
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Reference Tracking with Guaranteed Error Bound for
Constrained Linear Systems

Di Cairano, S.; Borrelli, F.

TR2015-124 October 2015

Abstract
We propose a control design for a constrained linear system to track reference signals within
a given bounded error. The admissible reference signals are generated as output trajectories
of a reference generator, which is a linear system driven by unknown bounded inputs. The
controller has to track the reference signals and to never violate a given tracking error bound,
while satisfying state and input constraints, for any admissible reference. The design is
based on a model predictive controller (MPC) enforcing a polyhedral robust control invariant
set defined by the system and reference generator models and constraints. We describe an
algorithm to compute the robust control invariant set and how to design the tracking MPC
law that guarantees satisfaction of the tracking error bound and of the system constraints,
and achieves persistent feasibility. We demonstrate the proposed method in two case studies.
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Reference Tracking with Guaranteed Error Bound for Constrained Linear Systems

Stefano Di Cairano, Francesco Borrelli

Abstract—We propose a control design for a constrained linear system
to track reference signals within a given bounded error. Theadmissible
reference signals are generated as output trajectories of areference
generator, which is a linear system driven by unknown bounded inputs.
The controller has to track the reference signals and to never violate a
given tracking error bound, while satisfying state and input constraints,
for any admissible reference. The design is based on a model predictive
controller (MPC) enforcing a polyhedral robust control invariant set
defined by the system and reference generator models and constraints.
We describe an algorithm to compute the robust control invariant set
and how to design the tracking MPC law that guarantees satisfaction
of the tracking error bound and of the system constraints, and achieves
persistent feasibility. We demonstrate the proposed method in two case
studies.

I. I NTRODUCTION

Several control applications require a manipulated variable to track
a time-varying reference signal with complicated behaviorwithin
given error bounds. For instance, in dual-stage processingmachines in
manufacturing [1], a slow stage with large workspace (also called op-
erating range) moves a stage with much faster dynamics and limited
workspace that actuates the work tool. Thus, the tool workspace is the
sum of the stages’ workspace. Because of the timescale separation of
the stages (often few orders of magnitude), to ensure tool trajectory
tracking it is enough to control the slow stage so that its distance from
the tool position reference is always within the operating range of the
fast stage. The automotive and aerospace industries are also rich of
applications. The engine torque in spark-ignition enginesis obtained
by controlling airflow and spark timing [2]. Due to the limited torque
generated from spark timing, the airflow-generated torque must be
controlled in a bounded range around the requested torque. In hybrid
electric vehicles the combustion engine power needs to be controlled
so that the difference with the driver-requested power can be achieved
by electric power [3]. Vehicle cornering control and attitude control
with redundant actuators [4], [5] are also potential applications.

The design of reference tracking controllers enforcing input and
state constraints has mainly followed two approaches. In [6]–[12]
reference tracking model predictive control (MPC) was proposed,
usually focused on guaranteeingasymptoticoffset-free control for
references within a specific class of signals when the constraints
are inactive. Commonly, the class of reference signals consists of
the outputs of anautonomouslinear system. Instead, in [13], [14] a
reference governor (RG) is used. RG modifies the reference based on
the system state to generate a virtual reference, so that theclosed-loop
system satisfies state constraints. RG achieves finite-timeconvergence
of the virtual reference to a constant feasible reference, and hence
asymptoticoffset-free output tracking of constant feasible references.

In this paper we design a reference tracking controller thatsatisfies
state and input constraints and guarantees a given bound on tracking
error during bothsteady-state and transient, without modifying the
reference signal. We consider a class of reference signals which
is more general than the outputs of a linear autonomous system.
The reference signal is the output of a “reference generator”, which
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is a constrained linear systemdriven by unknown bounded inputs.
The simplest class of references that can be modeled with this
approach [15, p. 159] is a bounded signal with bounded first
derivative. Clearly, the class of references that can be produced is
significantly richer than those produced by an autonomous linear
system. Since the reference signal cannot be modified, the virtual
setpoint-augmented MPC in [11], [16], which optimizes the reference
jointly with the control commands, and the method in [17], which
modifies the reference to keep the state trajectories in a specified
region, are not applicable. The case of non-modifiable references is
motivated by practical applications, such as in [1], [2], where the
reference is generated by complex algorithms that have to satisfy
requirements in multiple domains. There, the admissible reference
manipulations are not described by simple functions and hence
integrating reference manipulation with tracking controlis not a
viable option for implementation. Rather, the reference isgenerated
offline or by supervisory algorithms to satisfy the specifications and
to belong to a class of signals, and the control algorithm needs to
guarantee that any reference within such class of signals can be
tracked within the desired error bound.

