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Abstract
We propose a control design for a constrained linear system to track reference signals within
a given bounded error. The admissible reference signals are generated as output trajectories
of a reference generator, which is a linear system driven by unknown bounded inputs. The
controller has to track the reference signals and to never violate a given tracking error bound,
while satisfying state and input constraints, for any admissible reference. The design is
based on a model predictive controller (MPC) enforcing a polyhedral robust control invariant
set defined by the system and reference generator models and constraints. We describe an
algorithm to compute the robust control invariant set and how to design the tracking MPC
law that guarantees satisfaction of the tracking error bound and of the system constraints,
and achieves persistent feasibility. We demonstrate the proposed method in two case studies.
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Reference Tracking with Guaranteed Error Bound for ComsthLinear Systems

Stefano Di Cairano,

Abstract—We propose a control design for a constrained linear system
to track reference signals within a given bounded error. Theadmissible
reference signals are generated as output trajectories of aeference
generator, which is a linear system driven by unknown bounde inputs.
The controller has to track the reference signals and to neveviolate a
given tracking error bound, while satisfying state and inpu constraints,
for any admissible reference. The design is based on a modeteglictive
controller (MPC) enforcing a polyhedral robust control invariant set
defined by the system and reference generator models and cdrants.
We describe an algorithm to compute the robust control invaiant set
and how to design the tracking MPC law that guarantees satisfction
of the tracking error bound and of the system constraints, aal achieves
persistent feasibility. We demonstrate the proposed methbin two case
studies.

I. INTRODUCTION

Several control applications require a manipulated véitdtrack
a time-varying reference signal with complicated behawigthin
given error bounds. For instance, in dual-stage processaujines in
manufacturing [1], a slow stage with large workspace (akdted op-
erating range) moves a stage with much faster dynamics emtbdi
workspace that actuates the work tool. Thus, the tool wasis the
sum of the stages’ workspace. Because of the timescaleasigpaof
the stages (often few orders of magnitude), to ensure ta@diory
tracking it is enough to control the slow stage so that ittadice from
the tool position reference is always within the operatiagge of the
fast stage. The automotive and aerospace industries areielisof
applications. The engine torque in spark-ignition engiisesbtained
by controlling airflow and spark timing [2]. Due to the limitéorque
generated from spark timing, the airflow-generated torquestnbe
controlled in a bounded range around the requested torgueybrid
electric vehicles the combustion engine power needs to beatted
so that the difference with the driver-requested power eadhieved
by electric power [3]. Vehicle cornering control and attiéucontrol
with redundant actuators [4], [5] are also potential agtlans.

The design of reference tracking controllers enforcingutnand
state constraints has mainly followed two approaches. ]a[18]
reference tracking model predictive control (MPC) was pssa,
usually focused on guaranteeiragymptoticoffset-free control for
references within a specific class of signals when the cainssr
are inactive. Commonly, the class of reference signalsistnsf
the outputs of arautonomoudinear system. Instead, in [13], [14] a
reference governor (RG) is used. RG modifies the referensedban
the system state to generate a virtual reference, so thalabed-loop
system satisfies state constraints. RG achieves finiteetimeergence
of the virtual reference to a constant feasible referennd, leence
asymptoticoffset-free output tracking of constant feasible refeesnc

In this paper we design a reference tracking controller shtisfies
state and input constraints and guarantees a given boungaking
error during bothsteady-state and transienvithout modifying the
reference signal. We consider a class of reference signhlshw

is more general than the outputs of a linear autonomous rayste

The reference signal is the output of a “reference genératdrich
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is a constrained linear systedriven by unknown bounded inputs
The simplest class of references that can be modeled wigh thi
approach [15, p. 159] is a bounded signal with bounded first
derivative. Clearly, the class of references that can belymed is
significantly richer than those produced by an autonomonsali
system. Since the reference signal cannot be modified, theali
setpoint-augmented MPC in [11], [16], which optimizes taterence
jointly with the control commands, and the method in [17],iath
modifies the reference to keep the state trajectories in aifiguk
region, are not applicable. The case of non-modifiable eefees is
motivated by practical applications, such as in [1], [2],en the
reference is generated by complex algorithms that have tisfysa
requirements in multiple domains. There, the admissibfereace
manipulations are not described by simple functions andcéen
integrating reference manipulation with tracking contisl not a
viable option for implementation. Rather, the referencgesaerated
offline or by supervisory algorithms to satisfy the spectfimas and

to belong to a class of signals, and the control algorithmidsde
guarantee that any reference within such class of signaisbea
tracked within the desired error bound.

