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Abstract
Privacy-preserving data release mechanisms aim to simultaneously minimize information-
leakage with respect to sensitive data and distortion with respect to useful data. Depen-
dencies between sensitive and useful data results in a privacy-utility tradeoff that has strong
connections to generalized rate-distortion problems. In this work, we study how the optimal
privacy-utility tradeoff region is affected by constraints on the data that is directly available
as input to the release mechanism. In particular, we consider the availability of only sensitive
data, only useful data, and both (full data). We show that a general hierarchy holds, that
is, the tradeoff region given only the sensitive data is no larger than the region given only
the useful data, which in turn is clearly no larger than the region given both sensitive and
useful data. In addition, we determine conditions under which the tradeoff region given only
the useful data coincides with that given full data. This is based on the common information
between the sensitive and useful data.
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Abstract—Privacy-preserving data release mechanisms aim
to simultaneously minimize information-leakage with respect
to sensitive data and distortion with respect to useful data.
Dependencies between sensitive and useful data results in a
privacy-utility tradeoff that has strong connections to generalized
rate-distortion problems. In this work, we study how the optimal
privacy-utility tradeoff region is affected by constraints on the
data that is directly available as input to the release mechanism.
In particular, we consider the availability of only sensitive data,
only useful data, and both (full data). We show that a general
hierarchy holds, that is, the tradeoff region given only the
sensitive data is no larger than the region given only the useful
data, which in turn is clearly no larger than the region given both
sensitive and useful data. In addition, we determine conditions
under which the tradeoff region given only the useful data
coincides with that given full data. This is based on the common
information between the sensitive and useful data.

I. INTRODUCTION

The objective of privacy-preserving data release is to pro-
vide useful data with minimal distortion while simultaneously
minimizing the sensitive data revealed. Dependencies between
the sensitive and useful data results in a privacy-utility trade-
off that has strong connections to generalized rate-distortion
problems [1]. In this work, we study how the optimal privacy-
utility tradeoff region is affected by constraints on the data that
is directly available as input to the release mechanism. Such
constraints are potentially motivated by applications where
either the sensitive or useful data is not directly observable.
For example, the useful data may be an unknown property that
must be inferred from only the sensitive data. Alternatively,
the constraints may be used to capture the limitations of a
particular approach, such as output-perturbation data release
mechanisms that take only the useful data as input, while
ignoring the remaining sensitive data.

The general challenge of privacy-preserving data release
has been the aim of a broad and varied field of study. Basic
attempts to anonymize data have led to widely publicized leaks
of sensitive information, such as [2], [3]. These have subse-
quently motivated a wide variety of statistical formulations and
techniques for preserving privacy, such as k-anonymity [4],
L-diversity [5], t-closeness [6], and differential privacy [7].
Our work concerns a non-asymptotic, information-theoretic
treatment of this problem, such as in [1], [8], where the
sensitive data and useful data are modeled as random variables
X and Y , respectively, and mechanism design is the problem
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Fig. 1. The observation W of the sensitive data X and useful data Y is
input to the data release mechanism which produces the released data Z.

of constructing channels that obtain the optimal privacy-utility
tradeoffs. While we consider a non-asymptotic, single-letter
problem formulation, there are also related asymptotic coding
problems that additionally consider communication efficiency
in a rate-distortion-privacy tradeoff, as studied in [9], [10].

In this work, we generalize the framework of [1], [8] to
address scenarios with data constraints and allow for general
utility metrics. In particular, we compare three scenarios,
where only the sensitive data, only the useful data, or both
(full data) are available. We show that a general hierarchy
holds, that is, the tradeoff region given only the sensitive data
is no larger than the region given only the useful data, which
in turn is clearly no larger than the region given both sensitive
and useful data. We also show that if the common information
and mutual information between the sensitive and useful data
are equal1, then the tradeoff region given only the useful data
coincides with that given full data, indicating when output
perturbation is optimal despite unavailability of the sensitive
data. Conversely, when the common information and mutual
information are not equal, there exist distortion metrics where
the tradeoff regions are not the same, indicating that output
perturbation can be strictly suboptimal compared to the full
data scenario.

II. PRIVACY-UTILITY TRADEOFF PROBLEM

Let X , Y , and W be discrete random variables (RVs)
distributed on finite alphabets X , Y and W , respectively. Let
X denote the sensitive information that the user wishes to
conceal, Y the useful information that the user is willing
to reveal, and W the directly observable data, which may
represent a noisy observation of X and/or Y . The target
application dictates (or imposes a specific structure upon) the
data model PXY and observation constraints PW |XY so that
(X,Y,W ) ∼ PXY PW |XY . The data release mechanism takes

1This statement applies for both the Wyner [11] and Gács-Körner [12]
notions of common information.



