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Abstract

We highlight the potential of model predictive control (MPC) in precision manufacturing by
considering the application to multistage processing machines that combine actuators with
different operating ranges and different bandwidths to optimize the processing time, product
quality, and to increase flexibility. The operation of these machines results in a constrained
trajectory generation and control problem with reference-dependent constraints. We propose
a design based on a spatial reference governor and a tracking MPC for real-time control of
a dual stage processing machine. The method guarantees constraint satisfaction, finite time
processing of a given spatial pattern, and real-time execution. Results on a real processing
pattern generated using CAD-CAM are shown.
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1. INTRODUCTION

Following the same path as other industries, such as au-
tomotive and aerospace (Hrovat et al. (2012); Di Cairano
(2012)), the architectures of precision manufacturing ma-
chines are becoming more complex, for instance by com-
bining actuators with large operating range with others
that have smaller operating range but higher bandwidth.
Such manufacturing machines are multiple input single
output systems. Furthermore, the processing machines
need to be operated in their entire operational envelop,
and hence close to the physical, performance, and safety
constraints. As a consequence, modern techniques for mul-
tivariable constrained control are being investigated.

MPC is particularly effective for controlling multivariable
systems subject to constraints while optimizing a cost
function encoding the performance metrics of the con-
trolled system. However, some of the current limitations
of MPC in manufacturing relate to the relatively low com-
puting power and memory resources of the microprocessors
used in these applications, the high bandwidth of opera-
tion of certain controllers, and the performance require-
ments, which may be quite different from standard control
problems. The machine worktool must follow a desired
spatial path that represents the machining path of the part
being produced. The common performance requirements
are the time to process the path, the precision of the
actually obtained machining path, which is also affected
by the induced vibrations of the motion of the actuators
on the machine base, and the energy consumption for
the processing. In (Faulwasser and Findeisen (2009); Lam
et al. (2013)) MPC algorithms are proposed for contouring
control that operate in the spatial domain, and hence
require (explicitly or implicitly) the linearization of the
spatial nonlinear dynamics.

A class of applications that cannot be straightforwardly
handled with existing methods, either classical, or spatial-

based MPC, is the control of multistage machines. Mul-
tistage machines combine actuators with significantly dif-
ferent bandwidths and operating ranges, up to 500x, so
that they can achieve fast processing of parts composed
of both detailed and large features. The small-and-fast
actuators in the so called fast stages provide advantages
in rapidly processing the detailed features that require
small motions with large accelerations, and the large-
and-slow actuators in the so called slow stages provide
advantages in the processing of large features, that require
long motions. The path of the machine is the combina-
tion of the motions of the slow and fast stages. Standard
trajectory generation methods in factory automation are
either specific for single actuator systems, or based on
frequency separation (Staroselsky and Stelson (1988)) and
hence clearly suboptimal. When constraints are present,
the latter enforces them by iterative procedures that must
be executed before the machine begins processing. Instead,
real-time trajectory generation and control during ma-
chine operation is advantageous because it allows increased
flexibility of operation without reducing the throughput.

In this paper we design an architecture based on MPC
and reference governor to control multistage processing
machines, with particular focus on a dual-stage dual-axis
machine provided with a small-and-fast actuator and a
large-and-slow actuator per processing axis. Since the fast
stages operate with update frequencies that are beyond the
capabilities of MPC in factory automation microprocessors
(e.g., > 100kHz), we exploit the time-scale separation to
formulate the control problem of the slow stage as a track-
ing MPC with constraints that depend on the reference
trajectory. Due to such dependency, the feasibility of MPC
may require the modification of the reference trajectory
which is a recently studied problem (Limon et al. (2008);
Ferramosca et al. (2009); Falugi and Mayne (2012)). How-
ever, such methods cannot be directly applied to this prob-
lem because the modification to the setpoint will cause a



modification to the spatial pattern, which results in an
incorrectly machined part. In this paper, starting with a
trajectory generated using standard methods, e.g., based
only on an “ideal” fast-and-large actuator, we exploit
a spatial reference governor to obtain the fastest feasi-
ble reference trajectory with guaranteed future constraint
satisfaction that does not cause machining error while
modifying the infeasible parts of the trajectory. Then, we
use the reference and the maximum constraint admissible
set of the reference governor in the MPC, thus obtaining
recursively feasibility, and under mild assumptions, finite
time processing of the machined path.