The control design proposed here is based on computing efflin
a robust control invariant (RCI) set of plant and referenetes for
which there exists a control law that guarantees satisfaaif the
constraints and of the bound on the tracking error at all $imred for
all admissible references. Such RCI is then enforced by MRS,
the contributions of the papers arg) an algorithm for computing
a polyhedral RCI set for the bounded tracking problem, @mg an
MPC design that uses such RCI set to guarantee that the ricacki
error bound and the system constraints are persistentifisedt

The papet is organized as follows. In Section Il we review
preliminary results and formalize the problem. In Sectidnwe
describe the algorithm to compute the RCI set for boundezkitng,
which is used in Section IV to design the MPC controller for
bounded tracking. In Section V we present case studiesataligl
the approach, and in Section VI we summarize our conclusions

Notation: R, Ro4+, Ry and Z, Zo4+, Z4 are the sets of real,
nonnegative real, positive real, and integer, nonnegaiiteger,
positive integer numbers. By]; we denote thé-th component ofs,
fora € R", b € R™, (a,b) = [’ b']’ € R"*™ is the stacked vector,
andI andO are the identity and the zero matrices of appropriate size.
By ||-|| we denote theo-norm (or1-norm), and5(p) wherep € R
denotes thexo-norm (or 1-norm) ball of appropriate dimension of
radiusp. For setsA, D, proj,(A) denotes the projection ofl onto
the subspace that contains the veaigorA @ D is the Minkowski
(set) sum. For a discrete-time signale R"™ with sampling period
Ts, x¢ is the value at sampling instanti.e., at timeTst, andxy
denotes the predicted value ofat samplet + k, i.e., x;1x, based
on data at sample, wherexg, = .

II. PRELIMINARIES AND PROBLEM DEFINITION

First we review results on invariant sets, see [19], [20]details.
Then, we formalize the problem tackled in this paper.

Ipreliminary results were presented in [18].



A. Preliminaries on Invariant Sets We assume that the input to (6) is selected bgfarence generator

Consider the system algorithm (RGA). At every time instant € Zo+, RGA computes
~v¢ € T’ based orr; € R such thatr,11 € R. Thus,r; € C" where
Tey1 = f(xe, ue, we), (1) ¢ is a Cl set for (6), (7), and RGA chooses such thatr, € C".
wherez € R", w € R™ andw € R? are the state, input and By the definitions in Section II-AC" for (6), (7) is such that
disturbance vectors, respectively, subject to the coinssra r €C' = I el ryp €C, Vit € Zog, (8)
2 €X, us €U, we €W, Vt € Zoy. (2 andcC”(r) is the input admissible set associatedCfoin (8). The

properties of the RGA are summarized in the following asdionp

Assumption 1At every t € Zo4, givenr, € C", whereC" is a
known CI set of (6), (7), the RGA enforcesi1 € C" C R by
selectingy; € C7(r;) C T, O

If (6) is an integrator 4" =1, B" =1, C" = 1), thenC"™* =
R, C'(r) = {y € T |r 4+~ € R}. In general, the bounds on
e €C= Jus €U : f(xe,ur,wr) CC, Ywe €W, Vt € Zoy. induce state-dependent bounds -anFor instance, when at/close to
the border ofC", not all the values ifi* are admissible fory.

The RGA is separated from the controller and, as opposedeto th
approach in [11], [16], [17], its output cannot be modified tne
Pre(S,W) 2 {z€R" : Jucl (3) controller. Also, as opposed to the reference governor, [13], the

Flz,u,w) €S, Yw € W) RGA does not guarantees the enforcement of system constraime
P = ’ RGA only guarantees that the reference signal will satigfy The
which computes the set of states of (1) that can be robusiherr tracking control design proposed in this paper does notrikpa a

A robust control invariant set i’ is a set of states for which there
exists a control law such that (1) never violates (2) for aaguence
of disturbances such that; € W for all t € Zo+.

