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Abstract—An infinite mixture model is applied to model-based
speaker clustering with sampling-based optimization to make it
possible to estimate the number of speakers. For this purpose, a
framework of nonparametric Bayesian modeling is implemented
with the Markov chain Monte Carlo (MCMC) and incorporated
in the utterance-oriented speaker model. The proposed model
is called the utterance-oriented Dirichlet process mixture model
(UO-DPMM). The present paper demonstrates that UO-DPMM
is successfully applied on large-scale data and outperforms the
conventional hierarchical agglomerative clustering, especially for
large amounts of utterances.

I. INTRODUCTION

Speaker clustering is the challenge of grouping the utter-
ances spoken by the same speaker into a cluster. Hierarchical
agglomerative clustering (HAC) is one of the best-known
strategies for speaker clustering when the number of speakers
needs to be estimated. In this framework, the utterances
are clustered by progressively merging the most similar pair
of clusters on the basis of criteria such as the Bayesian
information criterion [1]. This method, however, can diminish
clustering accuracy if an inappropriate pair of clusters is
merged. This is considered a local solution problem caused by
the lack of a procedure for dividing the merged cluster. This
problem becomes more serious when the number of speakers
is large due to increasing improper merging of the clusters.

An alternative approach to agglomerative clustering is par-
titional clustering, which directly divides the utterances into
homogeneous k clusters. Partitional clustering can yield the
advantage of avoiding of the local optimum problem caused at
the merging steps in the agglomerative clustering framework.
The model-based methods such as k-means clustering and
Gaussian mixture model (GMM) are popular in partitional
clustering and adopt the generative model in which the ut-
terances spoken by a speaker are expected to be generated
from a distribution expressing the speaker. In this approach, the
speaker clustering is reduced to estimation of this generative
model. The model-based clustering, however, can suffer from
the over-learning problem especially when the amount of data
is limited, and also be trapped into a local optimum solution
when deterministic algorithms are used for estimation.

Sampling-based optimization such as Markov chain Monte
Carlo (MCMC) has been shown to effectively address the
problems in the model-based approach. We therefore proposed
the utterance-oriented speaker mixture model [2], [3] and the
MCMC-based sampling techniques to estimate this model [4].

This model is demonstrated to be accurate and efficient in
speaker clustering but needs a technique to estimate the
number of speakers.

We attempt to develop a model-based technique able to
estimate the number of speakers by employing a nonparamet-
ric Bayesian framework [5]. Here, we derive the utterance-
oriented speaker mixture model for infinite speakers by simply
taking the limit of the formula of the finite speaker mixture
model as the number of speakers approaches infinity. We call
this model the utterance-oriented Dirichlet process mixture
model (UO-DPMM). We preliminarily confirmed that UO-
DPMM performed well in limited conditions where the num-
ber of utterances is small and balanced for each speaker, e.g.,
only eight utterances per speaker and a total of 1,192 utter-
ances spoken by 192 speakers [6]. The present study therefore
demonstrates that UO-DPMM can cope with practically large-
scale data including a total of 15,435 utterances (i.e., over ten
times the size of the data we used previously [6]) in a realistic
computational time.

The remainder of the present paper is organized as follows.
In section II, we define the utterance-oriented mixture model
for finite speakers, in which the number of speakers is fixed.
In section III, we extend the finite speaker mixture model
described in section II to the nonparametric Bayesian model,
namely UO-DPMM. We also describe the model estimation
algorithm of UO-DPMM in detail. In section IV, the speaker
clustering experiment used to verify the effectiveness of the
proposed method is presented. In section V, we clarify the
difference between UO-DPMM and the conventional nonpara-
metric Bayesian method. In section VI, the paper is concluded,
and future works are suggested.

II. UTTERANCE-ORIENTED MIXTURE MODEL FOR FINITE
SPEAKERS

In this section, we define an utterance-oriented mixture
model to represent all speakers. In the present study, we focus
on using a Gaussian distribution to represent each speaker’s
cluster. Applying a single Gaussian distribution limits the
flexibility of the model and actually a Gaussian mixture model
(GMM) has been used in the existing approaches [7], [8], [2],
[3]. This simple model, however, can be easily extend in a
non-parametric Bayesian manner in order to handle infinite
speakers (i.e., the optimal number of speakers is automatically
determined). The aim of the present study thus is to investigate
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the potential of the utterance-oriented mixture model in a non-
parametric Bayesian manner.

First, we derive the utterance-oriented mixture model when
the number of speaker clusters is fixed. Here, we describe how
to estimate the utterance-oriented speaker model for the finite
speakers and how to assign speaker labels to each utterance
by using this model.