The control design proposed here is based on computing offline
a robust control invariant (RCI) set of plant and reference states for
which there exists a control law that guarantees satisfaction of the
constraints and of the bound on the tracking error at all times and for
all admissible references. Such RCI is then enforced by MPC.Thus,
the contributions of the papers are,(i) an algorithm for computing
a polyhedral RCI set for the bounded tracking problem, and(ii), an
MPC design that uses such RCI set to guarantee that the tracking
error bound and the system constraints are persistently satisfied.

The paper1 is organized as follows. In Section II we review
preliminary results and formalize the problem. In Section III we
describe the algorithm to compute the RCI set for bounded tracking,
which is used in Section IV to design the MPC controller for
bounded tracking. In Section V we present case studies validating
the approach, and in Section VI we summarize our conclusions.

Notation: R, R0+, R+ and Z, Z0+, Z+ are the sets of real,
nonnegative real, positive real, and integer, nonnegativeinteger,
positive integer numbers. By[a]i we denote thei-th component ofa,
for a ∈ R

n, b ∈ R
m, (a, b) = [a′ b′]′ ∈ R

n+m is the stacked vector,
andI and0 are the identity and the zero matrices of appropriate size.
By ‖·‖ we denote the∞-norm (or1-norm), andB(ρ) whereρ ∈ R+

denotes the∞-norm (or 1-norm) ball of appropriate dimension of
radiusρ. For setsA, D, proja(A) denotes the projection ofA onto
the subspace that contains the vectora, A ⊕ D is the Minkowski
(set) sum. For a discrete-time signalx ∈ R

n with sampling period
Ts, xt is the value at sampling instantt, i.e., at timeTst, andxk|t

denotes the predicted value ofx at samplet + k, i.e., xt+k, based
on data at samplet, wherex0|t = xt.

II. PRELIMINARIES AND PROBLEM DEFINITION

First we review results on invariant sets, see [19], [20] fordetails.
Then, we formalize the problem tackled in this paper.

1Preliminary results were presented in [18].
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A. Preliminaries on Invariant Sets

Consider the system

xt+1 = f(xt, ut, wt), (1)

where x ∈ R
n, u ∈ R

m and w ∈ R
d are the state, input and

disturbance vectors, respectively, subject to the constraints

xt ∈ X , ut ∈ U , wt ∈ W, ∀t ∈ Z0+. (2)

A robust control invariant set inX is a set of states for which there
exists a control law such that (1) never violates (2) for any sequence
of disturbances such thatwt ∈ W for all t ∈ Z0+.

Definition 1 (Robust control invariant set):A setC ⊆ X is said to
be a robust control invariant (RCI) set for (1), (2) if

xt ∈ C ⇒ ∃ut ∈ U : f(xt, ut, wt) ⊆ C, ∀wt ∈ W, ∀t ∈ Z0+.

The maximalRCI setC∞ contains all other RCI sets inX . ✷

The computation of RCI sets relies on thePre-set operator

Pre(S ,W) , {x ∈ R
n : ∃u ∈ U (3)

f(x, u,w) ⊆ S , ∀w ∈ W},

which computes the set of states of (1) that can be robustly driven
to the target setS ∈ R

n in one step.
The procedure to compute the maximal RCI set for (1) subject

to (2) based on (3) is summarized by the following algorithm.
Algorithm 1 (Computation ofC∞):

1) Ω0 ← X
2) Ωk+1 ← Pre(Ωk,W) ∩ Ωk

3) If Ωk+1 = Ωk, C∞ ← Ωk, return
4) k ← k + 1, goto 2.

Algorithm 1 generates the sequence of sets{Ωk}k, satisfying
Ωk+1 ⊆ Ωk, for all k ∈ Z0+. In general, Algorithm 1 may not
terminate. If the algorithm terminates in a finite number of iterations
k∗, Ωk∗ is the maximal RCI setC∞ for (1) subject to (2). If for some
k̃, Ωk̃ = ∅, no RCI set exists. See [19] for details on the termination
of Algorithm 1.

Definition 2 (Input admissible set ofC): Given a RCI setC for (1),
(2), the input admissible set forx ∈ C is

Cu(x) = {u ∈ U : f(x, u, w) ∈ C, ∀w ∈ W},

whereCu(x) 6= ∅ if x ∈ C, andCu(x) = ∅ if x /∈ C.
Definition 3: WhenW = {0}, i.e., (1) is not subject to distur-

bances,C in Definition 1 is called control invariant (CI) set.