Definition 1 (Robust control invariant set setC C X is said to
be a robust control invariant (RCI) set for (1), (2) if

The maximalRCI setC> contains all other RCI sets iA’. O
The computation of RCI sets relies on tRee-set operator

to the target ses € R"™ in one step. specific RGA, but only requires Assumption 1 to be satisfied.
The procedure to compute the maximal RCI set for (1) subject The problem we address in this paper is formalized as follows
to (2) based on (3) is summarized by the following algorithm. Problem 1:Consider system (4) subject to (5), reference model (6)
Algorithm 1 (Computation of *°): subject to (7), and a given tracking error bound R,. Let RY =
1) Qo « X [7o1¢5---»Tnpe) s N € Zo+ be a predicted reference profile satisfying
2) Quy1 — Pre(Q, W) N Q% Assumption 1. Design a control law = x(z:, R}’ ) and a sett, C
3) If Q1 =Q, C®+« Q, return R™ x R™" of initial states and referencéso, o) € Xy from which
4) k+ k+1,goto 2. (4) in closed-loop withs(z¢, RY") satisfies (5) and
Algorithm 1 generates the sequence of séf¥,}., satisfying lye —vi]l < e, (9)
Qrr1 C Qp, for all k& € Zo+. In general, Algorithm 1 may not . .
terminate. If the algorithm terminates in a finite numbertefations 0F @ll 7+ € R that satisfy Assumption 1, at evetye Zo-. =

k*, Q- is the maximal RCI sef™ for (1) subject to (2). If for some Remark 1:Problem 1 considers predicted future reference profiles
%, Q; = 0, no RCI set exists. See [19] for details on the terminatiofif 1eNIth N € Zo. However, it is not guaranteed that such reference

of Algorithm 1. preview isreliable. That is, the reference predictédteps ahead from
Definition 2 (Input admissible set 6): Given a RCI se€ for (1), 1Mme? may notbe the actual reference at titmek, i.e.,7e+r # k-
(2), the input admissible set far € C is Thus, a solution to Problem 1 needs to allow for the refer@neeiew

to change unexpectedly during operation.
C'(z)={uel: f(z,u,w) €C, YVw € W},

whereC(z) £ 0 if z € C, andC*(z) = 0 if = ¢ C [11. RCI SET FORBOUNDED ERRORTRACKING
Definition 3: When W = {0}, i.e., (1) is not subject to distur- Congider (4) subject to (5), and (6) subject to (7). By ASM1
bances( in Definition 1 is called control invariant (Cl) set. re € C", for everyt € Zoy, and givenr, € C", ry1 € C" if and

only if v € C7(r). We define

B. Problem definition X7 = {(z,r):x € X, r€C",(Cx—C"r) € B(e)}. (10)
Consider the discrete-time linear system ) ) o
At any timet € Zoy, given (x¢,1¢) € Xp C X*", the control law

zi41 = Az + Bug 4) that solves Problem 1 must guaranteg,r:+1) € X*" for every
vy = Cuxy, admissibler, 1. Thus, we look for a RCI sef®" C X*" for (4),
wherez € R", u € R™ andy € R” are the state, input and output(6) subject to (5), (7) such that
vectors, respectively. System (4) is subject to the comgsra (z,7) €C™ = Juecll:
2 €EX, ug €U, VYt € Loy . (5) (Az + Bu,A"r + B"y) € C™", Vy € C7(r). (11)

We want (4) to track within a given error bound the time-vagyi The maximal RCI set for (11) by Algorithm 1 requires compgtin
reference signal; generated by the reference model .
. . Pre(Q%,C7(r)) = {(z,r): 7€ C", uell,
”Zi - ér”: + B 6) (Az + Bu, A'r + B'y) € i, V7 €C7(r)},  (12)
t - ty

_ x,r x,r H
wherer € R"", v € R™" andy” € R? are the reference model state)’vhere o = X*" and @ C X*". The computation of (12)