A. Utterance-oriented mixture model

Let out ∈ RD be a D-dimensional observation vector at
the t-th frame in the u-th utterance, Ou

∆
= {out}Tu

t=1 be the
u-th utterance that comprises the Tu observation vectors, and
O

∆
= {Ou}Uu=1 be a set of U utterances.
We assume that a D-dimensional Gaussian distribution for

each speaker generates the utterances from the corresponding
speaker and that the variability for all speakers is modeled by a
mixture of these distributions (i.e., a Gaussian mixture model
(GMM)). We then assume that each utterance is generated as
an i.i.d. from this GMM and that each feature vector out is
generated as an i.i.d. from a mixture component to which the
utterance is assigned. We call this model “utterance-oriented
mixture model.” Z

∆
= {zu}Uu=1, represents the indices of

speaker clusters. In this utterance-oriented mixture model, the
likelihood for the set of observation vectors given the sequence
of the latent variables is expressed as follows 1:

p(O|Z,Θ) =

U∏
u=1

S∏
i=1

Tu∏
t=1

N (out|µi,Σi)
δ(zu,i), (1)

P (Z|h) =

U∏
u=1

S∏
i=1

h
δ(zu,i)
i , (2)

where δ(a, b) denotes the Kronecker delta, which is 1 if a = b
and 0 otherwise. h = {hi}Si=1 and Θ = {µi,Σi}Si=1 denote
the set of weights, mean vector, and covariance matrix for
S speaker clusters, respectively. Σi is a diagonal covariance
matrix whose (d, d)-th element is represented by σi,dd.

Since zu denotes the index of a speaker cluster to which
he u-th utterance is assigned, the speaker clustering problem
is reduced to the estimation of the optimal values of the
latent variables Z. In other words, we can obtain the optimal
assignment of utterances to speaker clusters by estimating Z
which maximizes the likelihood function defined in Eqs. 1
and 2. This can be easily obtained by introducing expectation
maximization (EM) algorithm [9].

B. Fully Bayesian approach for utterance-oriented mixture
model

The maximum likelihood-based approach described in the
previous subsection often suffers from an over-learning prob-
lem, especially when the amount of data is limited [10]. In
order to solve this problem, we introduce a fully Bayesian
approach to our utterance-oriented mixture model.

1We use the notation p(·) for the continuous probability function and P (·)
for the discrete probability function.

To derive the Bayesian representation, we introduce the fol-
lowing conjugate prior distributions of the model parameters
Θ:

p(Θ,h) =

{
{hi}Si=1 ∼ D(h0)

{µi,Σi}Si=1 ∼
∏

dNG(µ0
d, ξ

0, η0, σ0
dd),∀i

(3)

where D
(
h0
)

denotes the Dirichlet distribution with a hyper
parameter h0 = {h0/S, · · · , h0/S} and NG

(
µ0
d, ξ

0, η0, σ0
dd

)
denotes the Gaussian-Gamma distribution with hyper param-
eters µ0

d, ξ0, η0, and σ0
dd. Note that these hyper-parameters

do not depend on each cluster 1. The graphical model for this
model is shown in Fig. 1 (a). By using these prior distributions,
we can derive the joint distribution for the complete data case.

1) Marginalized likelihood for the complete data case: For
the complete data case, the posterior probabilities of the latent
variables, P (Z|O), return 0 or 1 because all assignments of
utterances to speaker clusters are available. Then, the sufficient
statistics of this model can be described as follows:

nutt
i =

∑
u δ(zu, i)

nfrm
i =

∑
u δ(zu, i)Tu

mi =
∑

u δ(zu, i)
∑

t out

ri,dd =
∑

u δ(zu, i)
∑

t(out,d)
2

(4)

where nutt
i and nfrm

i are the number of utterances and that of
frames assigned to the i-th cluster, respectively; mi and ri,dd
are the first- and second-order sufficient statistics, respectively.
By using Eqs. 2 and 4, the likelihood for the complete data
case can be expressed as follows:

p(O,Z|Θ,h) =
∏
i

(hi)
nutt
i

∏
u,t

N (out|µi,Σi)
δ(zu,i). (5)

Here, recalling that the speaker clustering problem aims
to estimate the optimal assignment of utterances to speaker
clusters, we can see that the parameter Θ need not be esti-
mated. We can therefore marginalize this parameter out from
the joint distribution described in Eq. 5. This marginalization
allows us to optimize the model on the latent variable space.
By restricting the search space of the latent variables, we can
obtain a model estimation algorithm that is robust against the
local optima problem.

