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On Region-Free Explicit Model Predictive Control

Michal Kvasnica, Bálint Takács, Juraj Holaza, and Stefano Di Cairano

Abstract— We show that explicit MPC solutions admit a
closed-form solution which does not require the storage of
critical regions. Therefore significant amount of memory can
be saved. In fact, not even the construction of such regions
is required. Instead, all possible optimal active sets are first
extensively enumerated. Then, for each optimal , only the
analytical expressions of primal and dual variables are stored.
Optimality of a particular if checked by verifying primal and
dual feasibility conditions, which are unique for all candidate
sets. We show that the required memory storage can be further
reduced by only storing the factors for the dual variables.

I. INTRODUCTION

Explicit model predictive control (MPC) [2] has garnered a

significant attention in the community for three reasons. First,

it allows to implement MPC in a division-free fashion using

only additions and multiplications, hence simplifying certi-

fication for mission-critical applications. Second, it provides

an exact worst-case implementation analysis thus allowing to

fulfil rigorous real-time guarantees by an appropriate choice

of the implementation hardware. Third, since explicit MPC

synthesizes an explicit representation of the feedback law

for all feasible initial conditions, it allows to rigorously

analyze the closed-loop system, e.g., with respect to Lya-

punov stability or liveness analysis. These three advantages

are achieved by solving a given MPC optimization problem

using parametric programming, which results in a piecewise

affine (PWA) feedback law defined over polyhedral critical

regions.

However, the construction of such regions (which happens

off-line) and the memory required to store them for on-

line implementation are the main limitations of explicit

MPC. In the off-line phase, traditional geometric approaches

(e.g., [2, 1]) enumerate the regions by performing numeri-

cally sensitive geometric operations, which scale badly with

the increasing of the dimensionality of the parametric space.

Therefore, from a practical point of view, they are limited to

systems with a small number of states. Even if the regions

could be constructed, they usually occupy an impractically

large amount of memory of the control platform. This is

due to two facts. First, the number of critical regions grows

exponentially with the number of constraints (i.e., with the

prediction horizon and the number of inputs and states).

Second, each critical region is stored as a set of half-spaces,

which are obtained as affine transformation of constraints of

the original MPC problem.
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To attack the memory issue, in this note we revisit the idea

of [4] and show that explicit MPC solutions in fact require

neither the construction, nor the storage of critical regions.

Instead, only a (partial) factorization of the Karush-Kuhn-

Tucker system for all possible s is retained. Optimality of

a particular for a given value of the parameter is checked

by verifying primal and dual feasibility conditions, which

are unique for all s. We refer to this approach as region-

free explicit MPC. Although this underlying idea of [4] has

been known for 5 years, its significance with respect to

the reduction of memory storage appears to have slipped

under the radar of the community. Most probably because

its practical significance wasn’t clear until [6] presented a

way how to efficiently enumerate optimal active sets without

creating the critical regions in the first place. Combining the

extensive enumeration of [6] with the region-free approach

of [4] it becomes possible to construct explicit MPC solutions

even for moderately large parametric spaces.

This paper introduces several novel results. First, we

show how to address the main limitation of [4], which

is the lack of a closed-form representation of region-free

explicit MPC. In particular, we show that the explicit MPC

feedback law can be obtained as a PWA function which maps

state measurements onto optimal control inputs and does

not require the storage of critical regions. Thus, we allow

the region-free format to be used for rigorous closed-loop

analysis. Second, we show that by pre-computing fewer data,

we can save about half of the memory required by [4]. Here,

the idea is to only store the factors for the dual variables and

compute the primal ones on-the-fly. The implementation is

still division-free, but the price to be paid is an increased

on-line computation. Finally, we also show how to convert

conventional region-based explicit solutions to the region-

free format and vice versa.

II. EXPLICIT MPC

We consider MPC setups represented by a constrained

finite-time optimal control (CFTOC) problem of the form

min
u0,...,uN−1

ℓN(xN ) +

N−1∑

k=0

ℓ(xk, uk) (1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (1b)

(xk, uk) ∈ Z, k = 0, . . . , N − 1, (1c)

xN ∈ F , (1d)

where xk ∈ R
nx and uk ∈ R

nu represent, respectively,

predictions of the states and inputs at the k-th step of the

prediction window, N is the prediction horizon, ℓN is the



terminal penalty, ℓ(·, ·) is the stage cost, and Z , F are

full-dimensional polyhedral sets of appropriate dimensions.