. . 5 o
input, and output vectors, respectively, subject to thestamts is_challenging even €2, C7(r), X. and ¢/ are polyhedral,
becausey € C7(r), i.e., the unknown disturbance belongs to a state-

rn€R, el (7) dependent set. The algorithm in [21], [22] computes (12) asian



of polyhedra, which is in general non-convex and whose cerity| Consider now thé>re; operation in (14), and rewrite it as

in terms of convex elements in the union, grows exponentialth _ -

the number of iterations. Next, we propose a method to coenput Pres(Qx, I) = {(z,r) : r€C ’ Fu el (15)

a polyhedral C*". The resultingC®" is a subset of the maximal (Az + Bu,A'r + B"y) € Q" ,Vy €T}

RCI obtained from [21], [22], but is convex and polyhedraidahus

significantly easier to compute and use in a control algarith
Algorithm 2 (Computation of“"):

where the order of projection and intersection can be iedeoecause
the set(R™ x C") is independent of the projection variakie With
considerations similar to the ones for (12), and sifige= (R™ x

1) Initialization: C")yN Q" and we already impose € C”, which is ClI,
k=0, _ . . X
Pres(Q,T) = {(z,7) : 34" €C7(r), Arr+ By €C",
Qo= R" xC")N{(z,7): (7)€"} (13) JueU, (Ax+ Bu,A"r + B"y) € Qx,Vy €T}, (16)
whereQS" = {(z,r): € X,(Cxz —C"r) € B(e)} By (16) we can compar®re; in (14) andPre in (12) and obtain
2) Qus1 = Pres(Q, 1) N QY™ where Pre($2,C7 (1)) 2 Preg (€2, '), sincel’ © C7(r) for all r € C" and
_ . e Qr C Qf by the assumption of the induction step. Th&,” C C%".
Pres (€, I') = (R" x C") N Q) (14)  Since the disturbance sét (r) is state depender .+ is usually
Q;gfl ={(z,7): Jucl, nonconvex [21]. Instead, by the assumption of the inducttep
(Az + Bu, A"r + B') € Q0" Wy € T}, @E: is polyhedral and sinc€ is polyhedral and’" are polyhedral,'
- i em ./, andQ are polyhedral, because all the performed operations
Qf = Y Ny when acting on polyhedra, return polyhedra [19]. |

3)if Opir = Qp, then C™" « Qu, return From Theorem_ 1, if Algorithm ZZtTermlnates at Stéﬁn and
& ke kt1 oto 2 Qi+ # 0, we obtain a polyhedral RQI™" = Qi+ = {x € R",r €
9 _ R" : Hp«[z' 7']" < Ki«} and the associated input admissible
Algorithm 2 may terminate with an empty set, wheredf = 0,  setc*((z,r)) = {u € R™ : [/ ' u] € P;gf’r’u)} = {u ¢
Qry1 = Qi and hence the termination condition at Stejis met. pm . HYW ) + J®u < K™} is also polyhedral. The
This indicates that a (non-maximal) RCI set could not be €ouiso,  computationally expensive step of Algorithm 2 is the evtibra of
Algorithm 1 may never terminate because the RCI set may not Pg.e . which requires the “robustification” of the tracking cawdtts
finitely determined [19], [20]. In practice, a maximum numi yith respect toy € T, i.e., the computation of the worst case value
iterationskmax is used after which the termination of Algorithm 1 is¢ ~ € T for the enforcement of the tracking constraints, and the
enforced withC™" = . Thus, if Algorithm 1 terminates with*" = projection to eliminateu. The latter tends to be computationally
0, a polyhedral RCI set is not found, either because no potgtiedeyxpensive due to the projection algorithm. The former nemuihe
RCI set exists, or because no polyhedral RCI could be foutldivi ¢ tion of linear programs, and hence is computationahigap.

the iteration limit. In these cases the problem specifioatimust be Algorithm 2 can be straightforwardly extended to the caskere (4)

changed by shrinking’, and/or increasingmax- _ is subject to additive disturbances € VW C R™ by enforcing the
Theorem 11et Assumption 1 hold, and let Algorithm 2 convergeconstraints in(2; 7, for all w € W, which again can be achieved by

in a finite number of iterations t6*" # §. Then,C*" computed by solving linear programs wheW is a polytope [19].