From Eqs. 3 and 5, the marginalized likelihood for the
complete data case, integrated by using the parameter Θ, can
be factorized to the following two integrals:

p(O,Z) =

∫
p(O,Z|Θ,h) · p(Θ,h)dΘdh

=

∫
P (Z|h)p(h)dh ·

∫
p(O|Z,Θ)p(Θ)dΘ.

(6)

The first term on the right-hand side of Eq. 6 is described as
follows: ∫

P (Z|h)p(h)dh = C(h0)

∏
i Γ(h̃i)

Γ(
∑

i h̃i)
, (7)

where C(h0) denotes the normalization term that is indepen-
dent of nutt

i . The second term on the right-hand side of Eq. 6

1The detailed definition of Dirichlet and Gaussian-Gamma distributions is
described in Appendix A.
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is described as follows:∫
p(O|Z,Θ)p(Θ)dΘ

=
∏
i

(2π)−
nfrm
i D

2

(ξ0)
D
2

(
Γ
(

η0
i

2

))−D (∏
d σ

0
i,dd

) η0
i
2

(ξ̃i)
D
2

(
Γ
(

η̃i

2

))−D

(
∏

d σ̃i,dd)
η̃i
2

=
∏
i

Z(ξ̃i, η̃i, µ̃i, Σ̃i)

Z(ξ0, η0,µ0,Σ0)
(2π)−

niD

2 ,

(8)

where Θ̃
∆
=
{
h̃i, η̃i,dd, ξ̃i,dd, µ̃i, σ̃i,dd

}
denotes the hyper-

parameter of the posterior distribution for Θ, which is de-
scribed as follows:

h̃i = h0
i + nutt

i

ξ̃i = ξ0 + nfrm
i

η̃i = η0 + nfrm
i

µ̃i =
ξ0µ0

i+mi

ξ̃i

σ̃i,dd = σ0
i,dd + ri,dd + ξ0(µ0

i,d)
2 − ξ̃i(µ̃i,d)

2

(9)

where we have used Eq. 4.
2) MCMC-based posterior estimation: We again emphasize

that the speaker clustering problem is reduced to the estimation
of the latent variables Z, which maximize the posterior distri-
bution P (Z|O). We can then derive the posterior distribution
for the latent variables as p(Z|O) ∝ p(O,Z). The evaluation
of all combinations of these latent variables in p(Z|O),
however, is obviously infeasible if the number of utterances
(i.e. the number of latent variables) is large. Instead, we use
collapsed Gibbs sampling [11] to obtain the optimal value of
Z directly from its posterior distribution P (Z|O).

In each step of the collapsed Gibbs sampling process, the
value of one of the latent variables (e.g., zu) is replaced
with a value generated from the distribution of that vari-
able given the values of the remaining latent variables (i.e.,
Z∗

\u = {zu′ |u′ 6= u}). In this case, the latent variables are
sampled from the conditional posterior distribution as follows:

P (zu = i′|O,Z∗
\u)

∝ P (zu = i′|Z∗
\u) · p(Ou|O\u,Z

∗
\u, zu = i′)

=
P (Z∗

\u, zu = i′)

P (Z∗
\u)

·
p(Ou,O\u|Z∗

\u, zu = i′)

p(O\u|Z∗
\u)

.

(10)

Note that the hyper-parameters of prior distributions,{
h0,Θ0

}
, are omitted in Eq. 10. From Eq. 7, the first term

on the right-hand side of Eq. 10 can be described as follows:

P (Z∗
\u, zu = i′)

P (Z∗
\u)

=
h0

S + ni′

U − 1 + h0
. (11)

From Eq. 8, the second term on the right-hand side of Eq. 10
is described as follows:

p(O|Z∗
\u, zu = i′)

p(O\u|Z∗
\u)

∝ exp
(
gi′(Θ̃i′)− gi′(Θ̃i′\u)

)
, (12)

where

gi′(Θ̃i′)
∆
= ln p(O|Z∗

\u, zu = i′)

= D log Γ

(
η̃i′

2

)
− D

2
log ξ̃i′ −

η̃i′

2

∑
d
log σ̃i′,dd

(13)

gi′(Θ̃i′\u)
∆
= ln p(O\u|Z∗

\u)

= D log Γ

(
η̃i′\u

2

)
− D

2
log ξ̃i′\u −

η̃i′\u

2

∑
d
log σ̃i′\u,dd.