W as input and (randomly) generates output Z in a given
finite alphabet Z dictated by the target application (perhaps
implicitly via the distortion metric). Note that Z must satisfy
the Markov chain (X,Y )→W → Z and the mechanism can
be specified by the conditional distribution PZ|W . A diagram
of the overall system is shown in Figure 1.

The mechanism should be designed such that Z provides
application-specific utility through the information it reveals
about Y while protecting privacy by limiting the information
it reveals about X .

A commonly used information-theoretic measure of privacy-
leakage which quantifies the amount of information about X
leaked by Z (on average) is the mutual information I(X;Z)
between them. We adopt this privacy-leakage measure in our
work. Privacy is inversely related to I(X;Z): privacy is
stronger if the privacy-leakage I(X;Z) is smaller. We have
perfect privacy if I(X;Z) = 0. Thus, the aim is to minimize
I(X;Z) in order to maximize privacy.

The amount of utility that the mechanism-output Z pro-
vides about the useful information represented by Y can
be quantified through a general distortion metric D(PY Z),
which is a functional that assigns values in [0,∞) to input
joint distributions of Y and Z. Utility and distortion have
an inverse relationship to each other: smaller the distortion,
greater the utility. Thus, the aim is to minimize D(PY Z). The
specification of the distortion metric is dictated by the target
application. Example distortion metrics include: 1) expected
distortion, where D(PY Z) = E[d(Y,Z)] for some distortion
function d : Y × Z → [0,∞), 2) conditional entropy,
where D(PY Z) = H(Y |Z) which corresponds to the goal of
maximizing the mutual information between Y and Z. Note
that probability of error Pr(Y 6= Z) is an example within the
class of expected distortion metrics where d(y, z) is equal to
zero when y = z and equal to one otherwise.

Given a target application that specifies the data model
PXY , observation model PW |XY , and distortion metric
D(PY Z), the goal of the system designer is to construct
mechanisms PZ|W that provide the desired levels of privacy
and utility while achieving the optimal tradeoff. We say that
particular privacy-utility pair (ε, δ) ∈ [0,∞)2 is achievable
if there exists a mechanism PZ|W with privacy leakage
I(X;Z) ≤ ε and distortion D(PY Z) ≤ δ. The set of all
achievable privacy-utility pairs forms the achievable region
of privacy-utility tradeoffs. Particularly, we are interested the
optimal boundary of this region, which can be expressed by
the optimization problem

π(δ) , inf
PZ|W

I(X;Z)

s.t. D(PY Z) ≤ δ,
(1)

which determines the optimal privacy leakage as a function of
the allowable distortion δ.

The distortion constraint, D(PY Z) ≤ δ, can be equivalently
expressed as a constraint on the conditional distribution PZ|Y
since PY is fixed by the data model. Note that a mechanism
specified by PZ|W determines the corresponding PZ|Y through

the linear relationship2

PZ|Y (z|y) =
∑

w∈W,x∈X
PZ|W (z|w)PW |XY (w|x, y)PX|Y (x|y). (2)

Similarly, PZ|X is determined by PZ|W through the linear
relationship

PZ|X(z|x) =
∑

w∈W,y∈Y
PZ|W (z|w)PW |XY (w|x, y)PY |X(y|x). (3)

While general observation models PW |XY can be consid-
ered within this framework, particular structures may be of
interest for certain applications. We highlight and explore
the relationship between three specific cases for W , while
allowing a general distribution PXY between the sensitive and
private data.

Full Data: In this case, PXY is general but W = (X,Y ),
capturing the situation when the mechanism has direct access
to both the sensitive and useful information. For this case, the
privacy-utility optimization problem of (1) reduces to

πFD(δ) , inf
PZ|XY

I(X;Z)

s.t. D(PY Z) ≤ δ.
(4)

Output Perturbation: In this case, PXY is general but
W = Y , capturing the situation when the mechanism only
has direct access to the useful information. For this case, the
privacy-utility optimization problem of (1) reduces to

πOP(δ) , inf
PZ|Y

I(X;Z)

s.t. D(PY Z) ≤ δ,
(5)

where PZ|X(z|x) =
∑

y∈Y PZ|Y (z|y)PY |X(y|x). Note: this
optimization is equivalent to that of (4), with the Markov chain
X → Y → Z imposed as an additional constraint.

Inference: In this case, PXY is general but W = X ,
capturing the situation when the mechanism only has direct
access to the sensitive information and the useful information,
such as a discrete hidden state, is not directly available or
observable and needs to be inferred indirectly by processing
the sensitive information. For this case, the privacy-utility
optimization problem of (1) reduces to

πINF(δ) , inf
PZ|X

I(X;Z)

s.t. D(PY Z) ≤ δ,
(6)

where PZ|Y (z|y) =
∑

x∈X PZ|X(z|x)PX|Y (x|y). Note: this
optimization is equivalent to that of (4), with the Markov chain
Y → X → Z imposed as an additional constraint.