In Section 2 we describe the control problem for the dual-
stage machine, in Section 3 we describe the reference
governor, and in Section 4 the MPC for controlling the
dual stage machine and its real-time implementation.
In Section 5 we report simulations of the real machine
dynamics on a processing pattern obtained using real CAD
and CAM software, where the proposed algorithm is used.
Conclusions are summarized in Section 6.

Notation: R, Ro4, Ry and Z, Zgy, Z are the sets of real,
nonnegative real, positive real, and integer, nonnegative
integer, positive integer numbers, and we use the notation
Ziapy = {2 € Z : a < 2z < b} to denote intervals. By
[a]; we denote the i-th component of a, for a € R",
b€ R™ (a,b) = [@ V] € R"™ is the stacked vector,
and I and 0 are the identity and the zero matrices of
appropriate size. Relational operators between vectors
are intended componentwise, while for matrices denote
(semi)definiteness. Given a set A and (a,b) € A we denote
by A(b) the section of A in the coordinates of b at the
values of b. We denote the Minkowski set sum by & and
nA where 7 € Ry, is the scaling of A by n. B(p), p € Ry
denotes the norm-ball of radius p. For a discrete-time
signal x € R" with sampling period T, z; is the value at
sampling instant ¢, i.e., at time 7st, and xy); denotes the
predicted value of x at sample t + k, i.e., x;1k, based on
data at sample ¢, where xq; = x;. The operator x denotes
the time-domain convolution for systems and signals.

2. MULTI-STAGE PROCESSING MACHINES

While the concepts are generalizable to many applications
in precision manufacturing, here we consider a two-stage
dual-axis (i.e., 2D) machine that processes raw material
into finished parts by a specific worktool. The machine
must process at a high rate and with high precision parts
that have small and large features, where often multiple
copies of the part are made from a single block of raw
material. The multistage machine aims at solving two
conflicting objectives in precision manufacturing. Due to
the small features and the requirement to process at
high rate, the worktool must sustain large accelerations.
However, due to the large features and multiple copies
of the part, the worktool must have a large operating
range, and hence a large mass. High accelerations and large
mass are obviously in conflict. Thus, multistage machines
combine slow and fast stages, as shown in Figure 1.

The fast stages have smaller operating range and smaller
mass, so that they can achieve large accelerations, while
the slow stages have larger operating ranges and larger
mass, and hence can achieve smaller accelerations. With
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Fig. 1. Dual-stage dual-axis machine architecture.

such an architecture, the small features can be processed
quickly by high-acceleration movements of the fast stage,
while large features can still be processed by superimpos-
ing the large range movements of the slow stage.

The stages can be implemented by different actuators,
such as motors, piezoelectric actuators, electromagnetic
actuators, all in closed-loop with their servocontrollers.
Here, we consider the closed-loop stage model

yi(t) = G5(t) = uj(t), je{s [} ice{xy}, (1)
where x is the convolution operator, y is the position, u is
the position command, and G is the closed-loop transfer
function from position command to position, which has
unitary dc-gain, j € {s, f} indexes the stage (slow vs fast)
and i € {x,y} indexes the axis (x vs y). The stages are
subject to constraints on range

75 <Y <75 (2)
and motion velocity and acceleration
=1 . =1 =i -t

95 <95 <95, —4; < ij; < ¥ (3a)
The difference between the slow and fast stages are in
the bandwidth of the transfer functions in (1) and in the
constraints in (2) and (3), where @; <75, 5{ > gj The
overall position of the worktool is the algebraic sum of
positions of the two stages

y'(t) = Gy(t) * up(t) + G(t) xuy(t), i € {x.y}.  (4)
System (1) is controlled in discrete-time, and, due to the
different bandwidths, the sampling periods for the fast and
slow stage are different, T < T?. Specifically, T = M -
TS, where M € Z; and M > 1.