Algorithm 2 is a polyhedral RCI set for (4), (6) subject to,(%J), Remark 2: Algorithm 2 may converge toC®" such that

(9) and robust to any” € C?(r) andC®" C C&". proj,.(C*™) C C". In this case, it follows trivially from (14) that
Proof: Consider Algorithm 1 and its set sequerdéey, Q4, ...} proj,.(C*") is RCI for (6) for ally € ' D C7(r), ie., for

computed by (12) with2o = A", and Algorithm 2 and its set || inputs selected by RGA according to Assumption 1. Thiis, i

sequenceQo, 21, ...}. ThePrein (12) can be rewritten as ¢ € proj . (C®"), ritr € proj, . (C*") for all + € Zo, for any input
sequence selected by the RGA. Henemyj,.(C*") is the (invariant)

Pre(Q,C7(r)) = {(z,7): Iy €C(r), A'r+B"y" €Cr set of initial reference states from which any trajectoryiséging
Jueld, (Ar+ Bu, A"r + B"v) € Qi,Vy € C7(r)}, Assumption 1 is properly tracked. In fact, by (14),(if,r) € C*",

there existay € U such(Axz + Bu, A™r + B"y) € C*", and hence

since{r € C" : 34" € C7(r), A'r+ B"y" € C"} =C" by the Ar 4 By ¢ proj, (C*7), for all y € T D C(r).
definition of Cl set, and sinc€”(r) =0 if r¢C". Remark 3:The differences of Algorithm 2 with Algorithm 1 are

We prove the theorem by induction, starting frd = Q0 =  as follows. First, by Assumption 1, the reference state istained
X7, whereQy is polyhedral. Assume that at stdp Qx C Qx,  within " from the beginning. Pre-computing” reduces the com-
Qe = (R" x C") N Q" and Q" is polyhedral, and consider pytational burden because the sets for reference stateiauts do
Algorithm 2. Indeed, the assumptions hold for= 0. B not change with the iterations. Second, Algorithm 2 roffiestiwith

First, Qi1 = Prep (i, 1) N Q" = (R" xC")NQ, NQ" = respect tol' instead ofC” (r), thus removing the dependency of
(R™ x C") N Qy7, since Q7] N Qp" = Q7)) from Step2 in  from the reference state. Third, in Algorithm 2 the set duieed
Algorithm 2. Also, Q.11 = Pres(Q,T) N Q" = (R" x C") N by the enforcement of the state and tracking constraints tiaa set
Qi NQET N (R™ x C) = Prey (%, T') N Qx, by the intersection determined by the admissible reference states are keptase@aThis
being idempotent, by the definition &fre; in (14), and byQ;"" N allows the more conservative robustification to affect dhlytracking
(R™ x C") = Q4 being an assumption of the inductive step. constraints. In fact, whiled"r + B"y € C", for all v € C"(r), the

Thus, the backward iteration in Algorithm 2 is in the form ofsame is not true ify € I'. If we substituteC” (r) with T" in (12),
that in Algorithm 1, the formula is recursive under the intilke the set of admissible reference states may shrink and eveomae
step assumption, which is satisfied for= 0. Hence, Ste@® in empty, causing®" to be empty. For instance, when (6), (7) model
Algorithm 2 can be executed iteratively, and Stejis a geometric a constrained integrator, substitutigy (r) with I" in (12) causes
condition for invariance, which, if satisfied, indicatestlan RCl set C*" = () because from any initial reference state, the reference
is found. constraints can eventually be violated. Instead, in Albaomi 2 the



set of admissible reference states remapsnd the effect of using Proof: SinceC™" C X*" andC"((x,r)) # 0 iff (z,r) € C*,
T' rather thanC.(v) results in requiring (9) to be enforced forany feasible solution of (17) ensures that the closed-latisfes (5),
r € (C" @ T), rather than forr € C". Thus, by neglecting that (9). Next, we prove the persistent feasibility of (17), ,igven the
close to the boundary af” not all v € T" can occur, we introduce optimal solutionU;" = [ug‘t’ . ..u}“\,,l‘t’]’ at timet € Zoy4 for z;
conservativeness in the RCI set. However, such conditiarstiibe and R}, we show that at+1 there exists a feasible solutidf 11 =