CFTOC problems (1) are general enough to capture various

setups, e.g., regulation problems, trajectory tracking, slew-

rate penalties and constraints, etc. In this paper, we assume

that the terminal and stage cost functions are strictly convex

quadratic functions, e.g., ℓN = xT
NQNxN and ℓ(xk, uk) =

xT
kQxxk + uT

kQuuk with QN ≻ 0, Qx ≻ 0, Qu ≻ 0 for

the case of regulation. The objective is to solve (4) for

any feasible initial condition x0, i.e., to determine U⋆ =
[u⋆

0
T , . . . , u⋆

N−1
T ]T as a function of the initial conditions. In

the case of regulation problems, the initial condition is just

x0. In tracking problems with trajectory preview, the initial

condition also includes the prediction of the reference to be

tracked. In slew rate setups, it also embodies knowledge of

the control action from the previous time step. Therefore, we

denote the vector of initial conditions of (1) by θ.

Using straightforward algebraic manipulations, prob-

lem (1) can be converted into a parametric quadratic pro-

grams (pQP) of the form

min
z

1/2 UTHU + θTFU (2a)

s.t. GU ≤ w + Eθ, (2b)

where z ∈ R
m is the vector of optimization variables, θ ∈

R
n is the vector of parameters, and H ∈ R

m×m, F ∈ R
n×m,

G ∈ R
p×m, w ∈ R

p, E ∈ R
p×n are problem data. Under the

assumption that ℓN (·) and ℓ(·, ·) in (1a) are strictly convex

quadratic functions, H in (4a) is positive definite.

As shown, e.g., in [3], the parametric solution to (2), i.e.,

the map from the space of parameters to the space of optimal

decision variables, is a piecewise affine (PWA) function of

the form U⋆ = κ(θ) with

κ(θ) = Fiθ + fi if θ ∈ Pi, (3)

where Pi = {θ | Aiθ ≤ bi}, i = 1, . . . , R are polyhedral crit-

ical regions of the parametric space, Ai ∈ R
ci×n, bi ∈ R

ci

are half-space representations of respective critical regions,

R denotes the total number of regions, and Fi ∈ R
m×n, fi ∈

R
m are parameters of locally affine expressions. Moreover,

the critical regions satisfy int(Pi)∩int(Pj) = ∅ for all i 6= j,

and
⋃

i Pi = Ω with Ω = {θ | ∃U s.t. GU ≤ w+Sθ} being

the feasible set of (2). Finally, the function (3) is continuous,

i.e., Fiθ + fi = Fjθ + fj for all θ ∈ Pi ∩ Pj for such

combinations of i and j for which the intersection is not

empty.

The reason why parametric programming is of interest is

that once the properties of the map in (3), i.e., critical regions

Pi and local expressions Fi, fi, are available, computing the

optimal value of U⋆ which solves (2) reduces to a mere

evaluation of (3). Moreover, such an evaluation is division-

free, i.e., only additions and multiplications are required.

III. REGION-BASED PARAMETRIC QUADRATIC

PROGRAMMING

The PWA solution in (3) is constructed by investigating all

optimal combinations of constraints that can be active in (2).

To simplify the technical exposition, we first rewrite (2) into

min
z

1/2 zTHz (4a)

s.t. Gz ≤ w + Sθ. (4b)

Note that (4) is equivalent to (2) with z = U+H−1FT θ and

S = E+GH−1FT . Once z⋆ is available, U⋆ in (2) and (3)

is obtained by U⋆ = z⋆ −H−1FT θ. Next, rewrite (4) into

min
z

1/2 zTHz (5a)

s.t. GAz = wA + SAθ, (5b)

GN z < wN + SN θ, (5c)

where MI is the matrix obtained from matrix M by retaining

only rows indexed by I, A ⊆ {1, . . . , p} is the index set of

active constraints, and N ⊆ {1, . . . , p} is the index set of

inactive constraints. The index sets A and N are disjoint,

i.e., A ∩N = ∅, and satisfy A ∪N = {1, . . . , p}.

