar, which is generally not
trivial to simulate, we consider resistance R′b = 1000Rb to
simulation this early fault degradation for simplicity.

We sample stator current in a period of 0.7 second when
the motor is operating in a steady state, assuming in
practice the fluctuated load can be treated as unchanged
in such a short time. Considering measurement noise in

real applications, we add noise of 30dB SNR into the sim-
ulated current signal. We then employ both the traditional
Fourier transform and our off-the-grid compressive sensing
method to reconstruct the sparse frequency components
of stator current signals under both healthy and fault
conditions, with the results plotted in Fig. 5 for com-
parison. The top-row figures, from left to right, show the
state currents of healthy, two-broken bar, one-broken bar,
and one early-stage broken bar conditions, respectively.
The middle-row figures show the corresponding Fourier
spectra and the bottom-row figures show the off-the-grid
CS reconstruction. As we can see, the characteristic fre-
quency components of all the three fault conditions are
extracted successfully, even when the magnitude is about
40dB lower than the fundamental frequency component
and the traditional Fourier spectrum fails. As regarding
to the computational time, our it takes about 2.5 seconds
for our off-the-grid CS algorithm to reconstruct the signal
on a 3.6GHz Intel Xeon CPU using Matlab.

While we take a closer look at the sparse characteristic
frequency, we observe that under the same load condition,
the characteristic frequencies are slightly different, which
are 47.575Hz, 47.675Hz, and 48.125Hz for two-broken bar,
one-broken bar, and one early-stage broken bar conditions
respectively. This interesting observation indicates that
there is a possibility to diagnose the severity of the
fault conditions using the high resolution off-the-grid CS
analysis. The closer to the power supply frequency, the less
severe the fault. This is however under investigation in our
future work.
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Fig. 4. Stator current (upper) and rotor speed (lower)
under healthy condition

5. CONCLUSION

In this paper, we propose to use off-the-grid compressive
sensing technique to detect broken bar fault in squirrel-
cage induction motor. Simulation results show that due
to its high frequency resolution, off-the-grid compressive
sensing can effectively detect broken-bar faults, even early
stage broken-bar faults with very short time measure-
ments. In our future work, tests on experimental data
will be considered for detecting and diagnosing broken-bar
fault in squirrel cage induction motors.
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Fig. 5. (a)-(d) Stator current under healthy, two-broken-bar fault, one-broken-bar fault, and one partial-broken-bar fault
respectively, (e)-(h) Fourier spectrum of (a)-(d), (i)-(l) off-the-grid CS reconstruction of (a)-(d).
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