2.1 Tracking control for multistage processing machines

Given a spatial curve representing the pattern to be

processed, p(o) = [p*(o) p¥(0)]’, 0 € Rjg 1}, the objective

is to control (4) subject to (2), (3) such that
1(y*(0), 4" (o)) = (P*(0),p” ()| <&, Yo € Rppyp, (5)

i.e., the worktool follows the spatial pattern within a given
small tolerance € € R...

For solving (5) in single stage machines Faulwasser and
Findeisen (2009); Lam et al. (2013) propose a spatial



nonlinear MPC, which however does not directly apply
to multistage machines, due to timescale separation and
non-uniqueness of the trajectory for linearization. Instead,
here we first generate by standard method a trajectory
{a(hTH}y = {(@*(WT), ¢¥ (WTL))}n, b € Zoy, so that
g(t) = TS (t) * q(t) satisfies (3) for j = f, (2) for j = s,
and (5) within the desired e € Rgy. Thus, {g(RT{)}; is a
trajectory for an ideal fast-and-large single stage machine.
Next, we design a controller for (1), (3) such that

Ty <wut) —¢'(t) <7}, i€ {x,¥}. (6)
For for i € {x,y}, this amounts to solving at every
sampling period T, the receding horizon control problem

N-1
min F (Y, dyvje) + D Loy gy @hye)  (T2)
st k:O
s.t. (1), (2), (3), where j =s (7b)
_ng < yik|t - qlic|t < y; . (7c)

where N € Zoy is the prediction horizon, U, =
[uSops -+ usn 1))y Fs L are the terminal and stage cost,
respectively, and perfect preview of the reference g for at
least N steps is available. In (7) the constraints depend on
the reference trajectory and thus (recursive) feasibility is
not guaranteed.

Problem 1. Given {q(hT{)}n, h € Zo, that satisfies (3)
for j = f, (2) for j = s, and §(t) = T (t) xq(t) satisfies (5),
compute a modified reference trajectory {r(t7:)}; =
{(r*(tT), vy (tT2))}¢ such that y(t) = TS(t) = r(t) sat-
isfies (5) within € € Ro4, and design F, L, and additional
constraints for (7) such that when r is substituted for
q, (7) is recursively feasible and strictly convex. Also,
finite length references {q(hTy)}?_, should be processed
in finite time.

Problem 1 involves simultaneous reference manipulation
and tracking control, and has attracted considerable in-
terest in recent years, see, e.g., Limon et al. (2008);
Ferramosca et al. (2009); Falugi and Mayne (2012). In
particular, Limon et al. (2008); Ferramosca et al. (2009)
developed a virtual setpoint augmented MPC for solv-
ing this problem, which maintains feasibility and ensures
steady state tracking. Howevr, such an approach is not
directly applicable here because it modifies the “shape” of
the reference and hence the machining pattern does not
enforce (5). Thus, next we develop a“spatial” reference
governor in cascade with a tracking MPC.

3. SPATIAL REFERENCE GOVERNOR

In order to obtain a reference trajectory that guarantees
the feasibility (7), and ensures satisfaction of (5) we
develop a reference governor that operates on the spatial
points {g(h)}. First, we recall few useful notions.
Definition 1. Given z(t + 1) = f(x(t)), * € R", with
z = h(z(t)), z € R?, such that z € Z C RY, a constraint
admissible set S, C Z is a set such that

x(t) € Seo = h(z(1)) € Z, V7 > 1. (8)

Any constraint admissible set S, is positive invariant
(PI) for x(t + 1) = f(x(t)), that is, if 2 € S, then

f(z) € Soo. The maximal constraint admissible set, Ox,
is the largest constraint admissible set, meaning that there
exists no x € R™ and constraint admissible set S, such
that © € S, and 2 ¢ O.