A. One critical region

Consider a particular realization of A and N . The Karush-

Kuhn-Tucker (KKT) conditions for (5) are given by

Hz⋆ +GT
Aλ

⋆ +GT
Nµ⋆ = 0, (6a)

GAz
⋆ = wA + SAθ, (6b)

GN z⋆ < wN + SN θ, (6c)

λ⋆ ≥ 0, (6d)

µ⋆ ≥ 0, (6e)

λ⋆T (GAz
⋆ − wA − SAθ) = 0, (6f)

µ⋆T (GN z⋆ − wN − SN θ) = 0. (6g)

Since GN z⋆ − wN − SN θ < 0 for all inactive constraints,

from (6g) we conclude that µ⋆ = 0. Then from (6a) we get1

z⋆ = −H−1GT
Aλ

⋆. (7)

Substituting (7) into (6b), and we obtain2

λ⋆ = −(GAH
−1GT

A)
−1(wA + SAθ), (8)

which can be written as

λ⋆ = Q(A)θ + q(A) (9)

where

Q(A) = −(GAH
−1GT

A)
−1SA, (10a)

q(A) = −(GAH
−1GT

A)
−1wA. (10b)

Plugging (8) into (7) we finally get

z⋆ = H−1GT
A(GAH

−1GT
A)

−1(wA + SAθ), (11)

which can be written as

z⋆ = F (A)θ + f(A) (12)

1Note that H ≻ 0 in (4a) is assumed.
2At this point we assume that the problem is either not degenerate, in

which case GA is of full row rank, or that at most m linearly independent
rows are obtained from GA, see [7].



with

F (A) = H−1GT
A(GAH

−1GT
A)

−1SA, (13a)

f(A) = H−1GT
A(GAH

−1GT
A)

−1wA. (13b)

The subset of the parametric space where z⋆ from (11)

and λ⋆ from (8) satisfy3 primal feasibility (6c) and dual

feasibility (6d) constitutes the critical region

P(A) = {θ | GN z⋆ < wN + SN θ, λ⋆ ≥ 0}, (14)

which is a polyhedron in half-space representation. In the

sequel, we will consider the closure of (14) obtained by

replacing strict inequalities by non-strict ones

P(A) = {θ | A(A)θ ≤ b(A)}, (15)

with

A(A) =

[
GNF (A)− SN

−Q(A)

]
, b(A) =

[
wN −GN f(A)

q(A)

]
.

(16)

B. Generation of all optimal active sets

To construct the full PWA solution as in (3) it is necessary

to apply the procedure of Section III-A to all optimal active

sets A1, . . . ,AR. Two distinct classes of methods can be

applied to obtain the list of optimal active sets:

• geometric approaches of [2] and [1],

• extensive enumeration procedure of [6].

The geometric approach is based on constructing an initial

critical region by picking an arbitrary θ1 ∈ Ω. For this value

of the parameter, the pQP (4) is solved as a QP which yields

the information about the A1 optimal for a given θ. Given

A1, the expression for z⋆ = F1θ + f1 is then obtained

from (11) with F1 = F (A1) and f1 = f(A1) via (13).

Then, the critical region P1 is formed by (15). Subsequently,

a new θ satisfying θ 6∈ P1 is selected. In [2] this is achieved

by performing set difference operations, while [1] selects the

new point by stepping over facets of the critical region. In

either case, a new A2 is obtained by solving the QP for

the new parameter, a new local optimizer z⋆ = F2θ + f2
is formed, and the associated critical region P2 is created.

The procedure is then repeated recursively until the whole

search space, i.e., Ω, is covered. It is important to note that

critical regions per (15) play an essential role in this type of

algorithms, since new regions can only be constructed based

on existing ones.

The extensive enumeration approach, on the other hand,

can generate optimal active sets without having to construct

the critical regions. The procedure first enumerates all pos-

sible combinations of active constraints and organizes them

in a tree in the order of increasing cardinality. Since there

are p constraints in (4) and m decision variables, at least

no constraint would be active (which corresponds to the root

node with A = ∅), and at most m constraints could be active

3The complementary slackness condition (6f) is trivially satisfied since
GAz⋆ − wA − SAθ = 0 holds for active constraints. Moreover, (6e) is
always satisfied (hence redundant) since µ⋆ = 0 is the only feasible choice
due to (6g) and inactivity of constraints indexed by N .

if no degeneracy is assumed due to LICQ conditions [7]. At

the k-th level of the tree (which corresponds to k constraints

being active), the tree contains
(
p
k

)
candidate s. In total, the

number of candidate s is

Rmax =

m∑

k=0

p!

k!(p− k)!
. (17)

Clearly, (17) indicates that the number of regions can

quickly become impractically large as p and/or m increase.