(14)

Θ̃i′\u in Eq. 14 denotes the hyper-parameter of the posterior
distribution for Θ after removing u-th utterance, which is
described as follows:

Θ̃i′\u
∆
=



ξ̃i′\u = ξ̃i − Tu

η̃i′\u = η̃i − Tu

µ̃i′\u =
ξ̃i′ µ̃i′−

∑
t out

ξ̃i′\u

σ̃i′\u,dd = σ0
i′,dd + ri′,dd −

∑
t(out,d)

2

+ξ0(µ0
i′,d)

2 − ξ̃i′\u(µ̃i′\u,d)
2

(15)

The optimal values of Z (i.e., the optimal assignments of
utterances to clusters) can be obtained from its posterior distri-
bution P (Z|O) by iterating to sample zu from its conditional
posterior distribution in Eq. 10 until convergence.

III. UTTERANCE-ORIENTED MIXTURE MODEL FOR
INFINITE SPEAKERS

In this section, we attempt to extend the utterance-oriented
mixture model for finite speakers in order to deal with infinite
speakers. For this purpose, we introduce Dirichlet process as
the prior distribution of mixture weights. The derived model
(i.e., the UO-DPMM) is a type of Dirichlet process mixture
model (DPMM) [5], but it differs from the original DPMM in
that the generative unit is not a frame but rather an utterance.
In the present study, UO-DPMM was built by using Chinese
restaurant process (CRP) [12], which can avoid local solutions
because of its sampling-based implementation. Furthermore,
we can easily integrate CRP with other sophisticated methods,
such as simulated annealing. The graphical model of the
utterance-oriented mixture model for infinite speakers is shown
in Fig. 1 (b). Table 1 provides a pseudo code of this method.

CRP is found by taking the limit of S (i.e., S → ∞) in
Eq. 10. Note that there are at most U(< S) speaker clusters
to which at least one utterance is assigned. In the case of S
being infinite, most clusters should be empty. In this case,
we can separately compute Eq. 11 for the case where the u-th
utterance is assigned to a cluster with more than one utterance
(i.e., ni′ > 0) and the case where the u-th utterance is assigned
to a new cluster with no utterance (i.e., ni′ = 0).

P (Z∗
\u, zu = i′)

P (Z∗
\u)

=


h0

S +ni′

U−1+h0 , if i′ = zk for ∃k 6= u
h0

S

U−1+h0 , if i′ 6= zk for ∀k 6= u

(16)
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Fig. 1. Graphical models of utterance-oriented mixture models for (a) finite and (b) infinite speakers.

By taking the limit of S → ∞, the number of utterances U
satisfies U � S and thus we can assume that there are S
empty clusters. Therefore, by combining the empty clusters,
Eq. 16 is described as follows:

P (Z∗
\u, zu = i′)

P (Z∗
\u)

=


h0

S +ni′

U−1+h0 , if i′ = zk for ∃k 6= u

S ·
h0

S

U−1+h0 , if i′ 6= zk for ∀k 6= u

(17)

Taking the limit of S →∞ in Eq. 17 allows us to derive the
following equation:

P (Z∗
\u, zu = i′)

P (Z∗
\u)

=

{
ni′

U−1+h0 , if i′ = zk for ∃k 6= u
h0

U−1+h0 , if i′ 6= zk for ∀k 6= u

(18)

From Eq. 8, we can also separately compute the second term
on the right-hand side of Eq. 10 as follows:

p(O,Z∗
\u, zu = i′)

p(O\u,Z
∗
\u)

=


exp

(
gi′(Θ̃i′)− gi′(Θ̃i′\u)

)
,

if zk = i′ for ∃k 6= u

exp
(
gnew(Θ̃new)− gnew(Θ0)

)
if zk 6= i′ for ∀k 6= u

(19)

where gnew(Θ̃new) and gnew(Θ0) denote the logarithmic
likelihood for Ou to the new cluster, and the prior likelihood
of the parameter itself, respectively.

We can evaluate both gnew(Θ̃new) and gnew(Θ0) by using
Eq. 13, noting that only the u-th utterance is assigned to the
new cluster for gnew(Θ̃new) and no ones are assigned to the
new cluster for gnew(Θ0). That is, we can respectively evaluate
gnew(Θ0) and gnew(Θ̃new) by substituting Θ̃i′ in Eq. 13 to

Θ0 and Θ̃new, which is described as follows:

Θ̃new
∆
=



ξ̃new = ξ0 + Tu

η̃new = η0 + Tu

µ̃new =
µ0+

∑
t out

ξ̃new

σ̃new,dd = σ0
dd +

∑
t(out,d)

2

+ξ0(µ0
d)

2 − ξ̃new(µ̃new,d)
2

(20)

From Eqs. 18 and 19, the posterior probability of the latent
variables can be finally described as follows:

p(zu = i′|O,Z\u)

∝


ni′

U−1+h0 · exp
(
gi(Θ̃i′)− gi(Θ̃i′\u)

)
,

if zk = i′ for ∃k 6= u
h0

U−1+h0 · exp
(
gnew(Θ̃new)− gnew(Θ0)

)
if zk 6= i′ for ∀k 6= u

(21)

We iteratively reassign each utterance to one of the existing
clusters or the new cluster in proportion to Eq. 21 until the
value of the samples converges. As shown in Eq. 21, the
hyper-parameter h0 determines how frequently each utterance
is reassigned to the new cluster. The estimated number of
speaker clusters, therefore, depends on the value of h0. In
the next section, we demonstrate that this parameter can be
tuned by using a development set.