For i € {x,y} and j = s, consider the state space
representation of (1), (2), (3), (6), where u’(t) = q.(t).
By adding a constant reference dynamics ¢*(t +1) = ¢*(t),
and defining 2* = Clz’ + Cyq" = [y% ¢ §% y° — ¢']',

' (t+1) = A'2'(t) + Biq'(t) (9a)
G(t+1) = (1) (91)
2 (t) = CLa'(t) + Ciq' (t) (9¢)
H.Z'(t) < K" (9d)

Result 1. (Gilbert and Kolmanovsky (2002)). Consider (9),
i € {x,y}, where C, = [C, C], A, = [%i (1)], (Ci AY) is
observable and Z = {z : H!z" < K'} is a polytope, closed
and bounded. Let Q¢ be such that all ¢* € Q are steady
state admissible, i.e., the corresponding equilibrium z.(q*)
satisfies Cpz.(q") + Cyq' € int(Z%). Then, with arbitrary
precision, the maximum output admissible set for ¢ € Q°
is a polytope defined by a finite number of constraints

Of)o ={(x,q) : Hmloox + Hqioq < K;O} (10)

We design an algorithm generating a feasible reference
based on Result 1. The trajectory {q(hT)}; is viewed as
a sequence of points {q(h)}; , and we choose the reference
among such points, r(t) € {q(h)} for all t € Zyy. Let

k(z, 1, {q(h)}n) = e o ¢ (11a)
st. (2',q" (n+ p)) € OL (11b)
ie{x,y} (11c)

and let p(t) € Zoy be the index of the last processed point
within the t* sampling interval, i.e., 7(t) = q(u(t)), then
pu(t) = k(z(t), p(t — 1), {q(h)}n) (12a)
() = q'(u(t), i € {xy}. (12b)
The reference governor (12) selects the reference by (11)
that indicates how many points can be processed until
the next sampling period without violating the constraints
and while making sure that the selected reference can be
maintained as target without violating the constraints.
The maximum M is imposed due to the maximum number
of points that can be tracked by the fast stage in the
sampling period of the slow stage. In fact, in order to
guarantee that (5) is satisfied, starting from {q(h)}; that
enforces it, {r(t)}; should not be faster than {q(hT7)}s.

Theorem 1. Let {q(hT{)}!_, be a finite-time trajectory
such that for all h € Zj, ) the steady state 2t (q(h)) for
q(h) satisfies (2% (q(h)), ¢ (h + 1)) € int(O%,), and let x(0)
be such that ((0),q'(0)) € O, for i € {x,y}. Then,
(11), is recursively feasible for (9), (12), and {r(tT?)}; is
such that if ul(t) = r’(t), i € {x,y}, (9d) is satisfied and
there exists a finite £ € Z+ with »(T%) = q(hTY).

Proof. Constraint satisfaction and recursive feasibility
are obtained by induction based on the fact that at every
T € Zo+ (12) selects r based on (11) using Ou. Due to



(9) is sati_sﬁed at t_ime
©)) < 0. Tor 1(0) = 4(0)
For some ¢t € Z0+, let 1) have a fea51ble Then r(t) is
such that (z(t),7(t)) € . Since O is PI for (9),
(x(7),7%(t)) € (9Z for all T >t and (11) is feasible
for all 7 > t. Thus, (z'(7),r(1)) € O for all 7 €
Zo+ . As regards finite termination, since (z°(q(h)), ¢*(h +
1)) € int(O%L,) there exists p > 0 such that (z%(q(h)) @
B(p).q'(h + 1)) € int(OL). Let (x(t),r(t)) € O,
and r(t) = q(h), and assume that for all 7 € Zoy,
(x(t 4+ 7),q(h +1)) ¢ Ox. Thus, for some p > 0, z(t +
7) ¢ xi(q(h)) ® B(p) for all T € Zg.. However, since
As is asymptotically stable, for any p > 0 there exists
T € Zoy such that ||z°(t +7) — 2| < p, which contradicts
the previous statement. Then, there must exist a finite
T € Loy, x(t + 1) € {zL(q(h))} & B(p) and hence, (x(t +
7),q(h + 1)) € Oc, i.e., 7 is a finite time for moving to a
new point. By repeating for every q € {q(h)}F_,, where h
is finite, the time to process all points is finite.