However, not all candidates need to be considered. If, say,

we determine that the 3rd and the 5th constraint cannot be

simultaneously active (which is a case e.g. when these two

constraints represent, respectively, the lower and the upper

bound of a decision variable), then all subsets containing the

3rd and the 5th constraints will be infeasible as well. This

allows to prune the tree of candidate s to a certain extent.

Moreover, not all feasible s will be optimal. To determine

optimality of a particular candidate A, the authors in [6]

propose to solve the linear program in the decision variables

u, θ, λ, and t,

max
t,z,θ,λ

t (18a)

s.t. Hz +GT
Aλ = 0, (18b)

GAz = wA + SAθ, (18c)

t ≤ wN + SN θ −GN z, (18d)

λ ≥ t, (18e)

t ≥ 0, (18f)

with N = {1, . . . , p} \ A. If (18) is feasible with t⋆ > 0,

the candidate A is a feasible optimal which yields a full-

dimensional critical region. If the LP is infeasible, a new

LP is solved by dropping the stationarity constraint (18b).

If this modified LP is infeasible, the candidate and, more

importantly, all other candidates that are a superset of A
are infeasible and can be removed from consideration. The

authors in [6] propose to construct the PWA solution in (3)

in two steps:

1) Enumerate all optimal active sets by exploring the tree

of all possible combinations, using the LP (18) as a

pruning criterion.

2) Once all optimal active sets, i.e., A1, . . . ,AR are

enumerated, construct the local optimizers per (11) and

critical regions via (14).

The common feature of approaches [2] and [6] is that

they construct critical regions at certain stage. The geometric

approach [2] requires the regions to be constructed at each

intermediate step and uses them to generate new s. The enu-

meration approach of [6], on the other hand, only constructs

the regions at the very end.

The memory required to store the PWA function (3) is

proportional to the number of critical region. For each such

region, we need to store:

• The local affine optimizer in (12), i.e., the matrix Fi ∈
R

m×n and the vector fi ∈ R
m. This requires m×(n+1)

real numbers.



• The half-space representation of the region per (15), i.e.,

the matrix Ai ∈ R
ci×n and the vector b ∈ R

ci , where

ci is the number of non-redundant defining half-spaces.

Therefore ci × (n+ 1) numbers are required.

In total, the PWA function (3) with R critical region con-

sumes

MRB =

R∑

i=1

(m+ ci)(n+ 1) (19)

real numbers (here, “RB” stands for “region-based”). This

expression can be simplified by considering cavg as the

average number of half-spaces of all critical regions. Then

the exact memory footprint of the PWA representation of

z⋆ = κ(θ) in (3) is

MRB = R(m+ cavg)(n+ 1). (20)

IV. REGION-FREE APPROACH OF [4]

In [4] the authors have shown how to compute z⋆ which

solves (4) using an algorithm that does not require storage of

the critical regions. The underlying idea is to pre-compute,

off-line, the factors in (8) and (11) for all possible optimal

active sets. Let w̃(θ) = w + Sθ and let w̃A(θ) be the rows

indexed by A. Then, (7) can be written as

z⋆ = H−1GT
A(GAH

−1GT
A)

−1w̃A(θ) = F̃ (A)w̃A(θ). (21)

Similarly, (8) becomes

λ⋆ = −(GAH
−1GT

A)
−1w̃A(θ) = Q̃(A)w̃A(θ). (22)

With F̃ (Ai) and Q̃(Ai) computed, off-line, for all optimal

active sets A1, . . . ,AR, the task to be performed on-line then

becomes to identify which is optimal for a given θ. In [4]

this is achieved by Algorithm 1, which operates according

to conventional methods, see, e.g., [5]. The main difference

to numerical algorithms is that Alg. 1 uses prefactored

expressions for z⋆ and λ⋆ (see (21) and (22)) instead of

computing them on-line by inverting the KKT matrix.

Algorithm 1 Region-free method of [4]

INPUT: Factors F̃ (Ai), Q̃(Ai), i = 1, . . . , R, pQP data G,

w, S from (4), initial A 6= ∅, query parameter θ.