IV. SPEAKER CLUSTERING EXPERIMENTS

We carried out the speaker clustering experiments by us-
ing the TIMIT [13] and Corpus of Spontaneous Japanese
(CSJ) [14] databases. We compared UO-DPMM described in
Section III with existing hierarchical agglomerative clustering
based on the Bayesian information criterion (HAC-BIC) [1] in
speaker clustering with estimation of the number of speakers.

HAC-BIC is similar to UO-DPMM in terms of the model
structure, i.e., both methods assume that each speaker can be
represented by a single Gaussian and estimate the number
of clusters using model complexity. Here, the aim of the
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Algorithm 1 Speaker clustering by using UO-DPMM. Thresh-
old is 30 for TIMIT and 50 for CSJ.

1: Initialize S and {zu}Uu=1.
2: repeat
3: for all u = shuffle (1, · · · , U) do
4: Sample zu according to Eq. 21.
5: if zu = S + 1 then
6: ΘS+1 ∼ G0

(
Θ|Θ0

)
.

7: S ← S + 1.
8: end if
9: end for

10: until number of iterations exceeds threshold

present study is to verify if the model-based speaker clustering
approach can be extended so as to estimate the number of
speakers by incorporating the nonparametric Bayesian tech-
niques in the utterance-oriented speaker mixture model. We
therefore are determined to focus on comparing UO-DPMM
and HAC-BIC to make this experiment comparable.

A. Speech data

We performed the speaker clustering experiments by us-
ing six evaluation sets obtained from the TIMIT and CSJ
databases. We used two evaluation sets in TIMIT. T-1 was the
“core test set,” which included 192 utterances spoken by 24
speakers. T-2 was the “complete test set,” which excluded the
core test set in the TIMIT database and included 1,152 utter-
ances spoken by 144 speakers. T-1 and T-2 are balanced data,
in which each speaker spoke the same number of utterances.
The remaining four evaluation sets were obtained from lectures
in CSJ as follows. First, all lectures were divided into utterance
units based on the segments of silence in their transcriptions
that were longer than 500 ms; 5 and 10 speakers were then
randomly selected and their 100 utterances were selected for
C-1 and C-2. Each utterance was between 2 and 10 s long.
Next, we selected another 5 and 10 speakers and all their
utterances for C-3 and C-4. C-3 and C-4 are “unbalanced” and
large-scale data (they include approximately 4 and 6 million
samples, respectively). Table I lists the number of speakers
and utterances in the evaluation sets used. Speech data were
sampled at 16 kHz and quantized into 16-bit data.

We used 12-dimensional mel-frequency cepstrum coeffi-
cients (MFCCs) as the feature parameters. The frame length
and shift were 25 ms and 10 ms, respectively.

B. Measurement

We used the average cluster purity (ACP), the average
speaker purity (ASP), and their geometric mean value (K) for
the evaluation criteria in speaker clustering [15]. The correct
speaker labels for utterances were manually annotated. Let ST

be the correct number of speakers, S the estimated number of
speakers, nij the estimated number of utterances assigned to
speaker cluster i in all utterances of speaker j, nj the estimated
number of utterances of speaker j, ni the estimated number
of utterances assigned to speaker cluster i, and U the total

number of utterances. Cluster purity pi, speaker purity qj , and
the K value are then calculated as follows:

pi =

ST∑
j=0

n2
ij

n2
i

, qj =

S∑
i=0

n2
ij

n2
j

K =

√∑
i pi ·

∑
j qj

STS

(22)

We additionally calculated the speaker diarization error rate
(DER) [16] in the experiments for CSJ. The DER is the ratio
of incorrectly attributed speech time, which is calculated as
follows

DER =
Ufa + Uerror

Uref
(23)

where Ufa denotes the total length of utterances not aligned
with the speaker labels in the case where ST > S (i.e.
false alarm utterances), namely the speech time of utterances
assigned to improper speakers in the case that the estimated
number of speakers is larger than the true number of speakers.
Uerror denotes the total length of utterances aligned with the
wrong speaker labels and Uref denotes the total length of all
utterances in a test set. The clustering result and speaker labels
concurred in order to minimize DER.