Definition 1 if (2*(t),r(t)) €
t, and for t = 0, (z(0),r

Remark 1. The reference governor (11), (12), preserve the
geometry and satisfies (5) by: (i) selecting only points on
the trajectory {q(h)}n, and (i4) computing the reference
for both axis at the same time, effectively coupling the
axis through constraints The proposed reference governor
operates a (nonlinear) transformation that “stretches”
the time to reduce the processing speed when needed to
guarantee constraint satisfaction.

Remark 2. The reference governor guarantees pointwise in
time constraint satisfaction, and, this ensures constraint
satisfaction for ¢(h) such that ¢(h) = r(t) for some
t € Zo+. For the remaining points, constraint satisfaction
is not automatically guaranteed, but it can be achieved
by either in two ways. A first approach is to including
constraints on the intersampling points, or by tightening
the constraints accounting for the maximum motion of the
fast stage during one sampling period of the slow stage.

4. TRACKING MPC FOR MULTISTAGE MACHINES

Next we re-formulate (7) based on the spatial reference
governor in Section 3 to guarantee recursive feasibility.
Due to the tracking nature of the problem we formulate
the dynamics in input incremental form,

Z(t+1) = Az(t) + Bo(t) (13)
where T = [2/ V], v is the l-step delayed position
command for the slow stage, i.e., v(t) = us(t — 1), and
A = [{ 7], B =[F] so that the input to (13) is the
step-to-step change in the reference v(t) = us(t) — us(t —
1). In (13) we have dropped the superscript i € {x,y},
as we will do in the rest of this section, for notational
simplicity, and similarly we drop the subscript s, e.g.,
from us. When compared to (9), in (13) the reference
is no longer part of the dynamics, but it will still be
part of the constraints. Given the reference trajectory
Ry = [rop .. .rnye], F'(Z,7) > 0 for all 2, r, and F(Z,r) =0
if and only if & = z.(r), i.e., it is an equilibrium such that
y = r, L(z,r,v) > 0 for all z, r, v, and L(Z,r,v) = 0
if 2 = x(r), and v = 0, Y = [vgs...on—1)¢], X 2 Q
are constraints on commands, n € Ryg 1}, the MPC finite
horizon optimal control problem is

N-1
V(x(t)) = H%lfl F(ZnpemNpe) + kz L(Zpjes ipe, vipe) (14a)
st. Tpy1e = AZgy + Bug (14b)

HCpwp + HCyryy < K (14c)

Vit € Xy (14d)

:C?\Ht € n@io(rﬁv\t) (14e)

To|p = (). (14f)

where Y7 = [UZ\t --.Ux_y;] denotes the optimal solution.
In what follows we denote by U = U;(Y:,v(t)) the
optimal control input sequence at time ¢ corresponding

to the optimizer of (14).

Theorem 2. Consider the MPC controller that at any
time ¢ € Zoy solves (14), where n = 1, 1y = Tpq1p—1
and Nt = Q(,UNlt)v HUN|t = ’f(zN\t—hMN\t—h{Q(h)}h)-
Let (14) be feasible at time ¢ € Zg4, then (14) is feasible
at any 7 € Zoy, T > L.