B. Problem definition

Consider the discrete-time linear system

xt+1 = Axt +But

yt = Cxt,
(4)

wherex ∈ R
n, u ∈ R

m andy ∈ R
p are the state, input and output

vectors, respectively. System (4) is subject to the constraints

xt ∈ X , ut ∈ U , ∀t ∈ Z0+. (5)

We want (4) to track within a given error bound the time-varying
reference signalyr

t generated by the reference model

rt+1 = Arrt +Brγt
yr
t = Crrt,

(6)

wherer ∈ R
nr , γ ∈ R

mr andyr ∈ R
p are the reference model state,

input, and output vectors, respectively, subject to the constraints

rt ∈ R, γt ∈ Γ. (7)

We assume that the input to (6) is selected by areference generator
algorithm (RGA). At every time instantt ∈ Z0+, RGA computes
γt ∈ Γ based onrt ∈ R such thatrt+1 ∈ R. Thus,rt ∈ Cr where
Cr is a CI set for (6), (7), and RGA choosesγt such thatrt ∈ Cr.
By the definitions in Section II-A,Cr for (6), (7) is such that

rt ∈ C
r ⇒ ∃γt ∈ Γ : rt+1 ∈ C

r, ∀t ∈ Z0+, (8)

and Cγ(r) is the input admissible set associated toCr in (8). The
properties of the RGA are summarized in the following assumption.

Assumption 1:At every t ∈ Z0+, given rt ∈ C
r, whereCr is a

known CI set of (6), (7), the RGA enforcesrt+1 ∈ C
r ⊆ R by

selectingγt ∈ Cγ(rt) ⊆ Γ. ✷

If (6) is an integrator (Ar = 1, Br = 1, Cr = 1), thenCr,∞ =
R, Cγ(r) = {γ ∈ Γ |r + γ ∈ R}. In general, the bounds onr
induce state-dependent bounds onγ. For instance, when at/close to
the border ofCr, not all the values inΓ are admissible forγ.

The RGA is separated from the controller and, as opposed to the
approach in [11], [16], [17], its output cannot be modified bythe
controller. Also, as opposed to the reference governor [13], [14], the
RGA does not guarantees the enforcement of system constraints. The
RGA only guarantees that the reference signal will satisfy (7). The
tracking control design proposed in this paper does not depend on a
specific RGA, but only requires Assumption 1 to be satisfied.

The problem we address in this paper is formalized as follows.
Problem 1:Consider system (4) subject to (5), reference model (6)

subject to (7), and a given tracking error boundǫ ∈ R+. Let RN
t =

[r′0|t, . . . , r
′
N|t]

′, N ∈ Z0+ be a predicted reference profile satisfying
Assumption 1. Design a control lawut = κ(xt, R

N
t ) and a setX0 ⊆

R
n × R

nr of initial states and references(x0, r0) ∈ X0 from which
(4) in closed-loop withκ(xt, R

N
t ) satisfies (5) and

‖yt − yr
t ‖ ≤ ǫ, (9)

for all rt ∈ R that satisfy Assumption 1, at everyt ∈ Z0+. ✷

Remark 1:Problem 1 considers predicted future reference profiles
of lengthN ∈ Z0+. However, it is not guaranteed that such reference
preview isreliable. That is, the reference predictedk steps ahead from
time t may not be the actual reference at timet+k, i.e.,rt+k 6= rk|t.
Thus, a solution to Problem 1 needs to allow for the referencepreview
to change unexpectedly during operation.

III. RCI SET FORBOUNDED ERRORTRACKING

Consider (4) subject to (5), and (6) subject to (7). By Assumption 1
rt ∈ C

r, for every t ∈ Z0+, and givenrt ∈ Cr, rt+1 ∈ C
r if and

only if γ ∈ Cγ(rt). We define

X x,r = {(x, r) : x ∈ X , r ∈ Cr, (Cx − Crr) ∈ B(ǫ)}. (10)

At any time t ∈ Z0+, given (xt, rt) ∈ X0 ⊆ X
x,r, the control law

that solves Problem 1 must guarantee(xt+1, rt+1) ∈ X
x,r for every

admissiblert+1. Thus, we look for a RCI setCx,r ⊆ X x,r for (4),
(6) subject to (5), (7) such that

(x, r) ∈ Cx,r ⇒ ∃u ∈ U :

(Ax+Bu,Arr +Brγ) ∈ Cx,r, ∀γ ∈ Cγ(r). (11)

The maximal RCI set for (11) by Algorithm 1 requires computing

Pre(Ωk, C
γ(r)) = {(x, r) : r ∈ Cr, ∃u ∈ U ,

(Ax+Bu,Arr +Brγ) ∈ Ωk,∀γ ∈ C
γ(r)}, (12)

where Ω0 = X x,r and Ωk ⊆ X
x,r. The computation of (12)

is challenging even ifΩk, Cγ(r), X x,r and U are polyhedral,
becauseγ ∈ Cγ(r), i.e., the unknown disturbance belongs to a state-
dependent set. The algorithm in [21], [22] computes (12) as aunion
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of polyhedra, which is in general non-convex and whose complexity,
in terms of convex elements in the union, grows exponentially with
the number of iterations. Next, we propose a method to compute
a polyhedral Cx,r. The resultingCx,r is a subset of the maximal
RCI obtained from [21], [22], but is convex and polyhedral, and thus
significantly easier to compute and use in a control algorithm.