The number of iterations was set to 50 for TIMIT and 30 for
CSJ. We considered the first 49 and 29 iterations for TIMIT
and CSJ as the burn-in periods, respectively, leading the K
values obtained from these periods to be rejected. The K
value from the remaining one iteration was then measured. We
carried out the same experiment 50 times but using different
seeds to generate random numbers and then measured the
average of their K values.

C. Experimental setup

The hyper-parameters in Eq. 3 were set as follows: h0 =
1, ξ0 = 1, and η0 = 1. µ0

i and Σ0
i were computed as the

mean and covariance of all data used in the database. In this
experiment, we first estimated the optimal number of clusters
as well as the optimal assignments of utterances to clusters.
Next, we carried out the speaker clustering experiments using
the TIMIT and CSJ databases. We then cross-validated for
each pair of {T-1, T-2}, {C-1, C-2}, and {C-3, C-4} to decide
the penalty parameter in the BIC-based method and the hyper-
parameter h0 in UO-DPMM.

D. Experimental results

Table II lists the speaker clustering results for TIMIT. These
results show that UO-DPMM outperformed BIC-HAC in terms
of estimating the number of speakers for both T-1 and T-2.
UO-DPMM also outperformed BIC-HAC in terms of the K
value for T-2. Table III shows the speaker clustering results for
CSJ. UO-DPMM outperformed BIC-HAC for all evaluation
sets. Specifically, BIC-HAC performed considerably worse
for C-3 and C-4. These results indicate that UO-DPMM
can be robustly estimated for the unbalanced and large-scale
data while BIC-HAC significantly diminishes the clustering
accuracy for these data.
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TABLE I
DETAILS OF TEST SET. # SPEAKERS, # UTTERANCES, # SAMPLES, AND TOTAL DURATION DENOTE THE NUMBER OF SPEAKERS, NUMBER OF

UTTERANCES, NUMBER OF FRAME-WISE OBSERVATIONS, AND TOTAL DURATION.

T-1 T-2 C-1 C-2 C-3 C-4
# speakers 24 144 5 10 5 10

# utterances 192 1,152 500 1,000 9,333 15,435
(# samples) (5.8 K) (353 K) (209 K) (404 K) (4.0 M) (6.4 M)

total duration 9.7 [min.] 59.0 [min.] 35.0 [min.] 1.1 [hour] 11.1 [hour] 17.6 [hour]

TABLE II
SPEAKER CLUSTERING RESULTS FOR TIMIT. #CL. DENOTES THE

NUMBER OF CLUSTERS ESTIMATED.

Eval. Method #cl. ACP ASP K

T-1 UO-DPMM 32.4 0.84 0.72 0.78
(spkr:24, utt:192) HAC-BIC 34.0 0.85 0.71 0.78

T-2 UO-DPMM 145.0 0.53 0.55 0.54
(spkr:144, utt:1,152) HAC-BIC 174.0 0.54 0.49 0.52

TABLE III
SPEAKER CLUSTERING RESULTS FOR CSJ. #CL. DENOTES THE NUMBER

OF CLUSTERS ESTIMATED.

Eval. Method #cl ACP ASP K DER [%]
C-1 UO-DPMM 9.15 0.96 0.78 0.87 0.13

(spkr:5, utt:500) HAC-BIC 9.50 0.85 0.72 0.78 0.25
C-2 UO-DPMM 10.4 0.87 0.84 0.81 0.20

(spkr:10, utt:1,000) HAC-BIC 16.5 0.73 0.68 0.70 0.36
C-3 UO-DPMM 10.9 0.91 0.70 0.80 0.23

(spkr:5, utt:9,333) HAC-BIC 2.00 0.21 0.55 0.34 0.72
C-4 UO-DPMM 13.7 0.73 0.68 0.71 0.28

(spkr:10, utt:15,435) HAC-BIC 4.00 0.12 0.29 0.19 0.83

Next, we discuss the convergence of the sampling procedure
in UO-DPMM. For that purpose, experiments were conducted
with the same dataset but different seeds of a pseudo-random
number generator. Figure 2 shows the K values obtained from
UO-DPMM. The eight lines in each figure show the respective
results from the eight trials using the different seeds. This
figure shows that all samples from all trials converge to the
unique distributions. This result indicates that the proposed
method is robust against the local optima problem depending
on the initial states.