Proof. Let (14) be feasible at ¢ and Uy = [ug, ... uy_y ]

be the optimal input sequence. At t + 1, since zy|; €
Oso(rnye), according to Theorem 1, (11) is feasible and
HN[t+1 = K($N|taﬂN|ta{Q(h)}h); I'N|t+1 = (Z(MN\tJrl)-
Then, Uiy1 = [tigjg41 - - - Un—1]¢+1] Where g1 = u,’;H't
for k € Z[O,N—Q]; and ﬂN_1|t+1 = rN\t-‘,—l is a feasi-
ble input sequence, since the corresponding state tra-
jectory [Zoj¢t1 ... TNp4+1] is such that Ty = xzﬂ‘t
for k € Zj,n—1) and (Jc}‘\,'t,rmt“) € O implies that
(ZNjt+15N]t+1) € Ooo, hence (14e) is satisfied. Thus, Tt

corresponding to U, is feasible for (14). The reasoning can
be repeated thus completing the proof.

Theorem 3. Let {q(hT{)}!_, be a finite-time trajectory
such that for all h the equilibrium z.(g(h)) for q(h) satisfies
(2e(g(h)),q(h+ 1)) € int(O), and let (2(0),¢(0)) € O
Consider the MPC that at every iteration solves (14)
where n = 1, Tkit = Tk4+1)t—1 and Nt = Q(MN\t)a
BNt = ’i(zN\t—l,HNh:—h {a(h)}n). Assume that for every
z, r such that € O (r), v € &, there exists v such that
F(AzZ+ Buv,r)+ L(Z,r,v) — F(Z,r) < 0. Then, there exists
a finite time when x|, = q(h) and (zn)¢, 7n)t) € Ooo

The full proof is skipped due to limited space, and it is
based on the MPC being asymptotically stabilizing and
the equilibrium being in the interior of O, which under
the assumptions ensure a finite time transition to each
following point, similarly to Theorem 1.

While commonly used for MPC Falugi and Mayne (2012),
the assumption on the cost in Theorem 3 may be difficult
to verify, as it relates to the existence of a control Lya-
punov function (Rawlings and Mayne (2009)). Thus, the
following may be preferred.

Theorem 4. Let x(0) be such that (z(0),¢(0)) € O and
let O (r) be A-contractive, i.e., for all z € X, r € Q
such that * € O (r), Ax + Br € AOux(r), 0 < X < 1.
For every h € Zot, let ¢ € Q, and if x € AOx(q(h)),
then z € Ox(q(h + 1)). Consider the MPC that at
every iteration solves (14) where n = A, Thit = Tha1|t—1
and TNt = Q(NN|t)7 KNt = ’i(xN\tflvﬂN\tflv{Q(h)}h)-



Then, there exists a finite ¢t € Z; when ry); = ¢(h) and
(Nt N|e) € Ocoy and t < h.
The full proof is skipped due to limited space, and it is

based on the contractivity of O, and the assumptions on
the reference.

4.1 Real-time numerical solver algorithm

When F, L are convex quadratic functions, (14) results in
a convex parametric quadratic program (pQP)

1 1
min §ZIQPZ +0'Chz+ 59/Qp9 (15a)
st Gpz < Sp0+ W, . (15b)

where z = T4, 60 € R"™ is the parameter vector and
0" = [z’ R']'. The dual of (15) is the nonnegative pQP

1 - 1
min o€ Qa€ + 0" Sl¢ + Whe + 500 (16a)
st. £€>0), (16b)
where Q¢ = GpQp' Gl Sa = (GpQ, ' Cp + Sp), Wa = W,
Qi = CQ,'Cp — Q. From the optimal solution Y™

of (16), the solution of (15) is
Z(f*) = \I/dgp(e,f*) = Fd(g + Edf*,

where =4 = 7Q;1G;, Iy = 7@510:0.

In Di Cairano et al. (2013) it was shown that for solv-
ing (16) one can execute the iterations

[(Qq + ) + Fyli
+ F [E(l)]i
(QF + D)@ + Fyli
where Fy = Sg + Wy, My = 6'Q40, 74 = T30, K, =
Spl + W, until primal feasibility and zero duality gap are
reached within appropriate tolerances. Due to the simple

iteration, (18) can be easily implemented and verified even
in embedded platforms.