Algorithm 2 (Computation ofCx,r):

1) Initialization:
k = 0,

Ω̄0 = (Rn × Cr) ∩ {(x, r) : (x, r) ∈ Ω̄x,r
0 }. (13)

whereΩ̄x,r
0 = {(x, r) : x ∈ X , (Cx− Crr) ∈ B(ǫ)}

2) Ω̄k+1 = Pref (Ω̄k,Γ) ∩ Ω̄x,r
k where

Pref (Ω̄k,Γ) = (Rn × Cr) ∩ Ω̃x,r
k+1 (14)

Ω̃x,r
k+1 = {(x, r) : ∃u ∈ U ,

(Ax+Bu,Arr +Brγ) ∈ Ω̄x,r
k ,∀γ ∈ Γ},

Ω̄x,r
k+1 = Ω̃x,r

k+1 ∩ Ω̄x,r
k .

3) if Ω̄k+1 = Ω̄k, then Cx,r ← Ω̄k, return
4) k ← k + 1, goto 2

Algorithm 2 may terminate with an empty set, where ifΩ̄k = ∅,
Ω̄k+1 = Ω̄k and hence the termination condition at Step3 is met.
This indicates that a (non-maximal) RCI set could not be found. Also,
Algorithm 1 may never terminate because the RCI set may not be
finitely determined [19], [20]. In practice, a maximum number of
iterationskmax is used after which the termination of Algorithm 1 is
enforced withCx,r = ∅. Thus, if Algorithm 1 terminates withCx,r =
∅, a polyhedral RCI set is not found, either because no polyhedral
RCI set exists, or because no polyhedral RCI could be found within
the iteration limit. In these cases the problem specifications must be
changed by shrinkingΓ, and/or increasingkmax.

Theorem 1:Let Assumption 1 hold, and let Algorithm 2 converge
in a finite number of iterations toCx,r 6= ∅. Then,Cx,r computed by
Algorithm 2 is a polyhedral RCI set for (4), (6) subject to (5), (7),
(9) and robust to anyγr ∈ Cγ(r) andCx,r ⊆ Cx,r∞ .

Proof: Consider Algorithm 1 and its set sequence{Ω0, Ω1, . . .}
computed by (12) withΩ0 = X x,r, and Algorithm 2 and its set
sequence{Ω̄0, Ω̄1, . . .}. The Pre in (12) can be rewritten as

Pre(Ωk, C
γ(r)) = {(x, r) : ∃γr ∈ Cγ(r), Arr +Brγr ∈ Cr

∃u ∈ U , (Ax+Bu,Arr +Brγ) ∈ Ωk,∀γ ∈ C
γ(r)},

since{r ∈ Cr : ∃γr ∈ Cγ(r), Arr + Brγr ∈ Cr} = Cr by the
definition of CI set, and sinceCγ(r) = ∅ if r /∈ Cr.

We prove the theorem by induction, starting from̄Ω0 = Ω0 =
X x,r, where Ω̄0 is polyhedral. Assume that at stepk, Ω̄k ⊆ Ωk,
Ω̄k = (Rn × Cr) ∩ Ω̄x,r

k , and Ω̄x,r
k is polyhedral, and consider

Algorithm 2. Indeed, the assumptions hold fork = 0.
First, Ω̄k+1 = Pref (Ω̄k,Γ)∩ Ω̄

x,r
k = (Rn×Cr)∩ Ω̃x,r

k+1 ∩ Ω̄
x,r
k =

(Rn × Cr) ∩ Ω̄x,r
k+1 since Ω̃x,r

k+1 ∩ Ω̄x,r
k = Ω̄x,r

k+1 from Step2 in
Algorithm 2. Also, Ω̄k+1 = Pref (Ω̄k,Γ) ∩ Ω̄x,r

k = (Rn × Cr) ∩
Ω̃x,r

k+1 ∩ Ω̄x,r
k ∩ (Rn × Cr) = Pref (Ω̄k,Γ) ∩ Ω̄k, by the intersection

being idempotent, by the definition ofPref in (14), and byΩ̄x,r
k ∩

(Rn × Cr) = Ω̄k being an assumption of the inductive step.
Thus, the backward iteration in Algorithm 2 is in the form of

that in Algorithm 1, the formula is recursive under the inductive
step assumption, which is satisfied fork = 0. Hence, Step2 in
Algorithm 2 can be executed iteratively, and Step3 is a geometric
condition for invariance, which, if satisfied, indicates that an RCI set
is found.