satisfied, and the obtained RCI is a polyhedron, and hencgleim [af, ... 4y, ,]. Consider firsk > 1. Fork =1,...,k—1, let
to compute and use in a control law than a union of polyhedfa. U141 = UZ\t_' By the feasibility ofU; and sincer,_1/,41 = e
Based on Remark 3, the following proposition is immediate. for k = 1,...,k, this ensures satisfaction of the constraints for the

Proposition 1:Let C*" be the RCI set obtained by Algorithm 2, first k steps, and by applyingy —1j¢+1 = uy, fork=1,..., k-1
and letC” C C" C R be a RCI set for (6) such thef'(r) = I' forall  we obtainzz_, ;1 = =5),. Hence, by the feasibility of/;" and since
r € C". Then, for the maximal RCI séty;" obtained by Algorithm 1 C*((z,r)) # 0 iff (z,7) € C™", (Tf_1js41,Tk—1¢+1) € C*". Since
using (12) where” andC” (r) are used in place @” andC”(r) it C™" is RCI, there existsi;_y ;1 € C*" (Tf_1js41, Tf—1)¢+1) SUCh
holdsCZ™ C C™". Also, if C"(r) =T forall r € C", C™" =CX".  that (xgjs41,Tgje41) € C7, for every admissible,, , because
C®" is RCI for everyy € T" and Assumption 1 guarantees that
IV. MPC wiTH GUARANTEED TRACKING ERRORBOUND Vi-1jt+1 € C7(r5_1).41) € I'. The same argument can be repeated
) o for constructingtiy,s41, for k = k,..., N — 1, thus obtainingU; ;1.
The RCI setC™" is a set of states and references satisfying the - . . I .
. . . ) For the casé = 0, i.e., the entire reference preview is unreliable,
constraints and for which there exists at least an inputtthaks any . S . «
(17h) is the only constraint in (17). Sineg = ug,, (T1jt,711t) €

future admissible reference signal within the allowed etvound 3, . :
: . o - c®" for every vop € I' D CV(ro). By Assumption 1,7: €
and enforces constraints. Givgm,r) € C*" C X x C", the set of o “
. zor .. . C (7”75) cr and hence{xtﬂ, 7‘,5+1) € C*" andC (l’t+1, 7‘,5+1) 75 0.
inputs that guarante€s:;1,r:+1) € C*" for any admissibler.; is S g o
. - I Thus, there existsig .y for which (zq)441,71e41) € C™7 for
the input admissible set*((x¢,r:)). Next, we propose an approach ;
N v eVery o1 € I' O C7(rgp41). Since the RGA computesy; 1,
based on MPC for computing: € U such that(z:y1,7:41) € C®7. : . .
ALt € Zoy, letz, € X and RY = [r! /.1, the reference k =0,...,N according to Assumption 1 and" is RCI for any
A ¢ Toje> e TN e s v € T' 2 C7(r), the reasoning can be repeated to constfiigt;

herelk 1o gunerated by RGA according to Assumption 1 ket SN ki € Clecras i), and hencdi s feasibie
Zo+, k < N, be such that,, = T4k, and hencey qji41 = s In Theorem 2 it is not necessary tha{ ;-1 = 7y for k: =
for k=1,...,k for all t € Zo., i.e., k is the number of steps of ¥+ 1,--., N, as long asyy;+1 € C”(rgje4+1). Howeverk > 0, i.e.,
reliable preview. Consider the finite horizon optimal cohproblem, Some steps of reliable preview in (17), may increase therolert

performance. Sinc€“(z,r) # 0 iff (z,r) € C>" C X*" and

C*(z,r) C U, a largerk, i.e., a larger number of reference steps

gu(ze, RY) = (17a) fixed in advance, will usually provide a larger feasible swt(fL7) .
] N-1 i Remark 4:The results of Theorem 2 also hold for a controller
arg n}}tn Z Q(Yrits Ykl Trfe, Unlt) (17b) selecting a feasible, yet non-optimal, solution of (17). O