Finally, we discuss computational costs. In the experiment
for C-4, UO-DPMM took 11.8 seconds per iteration and
588 seconds for 50 iterations on average when Intel Xeon
3.00 GHz was used. UO-DPMM required comparatively less
computation time because of its fast convergence, although
sampling-based methods generally require many iterations
until the value of the samples converges. Figure 2 shows
that all samples converge to the unique distributions within
30 iterations for all datasets. The advantage of UO-DPMM
is yielded by using utterance-oriented sampling. The general
Gibbs sampler induces the slow convergence speed due to its
sampling procedure in which only one sample is reassigned
in each iteration. In contrast, the utterance-oriented sampling
simultaneously reassigns a set of frames in each iteration.

V. DISCUSSION

We employed nonparametric Bayesian techniques to make
it possible to estimate the number of speakers in the model-
based speaker clustering system. A recently proposed sticky

hierarchical Dirichlet process hidden Markov model (HDP-
HMM) [17] is another approach to incorporate a nonparamet-
ric Bayesian manner in model-based speaker clustering. Here,
we discuss the difference between UO-DPMM and HDP-
HMM.

The most obvious difference is a generative unit. The unit
is an utterance in UO-DPMM but a frame in HDP-HMM.
This difference affects the definition of latent variables and the
inference method of those variables. In UO-DPMM, the latent
variable is defined for each utterance, which is composed of
a set of frames, and sampled from the posterior distribution
conditioned on the other utterances. In HDP-HMM, on the
other hand, the latent variable is defined for each frame and
sampled from the posterior distribution conditioned on the
other frames. UO-DPMM, therefore, converges much faster
than HDP-HMM when the boundaries of speech are given.
In fact, HDP-HMM needs over 10,000 iterations of Gibbs
sampling and is hard to apply on the large-scale data that
we deal with in the present study.

In this paper, we introduced MCMC-based approach to
estimate the model structure of UO-DPMM. Frame-wise
observation approach for DPMM is addressed in previous
researches [7], [18]. In these methods, however, MCMC-based
approach is not applicable because sampling of frame-wise
hidden variables requires impractically heavy computational
cost. In order to avoid this computation, these methods in-
troduce the deterministic approach based on stick-breaking
process [7] and variational Bayesian method [18]. These
methods however often suffer from local solutions and over-
learning problems. The proposed UO-DPMM, on the other
hand, realizes MCMC-based approach by introducing the
utterance-oriented assumption.

VI. CONCLUSION AND FUTURE WORK

A nonparametric Bayesian speaker modeling based on UO-
DPMM was proposed to make it possible to estimate the
number of speakers in model-based speaker clustering. The ex-
perimental comparison demonstrated that the proposed method
was successfully applied to speaker clustering on practically
large-scale data and outperformed the existing hierarchical
agglomerative clustering method.

The present study assumed that each speaker is distributed
in accordance with a Gaussian. The speaker distribution can
be represented by a GMM instead of a single Gaussian,
and each utterance can be assumed to be generated from a
mixture of these GMMs (MoGMMs). GMM-based speaker
distributions have been applied to the HAC-based speaker
clustering, i.e., HAC-GMM. We have also already developed
utterance-oriented speaker modeling with MoGMMs for the
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(a) T-1 (b) T-2

(c) C-1 (d) C-2

(e) C-3 (f) C-4

Fig. 2. K values obtained from proposed method for (a) T-1, (b) T-2, (c) C-1, (d) C-2, (e) C-3 and (f) C-4. Eight lines in each figure show results of eight
trials using different seeds.

finite speakers [2], [3]. In future, we aim to derive an effective
Gibbs sampling algorithm to incorporate the GMM-based
speaker distributions in UO-DPMM and compare it with HAC-
GMM.
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APPENDIX

This appendix derives the joint posterior distribution
p(O,Z) described in Eq. 5 along with the Dirichlet and
Gaussian-Gamma conjugate priors.

Priors:
The Dirichlet distribution is written as

P (h) = D(h|h0)

=
Γ(h0)

S · Γ(h0)

∏
i

h
h0

S −1
i (24)

The Gaussian-Gamma distributions for the parameter of the
i-th cluster are written as

p(Θi)

= p(µi,Σi|ξ0, η0,µ0,Σ0)

=
∏
i

N (µi|µ0, (ξ0)−1Σi)
∏
d

G(σdd|η0, σ0
dd)

=
∏
i

∏
d

ξ0

(2π)1/2(σi,dd)1/2
exp

{
−ξ0(µi,d − µ0

d)
2

2σi,dd

}
· 1

Γ(η0)
(σ0

dd)
η0

2 σ−η0+1
i,dd exp

(
− σ0

dd

2σi,dd

)

=
∏
i

(ξ0)
D
2

(∏
d σ

0
dd

) η0

2

(2π)D/2Γ(η0)
D
2

(∏
d

σi,dd

)−η0+ 1
2

· exp

{
−
∑
d

1

2σi,dd

(
ξ0(µi,d − µ0

d)
2 + σ0

dd

)}

=
∏
i

1

Z(ξ0, η0,µ0,Σ0)