OUTPUT: z⋆ solving (4) for given θ.

1: w̃(θ)← w + Sθ
2: i⋆ ← argmini Q̃i(A)w̃A(θ)
3: if Q̃i⋆(A)w̃A(θ) < 0 then

4: A ← A \ A(i⋆)
5: else

6: z ← F̃ (A)w̃A(θ)
7: j⋆ ← argminj(w̃j(θ)−Gjz)
8: if Gj⋆z > w̃j⋆(θ) then

9: A ← A∪ j⋆

10: else

11: return z⋆ ← z
12: end if

13: end if

14: goto 2

Notice that Alg. 1 does not require storing the critical

regions. Instead, it iteratively builds the optimal by removing

(cf. Step 4) or adding (cf. Step 9) constraints one at a time.

Then, optimality of the current iterate of the active set is

checked by verifying dual (Step 3) and primal feasibility

conditions (Step 8).

The memory required to run Alg. 1 on-line is determined

by the storage of the factors F̃ (Ai), Q̃(Ai) for i = 1, . . . , R
and by the pQP data G, w, and S. Here, F̃ (Ai) ∈ R

m×ai

and Q̃(Ai) ∈ R
ai×ai with ai = |Ai| being the cardinality

of the corresponding active set. The pQP data G ∈ R
p×m,

w ∈ R
p, and S ∈ R

p×n, on the other hand, have fixed size,

but are stored just once and are shared among all active sets.

The memory footprint of the input data is thus

MRF = p(m+ n+ 1) +
R∑

i=1

(m|Ai|+ |Ai|
2), (23)

where “RF” stands for “region-free”. Let aavg be the average

cardinality of A1, . . . ,AR. Then, (23) becomes

MRF = p(m+ n+ 1) +R(maavg + a2avg). (24)

V. NOVEL RESULTS

Although Algorithm 1 does not require storage of the

critical regions and thus requires a smaller memory footprint,

it is an iterative procedure which does not admin a closed-

form solution. In what follows we first show that such

a closed-form solution exists. Subsequently, in Section V-

C we show that the memory footprint of Alg. 1 can be

further reduced at the expense of performing more on-

line calculations. Also this reduced representation admits a

closed-form representation. Moreover, for the two types of

closed-form solutions we show how they can be recovered

from the region-based PWA function (3) and vice versa.

All results of this section assume that all optimal active

sets for the pQP (4), i.e., A1, . . . ,AR, were obtained by

the extensive enumeration approach of [6]. This is done as

follows:

1) Enumerate all possible combinations of active con-

straints with cardinality 0, . . . ,m.

2) For each candidate active set solve the LP (18).

a) If the LP is feasible, add the candidate to the list

of optimal active sets.

b) If the LP is infeasible, drop (18b). If the aug-

mented LP is infeasible, discard the candidate,

as well as all other candidates which are its

supersets.

Note that the generation of the list of optimal active sets does

not require construction of critical regions.

A. Region-Free Closed-Form Solution

Given A1, . . . ,AR as the list of optimal active sets,

compute Fi = F (Ai), fi = f(Ai) per (12), along with

Qi = Q(Ai), qi = q(Ai) via (10).

Theorem 5.1: The function z⋆ = κ(θ) with

κ(θ) = Fiθ + fi if Qiθ + qi ≥ 0 ∧ G(Fiθ + fi) ≤ w + Sθ
(25)



is the optimal solution to (4) for any θ ∈ Ω. �

Corollary 5.2: (25) is a PWA function over polyhedra. �

The consequence of Theorem 5.1 is that (25) provides a

closed-form solution to (4) which does not require storage of

the critical regions. Instead, the i-th rule is deemed optimal

by checking primal and dual feasibility. Since the pQP data

G, w, and S are stored just once and shared among all IF-

THEN rules, it follows that (25) offers a smaller memory

footprint compared to (3). Specifically, for each i = 1, . . . , R
we have Fi ∈ R

m×n, fi ∈ R
m, Qi ∈ R

ai×n, and qi ∈ R
ai

where ai = |Ai|. Therefore the footprint of (25) is

MRFλ = p(m+n+1)+Rm(n+1)+

R∑

i=1

ai(n+1), (26)

where the first term accounts for G, w, and S, the second

term is the storage space of Fi, fi, and the last one represents

memory occupied by Qi and qi. Using aavg as the average

cardinality of all active sets, (26) becomes

MRFλ = p(m+ n+ 1) +R(m+ aavg)(n+ 1). (27)

Comparing (27) to (20), we see that (25) requires less

memory storage than (3) if

pm

R(n+ 1)
+ aavg < cavg. (28)

We remark that aavg is upper bounded by m, and cavg ≤ p,

in general. If R≫ pm, then (28) simplifies to m < p, which

is always satisfied if all decision variables are lower/upper

bounded in (4b).