F=0 The next corollary follows immediately from Theorem 2 and

St Trpue = ATy + Bugy, 170) o mmarizes the proposed method as a solution for Problem 1.
y’ﬁ‘f - C‘?k‘t’ (17d) Corollary 1: Under the assumptions of Theorem®, = C*" and
Ykt = C Tt (17€)  k(z, R™) = gruc(x, R™) solve Problem 1. i
(Tpje, Thpe) € X7, E=0,..., k=1, (17) In Corollary 1, X, = C®", i.e., an RCI, guarantees initial
upe €U, k= 0,....,k—1, (17g) feasibility, and recursive feasibility follows from Theon 2. For

wnge € C(@nsrage)s k= Fyoo N — 1, (17h) n(:c7_RN) = gruc(e, R™), ¢®" may not be the largest set for
.. solving Problem 1, i.e., there may exidf, D C*" that solves
Toje = Lt a7 Problem 1, howeveC®" is polyhedral. Also, it may happen that
whereU; = [ufy, ... uly_y,), q(-) is a nonnegative stage cost, withProj,(¥y™") C C. Thus, the RGA can inifialize the reference
a little abuse of notation (17f), (17g) are ignoredkif= 0, and let State only inproj, (XG""). However, after initialization, the RGA
Ui = [ug, ... ux_y,') be the optimal solution of (17). The first €an select anyy € C?(r) and feasibility is preserved according to

element ofU; is applied to (4), hence obtaining the control law ~ Theorem 2, becauseroj, (X;"") will be RCI for (6) fory € C7(r)
as discussed in Remark 2.

N N
ur = gruc(ze, Ry ) = [I 0---Olgu (e, R'). (18) Remark 5:Practical examples of stage cosgt-) are q(-) =

T / T / _
At time t + 1, (17) is solved based on the new statg. 1 = z:11, (Yrlt — Yr|e) Qy(yk\t = Yrje) + W Quukges OF () = (Yrpe —
N g o 210) Qu Ykt Yie) + (wkpe — ulye)' Quugy — upp,), WhereQy, Q
and R; ;. The next theorem presents sufficient conditions guaraﬁk\t y\Iklt> Tk|t |t k|t) ullklt K[t/ Ys wu

teeing persistent feasibility of the MPC control law (178). are positive definite matrices, and,|, = My, is the steady
ate input associated tg, by the inverse dc-gain matrin/,.

Theorem 2:Consider system (4) and reference model (6) subjeﬁ_I ! . t |
to (5), (7) and tracking constraint (9). Let Assumption 1dhale., e satisfaction of (5), (9) is guaranteed by the RCI set, e
®). (1) g © P % any stage cosg(-) encoding additional control objectives, such as

v € C(ry) for all t € Zoy. Let C*" C X™" be a RCI set and A q h ; b 4 A ;
C*((x,r)) be the associated input admissible set for (4), (5), (6 nergy minimization and smoot motllon, can be used. naatney
erminal costgs(y,y", z) can also be included in (17).

(7), (9), robust to anyy € C7(r) C I. Let k € Zo;+ be given
such thatk < N andry_qj,41 = rp for k = 1,...,k for all
t € Zos, RY be generated by RGA according to Assumption 1, and

us = gruc(ze, RY). If (17) is feasible at timet € Zoy, then it V. CASE STUDIES

is feasible for allt € Zo+, t > t, and the closed-loop satisfies (5)

and (9). Next we describe a numerical and an application case study.



A. Underdampe@®™? order system witl2"¢ order reference model

We consider the second order system

#t) — {‘22 ‘02} (t) + H u(t) (19a)
yt) = [0 5 ]a(), (19b)

subject to constraints 0.1 < u(t) < 0.1, — [0.04 0.025]" < a(t) <
[0.04 0.025]. We sample (19) with period’, = 0.1s to obtain (4).
The reference model (6) is obtained by sampling viith= 0.1s

i = |3 o[ 5 e e
y'(t) = [0 3125 |r(), (20b)

wherey eI'={y€eR: v~ <y<~"}, " = -y~ = 0.06. For

e = 0.04, we compute the RCI s&t”" and the corresponding input
admissible set*((z,r)) using Algorithm 2, which converges after
12 iterations, and we design the MPC tracking controller (1I®)
with & = 0, q(Yk|es Yrpe Thie)s Ukje) = “i\t and N = 3.
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(b) System states and input (black), and constraints (rash)d

Fig. 1. Second order system in closed-loop with the propasedroller,
tracking a reference generated by a second order model.