Consider now thePref operation in (14), and rewrite it as

Pref (Ω̄k,Γ) = {(x, r) : r ∈ Cr, ∃u ∈ U , (15)

(Ax+Bu,Arr +Brγ) ∈ Ω̄x,r
k ,∀γ ∈ Γ}

where the order of projection and intersection can be inverted because
the set(Rn × Cr) is independent of the projection variableu. With
considerations similar to the ones for (12), and sinceΩ̄k = (Rn ×
Cr) ∩ Ω̄x,r

k and we already imposer ∈ Cr, which is CI,

Pref (Ω̄k,Γ) = {(x, r) : ∃γ
r ∈ Cγ(r), Arr +Brγ

r ∈ Cr,

∃u ∈ U , (Ax+Bu,Arr +Brγ) ∈ Ω̄k, ∀γ ∈ Γ}. (16)

By (16) we can comparePref in (14) andPre in (12) and obtain
Pre(Ωk, C

γ(r)) ⊇ Pref (Ω̄k,Γ), sinceΓ ⊇ Cγ(r) for all r ∈ Cr and
Ω̄k ⊆ Ωk by the assumption of the induction step. Thus,Cx,r ⊆ Cx,r∞ .

Since the disturbance setCγ(r) is state dependent,Ωk+1 is usually
nonconvex [21]. Instead, by the assumption of the inductivestep
Ω̄x,r

k is polyhedral and sinceΓ is polyhedral andCr are polyhedral,
Ω̄x,r

k+1 andΩ̄k+1 are polyhedral, because all the performed operations
when acting on polyhedra, return polyhedra [19].

From Theorem 1, if Algorithm 2 terminates at stepk∗ and
Ωk∗ 6= ∅, we obtain a polyhedral RCICx,r = Ωk∗ = {x ∈ R

n, r ∈
R

nr : Hk∗ [x′ r′]′ ≤ Kk∗} and the associated input admissible
set Cu((x, r)) = {u ∈ R

m : [x′ r′ u′]′ ∈ P(x,r,u)
k∗ } = {u ∈

R
m : H

(u)
k∗ [x′ r′]′ + J

(u)
k∗ u ≤ K

(u)
k∗ } is also polyhedral. The

computationally expensive step of Algorithm 2 is the evaluation of
Pref , which requires the “robustification” of the tracking constraints
with respect toγ ∈ Γ, i.e., the computation of the worst case value
of γ ∈ Γ for the enforcement of the tracking constraints, and the
projection to eliminateu. The latter tends to be computationally
expensive due to the projection algorithm. The former requires the
solution of linear programs, and hence is computationally cheap.
Algorithm 2 can be straightforwardly extended to the cases where (4)
is subject to additive disturbancesw ∈ W ⊆ R

n by enforcing the
constraints inΩ̃x,r

k+1 for all w ∈ W, which again can be achieved by
solving linear programs whenW is a polytope [19].

Remark 2: Algorithm 2 may converge toCx,r such that
projr(C

x,r) ⊂ Cr. In this case, it follows trivially from (14) that
projr(C

x,r) is RCI for (6) for all γ ∈ Γ ⊇ Cγ(r), i.e., for
all inputs selected by RGA according to Assumption 1. Thus, if
rt ∈ projr(C

x,r), rt+τ ∈ projr(C
x,r) for all τ ∈ Z0+ for any input

sequence selected by the RGA. Hence,projr(C
x,r) is the (invariant)

set of initial reference states from which any trajectory satisfying
Assumption 1 is properly tracked. In fact, by (14), if(x, r) ∈ Cx,r,
there existsu ∈ U such(Ax+Bu,Arr +Brγ) ∈ Cx,r, and hence
Arr +Brγ ∈ projr(C

x,r), for all γ ∈ Γ ⊇ Cγ(r).
Remark 3:The differences of Algorithm 2 with Algorithm 1 are

as follows. First, by Assumption 1, the reference state is constrained
within Cr from the beginning. Pre-computingCr reduces the com-
putational burden because the sets for reference states andinputs do
not change with the iterations. Second, Algorithm 2 robustifies with
respect toΓ instead ofCγ(r), thus removing the dependency ofγ
from the reference state. Third, in Algorithm 2 the set determined
by the enforcement of the state and tracking constraints, and the set
determined by the admissible reference states are kept separated. This
allows the more conservative robustification to affect onlythe tracking
constraints. In fact, whileArr + Brγ ∈ Cr, for all γ ∈ Cγ(r), the
same is not true ifγ ∈ Γ. If we substituteCγ(r) with Γ in (12),
the set of admissible reference states may shrink and even become
empty, causingCx,r to be empty. For instance, when (6), (7) model
a constrained integrator, substitutingCγ(r) with Γ in (12) causes
Cx,r = ∅ because from any initial reference state, the reference
constraints can eventually be violated. Instead, in Algorithm 2 the
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set of admissible reference states remainsCr and the effect of using
Γ rather thanCr(γ) results in requiring (9) to be enforced for
r ∈ (Cr ⊕ Γ), rather than forr ∈ Cr. Thus, by neglecting that
close to the boundary ofCr not all γ ∈ Γ can occur, we introduce
conservativeness in the RCI set. However, such condition can still be
satisfied, and the obtained RCI is a polyhedron, and hence simpler
to compute and use in a control law than a union of polyhedra.✷

Based on Remark 3, the following proposition is immediate.
Proposition 1:Let Cx,r be the RCI set obtained by Algorithm 2,

and letĈr ⊆ Cr ⊆ R be a RCI set for (6) such that̂Cγ(r) = Γ for all
r ∈ Ĉr. Then, for the maximal RCI set̂Cx,r∞ obtained by Algorithm 1
using (12) wherêCr and Ĉγ(r) are used in place ofCr andCγ(r) it
holds Ĉx,r∞ ⊆ Cx,r. Also, if Cγ(r) = Γ for all r ∈ Cr, Cx,r = Cx,r∞ .