B. Analogy between (3) and (25)

The region-based PWA function in (3) can be converted

into the region-free format (25) as follows.

1) For each critical region of (3):

a) Pick a θ ∈ Pi, e.g., as the center of the largest

inscribed ball4.

b) Compute z⋆ = Fiθ + fi.
c) Plug z⋆ and θ into (4b) and obtain the index set

Ai of constraints active in the i-th region.

d) Construct Qi = Q(Ai), qi = q(Ai) per (10) and

Fi = F (Ai), fi = f(Ai) via (12).

2) Construct (25) using Fi, fi, Qi, qi and the pQP data

from (4b).

Since the PWA function in (25) typically uses less memory

than (3) (cf. (28)), this procedure can be viewed as a memory

compression of (3).

The region-based function in (3) can be recovered

from (25) as follows:

1) For each i = 1, . . . , R:

a) Construct the half-space representation of the i-th
critical region in (15) via (16) by using Q(Ai) =
Qi, q(Ai) = qi, F (Ai) = Fi, and f(Ai) = fi.

b) Optionally remove redundant half-spaces

from (15).

4This can be done by solving one LP.

2) Recover (3) from Pi, Fi, and fi.

Therefore, it is possible to employ the region-free func-

tion (25) in algorithms that require the region-based for-

mat (3).

C. Region-Free Solution with Reduced Memory Footprint

In this section we show how the amount of data required

to run Alg. 1 can be further reduced by performing more

computations on-line. The idea is based on replacing the

calculation of the primal optimizer candidate in Step 6 of

Alg. 1 by (7). Specifically, Step 6 computes the candidate

z by z = F̃ (A)w̃A(θ) using the pre-factored expressions

of F̃ (A) obtained from (21). Using (7) and (22) we can

equivalently compute the primal optimizer candidate by

z = −H−1GT
AQ̃(A)w̃A(θ). (29)

Here, instead of storing F̃ (Ai) for each i = 1, . . . , R
as in (21), we only need to store the inverted Hessian

H−1, which is unique for each active set. Therefore Step 6

of Alg. 1 can be altered to z ← −H−1GT
AQ̃(A)w̃A(θ).

Note that the product Q̃(A)w̃A(θ) was already computed at

Step 2. Under such a modification, storing F̃ (Ai) in Alg. 1

is no longer required.

By removing F(Ai) ∈ R
m×ai , ai = |Ai|, i = 1, . . . , R

as the input of Alg. 1, we can save the space needed to

store m
∑R

i=1 ai real numbers. However, we need to store

the inverted Hessian, which requires m2 real numbers. Thus

the total memory footprint of Alg. 1 with Step 6 modified

as described above is

MRFλ = p(m+ n+ 1) +m2 +Ra2avg. (30)

Therefore the total memory reduction compared to (24) is

Rmaavg −m2 real numbers.

Next we show that the memory-reduced version of Alg. 1

also admits a closed-form solution.

Theorem 5.3: Consider the function z⋆ = κ(θ) with

κ(θ) =−H−1GT
Ai

(Qiθ + qi) if (Qiθ + qi) ≥ 0 ∧

−GH−1GT
Ai

(Qiθ + qi) ≤ w + Sθ. (31)

Then, (31) is the parametric solution to (4). �

Corollary 5.4: (31) is a PWA function over polyhedra. �

The evaluation of z⋆ = κ(θ) can be performed by Algo-

rithm 2. It goes through all modified active set candidates in a

sequential order and first computes the Lagrange multipliers

using the explicit relation (9) in Step 2. Then, it validates the

dual feasibility condition (6c) for the candidate active set Ai

in Step 3. If dual feasibility holds, the algorithm subsequently

computes the primal optimizer in Step 4 using the informa-

tion of which rows of G should be active. Afterwards, primal

feasibility of inactive constraints is checked in Steps 5 and 6.