Figure 1 depicts the closed loop system behavior when thialini
state iszo = [0.04 0.003])" for a reference profile which satisfies
Assumption 1. Figure 1(a) shows that a non-trivial trajectes
obtained due to the conflicting objectives of minimizingubgnergy
and enforcing the tracking error bound. As shown in Figure),1(
the control algorithm enforces the state and input comggaand
maintains the tracking error within the desired bound.

B. Control of a dual-stage dual-axis processing machine

We consider a dual-stage dual-axis processing machinerewde
servo system actuates the main (slow) stage, while a mutdr fstage
with limited operating range provides rapid and preciseitjprsng
of the work tool, see, e.g., [1]. The machine has to move thekwo
tool along a given 2D target trajectory, where, due to thehasical
configuration, the tool position is the sum of the positiohthe slow
and fast stage, and the two axes are mechanically decoupiece
the two stages have significant time scale separation geayders of
magnitude), we design a controller for the slow stage ttajgavhile
assuming the fast stage to be infinitely fast. Thus, the obetrhas
to maintain the difference between the slow stage trajgaod the
target trajectory within the range of the fast stage, whitéoreing
the operating constraints and possibly minimizing the uergf the
slow stage to minimize energy consumption and induced tidrs.

The dynamics of the main stage for each axis {x,y} are

w(t) = { 0 }xi(t)—t- [ b ]ui(t), (21a)
yit) = [ 1 0 Jau(t), (21b)

where, [z;]:1[m] is the position,[x;]2[m/s] is the velocity,u;[Nm]
is the input torque; € {x,y} is the axis index, andax, bx)
(—1.08,0.34), (ay,by) = (—2.29,0.73). Systems (21) are subject
to —a; < wit) < @, —[10.8]) <ai(t) < [108], i€ {xy},
whereax, = 35Nm anday = 17.5Nm. The discrete time model (4)
is obtained by sampling (21) with peridfl, = 0.04s, while the
reference signal is obtained from an RGA that converts a 2Ekwo
path into a reference trajectory satisfying € C”(r.) for (6), (7),
with A" =1,B"=1,C"=1andD"=0,T={y€eR: v~ <
v <~} 4T = —y~ = 0.033. The tracking error bound is the
range of the fast actuatot, = 0.09. We compute theC™" using
Algorithm 2, which converged aftes iterations, for both axés

We designed the MPC tracking controller (17), (18) with
Q(Yk|ts Yiojes Thjt)s Urje) = Uiy N = 10 (i.e., 0.4s), andk = N.
Thus, there is perfect preview along the entire predictiorizon and
the RCI set guarantees persistent feasibility when theboniecedes
from step to step. Figure 2 shows that despite the “rich” {irag/ing
nature of the reference signal, the tracking error is withi desired
bound at every time step, and the input and state constranets
always satisfied, for both axes.

VI. CONCLUSIONS

We have proposed a tracking controller for constrainedaline
systems that guarantee satisfaction of system constramtts given
error bound on the tracking error, for all the referenceettgries
generated by a constrained linear system driven by a bouinged
The control design is based on MPC enforcing a polyhedral $&CI
computed by a specific algorithm, which guarantees the giergi
feasibility of the optimal control problem, and hence thés$action
of the system constraints and of the tracking bound. Futsearch
will focus on design trade-offs such as the volume of the R€las
function of the error bound and the reference model inpugean

2|n the case studies Algorithm 1 by [21] did not converge2inhours.
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(b) Velocities v; and torquesr;, i € {x,y}, for x-axis and y-axis
(black), and constraints (red, dash).

Fig. 2. Simulations of the dual-stage dual-axis processiaghine.
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