IV. MPC WITH GUARANTEED TRACKING ERRORBOUND

The RCI setCx,r is a set of states and references satisfying the
constraints and for which there exists at least an input thattracks any
future admissible reference signal within the allowed error bound
and enforces constraints. Given(x, r) ∈ Cx,r ⊆ X × Cr, the set of
inputs that guarantees(xt+1, rt+1) ∈ C

x,r for any admissiblert+1 is
the input admissible setCu((xt, rt)). Next, we propose an approach
based on MPC for computingut ∈ U such that(xt+1, rt+1) ∈ C

x,r.
At t ∈ Z0+, let xt ∈ X andRN

t = [r′0|t, . . . , r
′
N|t]

′, the reference
state trajectory along a future horizon of lengthN ∈ Z+, be given,
whereRN

t is generated by RGA according to Assumption 1. Letk̄ ∈
Z0+, k̄ ≤ N , be such thatrt+k = rt|k, and hencerk−1|t+1 = rk|t,
for k = 1, . . . , k̄ for all t ∈ Z0+, i.e., k̄ is the number of steps of
reliable preview. Consider the finite horizon optimal control problem,

gU (xt, R
N
t ) = (17a)

argmin
Ut

N−1
∑

k=0

q(yk|t, y
r
k|t, xk|t, uk|t) (17b)

s.t. xk+1|t = Axk|t +Buk|t, (17c)

yk|t = Cxk|t, (17d)

yr
k|t = Crrk|t, (17e)

(xk|t, rk|t) ∈ X
x,r, k = 0, . . . , k̄ − 1, (17f)

uk|t ∈ U , k = 0, . . . , k̄ − 1, (17g)

uk|t ∈ C
u((xk|t, rk|t)), k = k̄, . . . , N − 1, (17h)

x0|t = xt, (17i)

whereUt = [u′
0|t . . . u

′
N−1|t]

′, q(·) is a nonnegative stage cost, with
a little abuse of notation (17f), (17g) are ignored ifk̄ = 0, and let
U∗

t = [u∗
0|t

′ . . . u∗
N−1|t

′]′ be the optimal solution of (17). The first
element ofU∗

t is applied to (4), hence obtaining the control law

ut = gRHC(xt, R
N
t ) = [I 0 · · · 0]gU (xt, R

N
t ). (18)

At time t+ 1, (17) is solved based on the new statex0|t+1 = xt+1,
and RN

t+1. The next theorem presents sufficient conditions guaran-
teeing persistent feasibility of the MPC control law (17), (18).

Theorem 2:Consider system (4) and reference model (6) subject
to (5), (7) and tracking constraint (9). Let Assumption 1 hold, i.e.,
γt ∈ C

r(rt) for all t ∈ Z0+. Let Cx,r ⊆ X x,r be a RCI set and
Cu((x, r)) be the associated input admissible set for (4), (5), (6),
(7), (9), robust to anyγ ∈ Cγ(r) ⊆ Γ. Let k̄ ∈ Z0+ be given
such thatk̄ ≤ N and rk−1|t+1 = rk|t for k = 1, . . . , k̄ for all
t ∈ Z0+, RN

t be generated by RGA according to Assumption 1, and
ut = gRHC(xt, R

N
t ). If (17) is feasible at timet ∈ Z0+, then it

is feasible for allt̄ ∈ Z0+, t̄ ≥ t, and the closed-loop satisfies (5)
and (9).

Proof: SinceCx,r ⊆ X x,r andCu((x, r)) 6= ∅ iff (x, r) ∈ Cx,r,
any feasible solution of (17) ensures that the closed-loop satisfies (5),
(9). Next, we prove the persistent feasibility of (17), i.e., given the
optimal solutionU∗

t = [u∗
0|t

′ . . . u∗
N−1|t

′]′ at time t ∈ Z0+ for xt

andRN
t , we show that att+1 there exists a feasible solutioñUt+1 =

[ũ′
0|t+1 . . . ũ

′
N−1|t+1]