If both dual and primal feasibility conditions are satisfied, the

candidate Ai is the optimal active set for the current θ, and

the procedure returns the optimal decision in Step 7.



Algorithm 2 Region-free sequential search

INPUT: Matrices Qi, qi, i = 1, . . . , R from (10), list of

optimal active sets {A1, . . . ,AR}, pQP data H−1, G, w
S from (4), query parameter θ.

OUTPUT: z⋆ solving (4) for given θ.

1: for i = 1, . . . , R do

2: λ← Qiθ + qi
3: if λ ≥ 0 then

4: z ← −H−1GT
Ai

λ
5: Ni ← {1, . . . , p} \ Ai

6: if GNi
z < wNi

+ SNi
θ then

7: return z⋆ ← z
8: end if

9: end if

10: end for

11: return z⋆ ← ∅

VI. COMPLEXITY COMPARISON

In this section we asses how the proposed region-free

approach of Section V-C compares to the conventional

region-based procedure represented by (3) and the region-

free approach of [4] in terms of memory complexity. To

perform such a comparison, we have assumed that the pQP

was generated from the MPC problem formulated for the

prediction model 1/(s+1)n, discretized with sampling time

of 1 second and converted to a state-space form. Here, n
represents the number of states of the prediction model. The

states of the discretized system were constrained by −10 ≤
xi ≤ 10, i = 1, . . . , n. Input constraints −1 ≤ u ≤ 1 were

considered as well. The number of decision variables, i.e.,

m, was controlled via the prediction horizon, i.e., m = N .

Table I shows the results of the exact memory complexity

for varying dimensionality of the pQP in (4). Columns of

the table represent, respectively:

• n: the parametric dimension which, in our case, corre-

sponds to the number of states of the controlled system,

m: the number of optimization variable, equal to the

prediction horizon, p: the number of constraints of the

pQP (4);

• R: the number of critical regions in (3) and optimal

active sets in (31);

• MRB: the number of real numbers required to store the

region-based PWA function (3);

• MRF: the number of real numbers required for the

active set Algorithm 1, computed by (24);

• MRFλ: the number of real numbers required for the

memory-reduced active set algorithm of Section V-C,

computed by (30);

• ∆ =MRF/MRFλ: the memory reduction factor.

In the table, memory consumption is reported in megabytes

assuming that each real number is stored in double precision

arithmetics using 8 bytes.

VII. CONCLUSIONS

In this paper we have revisited the idea of region-free

explicit MPC, which was originally suggested in [4]. We

n/m/p R MRB MRF MRFλ ∆

10/2/52 274 0.661 0.020 0.013 1.6
10/3/66 1 867 3.696 0.233 0.115 2.0
10/4/80 7 134 12.066 1.452 0.685 2.1
10/5/94 19 582 32.386 5.769 2.637 2.2
15/2/84 577 2.773 0.045 0.028 1.6
15/3/106 6 618 28.172 0.837 0.413 2.0
15/4/128 46 135 183.775 9.715 4.623 2.1
20/2/114 883 7.753 0.071 0.045 1.6
20/3/146 11 932 84.494 1.509 0.743 2.0
20/4/176 93 002 652.818 19.278 9.121 2.1
30/2/172 1 279 27.373 0.118 0.080 1.5
30/3/224 27 879 489.625 3.625 1.800 2.0
40/2/230 1 455 52.911 0.160 0.117 1.4
40/3/298 27 544 949.723 3.609 1.810 2.0

TABLE I

MEMORY OCCUPANCY IN MEGABYTES FOR VARIOUS PROBLEM SIZES.

have shown that by avoiding the computation and the storage

of the factors for the primal optimizer the amount of data

required to compute optimal control actions can be reduced

by a factor of two, on average. Furthermore, we derived

a closed-form representation of the region-free description

of the feedback law. During its construction, generation of

critical regions is avoided and is replaced by enumeration of

optimal active sets. Such a closed-form solution is not only

simpler compared to the conventional region-based form,

but it allows to rigorously analyze the closed-loop system.

Finally, we have shown that the memory-reduced version

of the region-free description also admits a closed-form

solution.
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