III. CONVEXITY AND RATE-DISTORTION CONNECTIONS

Here we discuss how for certain combinations of utility
metrics and data constraints, the resulting tradeoff problem
is equivalent to generalized rate-distortion and privacy-utility
problems encountered in the literature. We also indicate how

2This and all other statements involving conditional distributions are defined
only for symbols in the support of the conditioned random variables.



the tradeoff optimizations of (4), (5), and (6) will become
convex for certain utility metrics.

Note that in the general tradeoff optimization problem (1),
the distributions PZ|X and PZ|Y are linear functions of the
optimization variable PZ|W as shown by (2) and (3), while
PXYW and its marginals are fixed. Thus, the convexity prop-
erties of the problem will follow from the convexity properties
of the privacy and distortion metrics as functions of PZ|X
and PZ|Y , respectively. The mutual information privacy metric
I(X;Z) is a convex objective function of PZ|X and hence also
of the optimization variable in each of the three scenarios given
by (4), (5), and (6). Thus, for all convex distortion functionals,
the overall optimization problem will be convex. For example,
any expected distortion utility metric D(PY Z) = E[d(Y,Z)]
is a linear and therefore a convex functional.

The privacy-utility tradeoff problem as considered by [1],
[8] assumes the output perturbation constraint (see (5)), while
using expected distortion D(PY Z) = E[d(Y,Z)] as the
utility metric, and mutual information I(X;Z) as the privacy
metric. Additionally, [8] also considers maximum information
leakage, maxz∈Z [H(X)−H(X|Z = z)], as an alternative
privacy metric. As noted by [8], the optimization problem for
the full data scenario (see (4)) can be recast as an optimization
with the output perturbation constraint, by redefining the
useful data as Y ′ := (X,Y ) and the distortion function as
d′(Y ′, Z) := d(Y,Z). This approach allows one to solve
the optimization problem for the full data scenario using an
equivalent optimization problem appearing in the output per-
turbation scenario. However, the distinction between these two
scenarios should not be overlooked, as the output perturbation
scenario represents a fundamentally different problem where
the sensitive data is not available, which in general results in a
strictly smaller privacy-utility tradeoff region (see Theorem 3).

The inference scenario given by (6) with expected distor-
tion D(PY Z) = E[d(Y, Z)] as the utility metric is equiv-
alent to an indirect rate-distortion problem [13]. As shown
by Witsenhausen in [13], indirect rate-distortion problems
can be converted to direct ones with the modified distor-
tion metric d′(x, z) := E[d(Y,Z)|X = x, Z = z] =∑

y∈Y d(y, z)PY |X(y|x) since Y → X → Z forms a Markov
chain.

When the utility metric is conditional entropy, i.e.,
D(PY Z) = H(Y |Z), the equivalent utility objective is to
maximize the mutual information I(Y ;Z), and the distortion
constraint can be equivalently written as I(Y ;Z) ≥ δ′, where
δ′ := H(Y )−δ. Thus, this results in the optimization problem
of choosing Z to minimize I(X;Z) subject to a lower bound
on I(Y ;Z). This problem in the inference scenario, where the
additional Markov chain constraint Y → X → Z is imposed,
is equivalent to the Information Bottleneck problem considered
in [14], which also provides a generalization of the Blahut-
Arimoto algorithm [15] to perform this optimization. For the
output perturbation scenario, where the additional Markov
chain constraint X → Y → Z is imposed, this problem
is called the Privacy Funnel and was proposed by [16]. In
all three scenarios, the optimization problems are non-convex

as the feasible regions are non-convex, specifically, they are
complements of convex regions.

IV. RESULTS

For a given (fixed) distribution PXY between the sensitive
and private data, we can study how the optimal privacy-utility
tradeoff changes across the aforementioned three different
cases of W . This is of practical interest, since the restrictions
on W in the inference and output perturbation mechanisms
might be considered not just for when these situations inher-
ently arise in the given application, but also for simplifying
mechanism design and optimization.

Since the optimization problems of (5) and (6) are equiv-
alent to (4) with an additional Markov chain constraint, we
immediately have that πFD(δ) ≤ πOP(δ) and πFD(δ) ≤ πINF(δ)
for any δ. This implies that the achievable privacy-utility
regions of both the inference mechanism and output perturba-
tion mechanism are contained within the achievable privacy-
utility region of the full data mechanism, which intuitively
follows since the full data mechanism only has more input data
available. The next theorem establishes the general relationship
between the inference and output perturbation tradeoff regions.