(∏
d

σi,dd

)−η0+ 1
2

· exp

{
−
∑
d

1

2σdd

(
ξ0(µi,d − µ0

d)
2 + σ0

dd

)}

(25)

where,

Z(ξ0, η0,µ0,Σ0) =
(2π)

D
2 Γ(η0)D

(ξ0)
D
2 (
∏

d σ
0
dd)

η0

2

(26)

Joint distribution:
We derive the joint distribution for {O,Θ} by conditioning

on the latent variable Z as follows:

p(O,Θ|Z)
= p(O|Z,Θ)p(Θ)

=
∏
u,t

p(out|µzu ,Σzu)
∏
i

p(µi,Σi|ξ0, η0,µ0,Σ0)

=
∏
u,t

 (2π)
D
2

Z(ξ0, η0,µ0,Σ0)

(∏
d

σzt,dd

)− 1
2


· exp

[
−
∑
u

∑
t

∑
d

{
(out,d − µzt,d)

2

2σzt,dd

}]

· exp

[
−
∑
i

∑
d

1

2σi,dd

{
ξ0(µi,d − µ0

d)
2 + σ0

dd

}]

=
∏
i


(2π)

n
frm
i

D

2

Z(ξ0, η0,µ0,Σ0)

(∏
d

σi,dd

)−
n
frm
i
2


· exp

[
−
∑
i

∑
d

1

2σi,dd

{
ξ̃i (µi,d − µ̃i,d)

2
+ σ̃i,dd

}]

=
∏
i

(2π)
n
frm
i

D

2 Z(ξ̃i, η̃i, µ̃i, Σ̃i)

Z(ξ0, η0,µ0,Σ0)

· N
(
µ̃i, ξ̃

−1
i Σi

)∏
d

G (η̃i, σ̃i,dd)

(27)

Marginalized distribution:
We derive the likelihood for the complete data

case, p(O,Z), by marginalizing the joint distribution
p(O,Z,Θ,h) = p(O,Θ|Z)p(Z,h) with respect to the
hyper-parameters {h,Θ}.

First, we derive the likelihood P (Z) by marginalizing
p(Z,h) with respect to {wi,h,Θi}i. Assuming the indepen-
dence of the utterance-level latent variables zu, this can be
analytically derived as follows:

P (Z) =

∫
p(h)

U∏
u=1

P (zu|h)dh

=
Γ(
∑

i h
0
i )∏

i Γ(h
0
i )

∫ S∏
i=1

h
∑

u δ(zu,i)+h0
i−1

i dhi

=
Γ(
∑

i h
0
i )∏

i Γ(h
0
i )

∏
i Γ(h̃i)

Γ(
∑

i h̃i)

(28)

Finally, we derive the likelihood p(Θ) by marginalizing
p(O,Θ) with respect to the model parameter Θ. By using
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Eq. 27, this can be analytically derived as follows:

p(O|Z)

=

∫
p(O|Z,Θ)p(Θ)dΘ

=

∫
p(O,Θ|Z)dΘ

=
∏
i

(2π)
n
frm
i

D

2
Z(ξ̃i, η̃i, µ̃i, Σ̃i)

Z(ξ0, η0,µ0,Σ0)

·
∫
N
(
µi, ξ̃

−1
i Σi

)
dµi

∏
d

∫
G (η̃i, σ̃i,dd) dσi,dd

=
∏
i

(2π)
n
frm
i

D

2
Z(ξ̃i, η̃i, µ̃i, Σ̃i)

Z(ξ0, η0,µ0,Σ0)

=
∏
i

(2π)−
n
frm
i

D

2

(ξ0)
D
2

(
Γ
(

η0

2

))−D(∏
d σ

0
dd

) η0

2

(ξ̃i)
D
2

(
Γ
(

η̃i

2

))−D

(
∏

d σ̃i,dd)
η̃i
2

(29)

By using Eqs. 28 and 29, the marginalized distribution for the
complete data case can be finally described as follows:

p(O,Z) = p(O|Z)P (Z)

=
Γ(
∑

i h
0)∏

i Γ(h
0)

∏
i Γ(h̃i)

Γ(
∑

i h̃i)

∏
i

(2π)−
n
frm
i

D

2

·


(ξ0)

D
2

(
Γ
(

η0

2

))−D (∏
d σ

0
dd

) η0

2

(ξ̃i)
D
2

(
Γ
(

η̃i

2

))−D

(
∏

d σ̃i,dd)
η̃i
2


(30)
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