′. Consider first̄k ≥ 1. Fork = 1, . . . , k̄−1, let
ũk−1|t+1 = u∗

k|t. By the feasibility ofU∗
t and sincerk−1|t+1 = rk|t

for k = 1, . . . , k̄, this ensures satisfaction of the constraints for the
first k̄ steps, and by applying̃uk−1|t+1 = u∗

k|t for k = 1, . . . , k̄− 1
we obtainxk̄−1|t+1 = xk̄|t. Hence, by the feasibility ofU∗

t and since
Cu((x, r)) 6= ∅ iff (x, r) ∈ Cx,r, (xk̄−1|t+1, rk̄−1|t+1) ∈ C

x,r. Since
Cx,r is RCI, there exists̃uk̄−1|t+1 ∈ C

x,r(xk̄−1|t+1, rk̄−1|t+1) such
that (xk̄|t+1, rk̄|t+1) ∈ C

x,r, for every admissiblerk̄|t+1, because
Cx,r is RCI for every γ ∈ Γ and Assumption 1 guarantees that
γk̄−1|t+1 ∈ C

γ(rk̄−1|t+1) ⊆ Γ. The same argument can be repeated
for constructingũk|t+1, for k = k̄, . . . , N − 1, thus obtainingŨt+1.

For the casēk = 0, i.e., the entire reference preview is unreliable,
(17h) is the only constraint in (17). Sinceut = u∗

0|t, (x1|t, r1|t) ∈
Cx,r for every γ0|t ∈ Γ ⊇ Cγ(r0|t). By Assumption 1,γt ∈
Cγ(rt) ⊆ Γ and hence(xt+1, rt+1) ∈ C

x,r andCu(xt+1, rt+1) 6= ∅.
Thus, there exists̃u0|t+1 for which (x1|t+1, r1|t+1) ∈ C

x,r for
every γ0|t+1 ∈ Γ ⊇ Cγ(r0|t+1). Since the RGA computesrk|t+1,
k = 0, . . . , N according to Assumption 1 andCx,r is RCI for any
γ ∈ Γ ⊇ Cγ(r), the reasoning can be repeated to constructŨt+1

such thatũk|t+1 ∈ C(xk|t+1, rk|t+1), and hencẽUt+1 is feasible.

In Theorem 2 it is not necessary thatrk−1|t+1 = rk|t for k =
k̄+ 1, . . . , N , as long asγk|t+1 ∈ C

γ(rk|t+1). Howeverk̄ > 0, i.e.,
some steps of reliable preview in (17), may increase the controller
performance. SinceCu(x, r) 6= ∅ iff (x, r) ∈ Cx,r ⊆ X x,r and
Cu(x, r) ⊆ U , a largerk̄, i.e., a larger number of reference steps
fixed in advance, will usually provide a larger feasible set for (17) .

Remark 4:The results of Theorem 2 also hold for a controller
selecting a feasible, yet non-optimal, solution of (17). ✷

The next corollary follows immediately from Theorem 2 and
summarizes the proposed method as a solution for Problem 1.

Corollary 1: Under the assumptions of Theorem 2,X0 = Cx,r and
κ(x,RN) = gRHC(x,R

N ) solve Problem 1. ✷

In Corollary 1, X0 = Cx,r, i.e., an RCI, guarantees initial
feasibility, and recursive feasibility follows from Theorem 2. For
κ(x,RN) = gRHC(x,R

N), Cx,r may not be the largest set for
solving Problem 1, i.e., there may existX0 ⊃ C

x,r that solves
Problem 1, howeverCx,r is polyhedral. Also, it may happen that
projr(X

x,r
0 ) ⊂ Cr. Thus, the RGA can initialize the reference

state only inprojr(X
x,r
0 ). However, after initialization, the RGA

can select anyγ ∈ Cγ(r) and feasibility is preserved according to
Theorem 2, becauseprojr(X

x,r
0 ) will be RCI for (6) for γ ∈ Cγ(r)

as discussed in Remark 2.

Remark 5: Practical examples of stage costq(·) are q(·) =
(yk|t − yr

k|t)
′Qy(yk|t − yr

k|t) + u′
k|tQuuk|t, or q(·) = (yk|t −

yr
k|t)

′Qy(yk|t, y
r
k|t) + (uk|t − ur

k|t)
′Qu(uk|t − ur

k|t), whereQy, Qu

are positive definite matrices, andur
k|t = Mr

uy
r
k|t is the steady

state input associated toyr
k|t by the inverse dc-gain matrixMr

u .
The satisfaction of (5), (9) is guaranteed by the RCI set, andhence
any stage costq(·) encoding additional control objectives, such as
energy minimization and smooth motion, can be used. A nonnegative
terminal costqf (y, yr, x) can also be included in (17).