(17)

Eesrn]i = (18)

Due to hard real-time requirements, it may be necessary
to execute a fixed (possibly small) number ¢ € Z, of
iterations (18), and hence the optimum may not achieved.
Let £ be the candidate solution of (16), # be the

corresponding solution of (15) from (17), and U; be the
corresponding control sequence. If U, is feasible, it is
used, because the terminal constraint guarantees recursive
feasibility. If U, is not feasible, we exploit the previous

feasible solution and the current reference from (12).
Corollary 1. Let Us—1 be a feasible solution for ¢t € Z, .
The solution Uy where g = ugq1;s—1 and unj; = 7y 18
feasible for (14).

By Corollary 1 we can dimension set a maximum of £
iterations, and then use (12) and Corollary 1 to build a
backup feasible solution.

5. CASE STUDY: SIMULATIONS AND RESULTS

Next we show simulations for the dynamics of a real
machine with stage time-scale separation of about 2 orders
of magnitude, considering real microprocessor computing
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Fig. 2. Processed pattern (red) covering exactly the desired
pattern, slow stage motion (black), and points where
the reference governor slows the motion (green).

Fig. 3. Position of the slow stage x, y axes (blue) and
constraints (black) due to the reference and fast stage
range

capabilities and a real processing pattern.The pattern is
obtained from a CAD design of multiple parts, with small
and large features. The initial trajectory is generated by a
standard CAM algorithm using the dynamics of the fast
stage and the operating range of the slow stage, so that
it represents an ideal trajectory and a lower bound to the
processing time. We design the proposed control algorithm
with a prediction horizon of N = 20 steps, a ratio of the
stage sampling periods M = 150, 7Y = 30ms, and a hard
limit to ¢ = 500 iterations. The results are reported in
Figures 2-5.

Figure 2 shows the processed pattern (which covers pre-
cisely the desired processing pattern within the allowed
precision of 20um), the motion of the slow stage obtained
by the proposed method, and the points where the refer-
ence governor reduces the processed points per sample, to
enforce constraints and to guarantee recursive feasibility.

Figure 3 shows the motion of the slow stage, for x and
y coordinates, and the corresponding constraints related
to the allowed distance from the filtered reference, which
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Fig. 4. Velocity and acceleration of the slow stage x axis
(blue), y axis (black) and constraints (red).

guarantees that, with the motion of the fast stage, the
pattern is effectively tracked. While not shown explicitly,
ri(t) is the average of the constraints on y'(t), i € {x,y}.
The motion of the slow stage is significantly smoother than
the reference motion, as can be seen from the slow stage
constraints. This reduces the energy consumption and the
machine vibrations, increasing machining precision.

The smoothness of the motion of the slow stage can also
be noted from Figures 4 showing velocity and acceleration
profiles for the x and y axes of the slow stage. These
are kept far from their actual constraints, despite the
processing trajectory being less than 2s, i.e., 5%, longer
than the initial ideal (unrealizable) reference trajectory.

Finally, Figure 5 shows the amount of processing allowed
at each step by the reference governor , as percentage
of the maximum points, M = 150, and the number of
iterations executed by the QP solver, where the value 600
indicates that the algorithm did not find a feasible solution
within the allowed 500 iterations and a feasible solution
was obtained from Corollary 1.

6. CONCLUSIONS

We have presented the design of a MPC for controlling
dual stage processing machines that demonstrates the
potential of MPC in precision manufacturing. The ap-
proach is based on exploiting the timescale separation to
formulate the problem as the control of a constrained sys-
tem subject to reference-dependent constraints. We have
proposed a spatial reference governor that modifies an
ideal, usually infeasible reference to generate a feasible
reference profile that preserve the spatial pattern for a
tracking MPC. We have shown that such a tracking MPC
guarantees constraint satisfaction, is recursively feasible,
can guarantee finite-time processing of the spatial pat-
tern, and allows for real-time implementation. We have
also shown simulations for real machine parameters on a
pattern generated by real CAD-CAM software validating
the approach.
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