V. CASE STUDIES

Next we describe a numerical and an application case study.
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A. Underdamped2nd order system with2nd order reference model

We consider the second order system

ẋ(t) =

[

−2 −2
2 0

]

x(t) +

[

4
0

]

u(t) (19a)

y(t) =
[

0 5
]

x(t), (19b)

subject to constraints−0.1 ≤ u(t) ≤ 0.1, −
[

0.04 0.025
]′
≤ x(t) ≤

[

0.04 0.025
]

. We sample (19) with periodTs = 0.1s to obtain (4).
The reference model (6) is obtained by sampling withTs = 0.1s

ṙ(t) =

[

−4 −6.25
4 0

]

r(t) +

[

2
0

]

γ(t) (20a)

yr(t) =
[

0 3.125
]

r(t), (20b)

whereγ ∈ Γ = {γ ∈ R : γ− ≤ γ ≤ γ+}, γ+ = −γ− = 0.06. For
ǫ = 0.04, we compute the RCI setCx,r and the corresponding input
admissible setCu((x, r)) using Algorithm 2, which converges after
12 iterations, and we design the MPC tracking controller (17),(18)
with k̄ = 0, q(yk|t, y

r
k|t, xk|t), uk|t) = u2

k|t andN = 3.
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(a) Reference output (blue, thin), system output (black, thick) and
tracking bounds (red, dash). Top: entire simulation. Bottom: initial part.
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Fig. 1. Second order system in closed-loop with the proposedcontroller,
tracking a reference generated by a second order model.

Figure 1 depicts the closed loop system behavior when the initial
state isx0 = [0.04 0.003]′ for a reference profile which satisfies
Assumption 1. Figure 1(a) shows that a non-trivial trajectory is
obtained due to the conflicting objectives of minimizing input energy
and enforcing the tracking error bound. As shown in Figure 1(b),
the control algorithm enforces the state and input constraints and
maintains the tracking error within the desired bound.

B. Control of a dual-stage dual-axis processing machine

We consider a dual-stage dual-axis processing machine, where a
servo system actuates the main (slow) stage, while a much faster stage
with limited operating range provides rapid and precise positioning
of the work tool, see, e.g., [1]. The machine has to move the work
tool along a given 2D target trajectory, where, due to the mechanical
configuration, the tool position is the sum of the positions of the slow
and fast stage, and the two axes are mechanically decoupled.Since
the two stages have significant time scale separation (e.g.,3 orders of
magnitude), we design a controller for the slow stage trajectory while
assuming the fast stage to be infinitely fast. Thus, the controller has
to maintain the difference between the slow stage trajectory and the
target trajectory within the range of the fast stage, while enforcing
the operating constraints and possibly minimizing the torque of the
slow stage to minimize energy consumption and induced vibrations.

The dynamics of the main stage for each axisi ∈ {x,y} are

ẋi(t) =

[

0 1
0 ai

]

xi(t) +

[

0
bi

]

ui(t), (21a)

yi(t) =
[

1 0
]

xi(t), (21b)

where, [xi]1[m] is the position,[xi]2[m/s] is the velocity,ui[Nm]
is the input torque,i ∈ {x,y} is the axis index, and(ax, bx) =
(−1.08, 0.34), (ay, by) = (−2.29, 0.73). Systems (21) are subject
to −ūi ≤ ui(t) ≤ ūi, −

[

1 0.8
]′
≤ xi(t) ≤

[

1 0.8
]′

, i ∈ {x,y},
whereūx = 35Nm andūy = 17.5Nm. The discrete time model (4)
is obtained by sampling (21) with periodTs = 0.04s, while the
reference signal is obtained from an RGA that converts a 2D work
path into a reference trajectory satisfyingγt ∈ Cγ(rt) for (6), (7),
with Ar = 1, Br = 1, Cr = 1 andDr = 0, Γ = {γ ∈ R : γ− ≤
γ ≤ γ+}, γ+ = −γ− = 0.033. The tracking error bound is the
range of the fast actuator,ǫ = 0.09. We compute theCx,r using
Algorithm 2, which converged after8 iterations, for both axes2.

We designed the MPC tracking controller (17), (18) with
q(yk|t, y

r
k|t, xk|t), uk|t) = u2

k|t, N = 10 (i.e., 0.4s), and k̄ = N .
Thus, there is perfect preview along the entire prediction horizon and
the RCI set guarantees persistent feasibility when the horizon recedes
from step to step. Figure 2 shows that despite the “rich” time-varying
nature of the reference signal, the tracking error is withinthe desired
bound at every time step, and the input and state constraintsare
always satisfied, for both axes.

VI. CONCLUSIONS

We have proposed a tracking controller for constrained linear
systems that guarantee satisfaction of system constraintsand a given
error bound on the tracking error, for all the reference trajectories
generated by a constrained linear system driven by a boundedinput.
The control design is based on MPC enforcing a polyhedral RCIset
computed by a specific algorithm, which guarantees the persistent
feasibility of the optimal control problem, and hence the satisfaction
of the system constraints and of the tracking bound. Future research
will focus on design trade-offs such as the volume of the RCI set as
function of the error bound and the reference model input range.

2In the case studies Algorithm 1 by [21] did not converge in24 hours.
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Fig. 2. Simulations of the dual-stage dual-axis processingmachine.
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