Theorem 1. (Output Perturbation better than Inference)
For any data model PXY and distortion metric D(PY Z), the
achievable privacy-utility region for the output perturbation
mechanism (when W = Y ) contains the achievable privacy-
utility region for the inference mechanism (when W = X),
that is, πOP(δ) ≤ πINF(δ) for any δ.

Combining the preceding theorem with the earlier obser-
vations, we have that πFD(δ) ≤ πOP(δ) ≤ πINF(δ) for any δ.
Thus, in general, full data offers a better privacy-utility tradeoff
than output perturbation, which in turn offers a better privacy-
utility tradeoff than inference.

The next theorem establishes that for a certain class of
joint distributions PXY , the full data and output perturbation
mechanisms achieve the same optimal privacy-utility tradeoff.
Thus, for this class of PXY , the full data mechanism design
can be simplified to the design of an output perturbation
mechanism, which can ignore the sensitive data X without
degrading the privacy-utility performance. Specifically, this
class is characterized by those joint distributions PXY for
which common information C(X;Y ) = I(X;Y ). Some of
the key properties of common information that are needed for
proving Theorems 2 and 3 are summarized in Appendix A.

Theorem 2. (Sufficient Conditions for the General Optimal-
ity of Output Perturbation) For any distortion metric D(PY Z)
and any data model PXY where C(X;Y ) = I(X;Y ), the
achievable privacy-utility region for the output perturbation
mechanism (when W = Y ) is the same as the achievable
privacy-utility region for the full data mechanism (when W =
(X,Y )), that is, πOP(δ) = πFD(δ) for any distortion metric
and any δ.

Theorem 2 establishes that C(X;Y ) = I(X;Y ) is a suffi-
cient condition on PXY such that, for any general distortion



metric, full data mechanisms cannot provide better privacy-
utility tradeoffs than the output perturbation mechanisms. Our
next theorem gives the converse result, establishing that for
data models where C(X;Y ) 6= I(X;Y ), output perturbation
mechanisms are generally suboptimal, that is, there exists a
distortion metric such that the full data mechanisms provide a
strictly better privacy-utility tradeoff.

Theorem 3. (Necessary Conditions for the General Opti-
mality of Output Perturbation) For any data model PXY

where C(X;Y ) 6= I(X;Y ), there exists a distortion metric
D(PY Z) such that the achievable privacy-utility region for
the output perturbation mechanism (when W = Y ) is strictly
smaller than the achievable privacy-utility region for the full
data mechanism (when W = (X,Y )), that is, there exists
δ ≥ 0 such that πOP(δ) > πFD(δ).

V. CONCLUSION

In this paper, we formulated the privacy-utility tradeoff
problem where the data release mechanism has limited access
to the entire data composed of useful and sensitive parts. Based
on the information theoretic formulation, we compared the
privacy-utility tradeoff regions attained by full data, output
perturbation, and inference mechanisms, which have access
to the entire data, only useful data, and only sensitive data,
respectively.

We first observed that the full data mechanism provides
the best privacy-utility tradeoff and then showed that the
output perturbation mechanism provides a better privacy-
utility tradeoff than the inference mechanism. We showed
that if the common and mutual information between useful
and sensitive data are identical, then the full data mechanism
simplifies to the output perturbation mechanism. Conversely,
we showed that if the common information is not equal to
mutual information, then the tradeoff region achieved by full
data mechanism is strictly larger than the one achieved by the
output perturbation mechanism.

Throughout the paper, we allowed for a general distortion
metric, but focused specifically on mutual information as the
privacy metric. In our ongoing work, we are investigating the
privacy-utility tradeoff problem for general privacy metrics
and observation models, and the evaluation of tradeoff regions
attainable for non-trivial data models.
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APPENDIX A
PROPERTIES OF COMMON INFORMATION

The graphical representation of PXY is the bipartite graph
with an edge between x ∈ X and y ∈ Y if and only if
PXY (x, y) > 0. The common part U of two random variables
(X,Y ) is defined as the (unique) label of the connected
component of the graphical representation of PXY in which
(X,Y ) falls. Note that U is a deterministic function of X
alone and also a deterministic function of Y alone.

The Gács-Körner common information of two random vari-
ables (X,Y ) is given by entropy of the common part, that
is, C(X;Y ) := H(U), and has the operational significance
of being the maximum number of common bits per symbol
that can be independently extracted from X and Y [12]. In
general, C(X;Y ) ≤ I(X;Y ), with equality if and only if
X → U → Y forms a Markov chain [17]. Since our results
are only concerned with whether C(X;Y ) = I(X;Y ), our
theorem statements are unchanged if we use instead the Wyner
notion of common information (see [11]), since it is also equal
to mutual information if and only if X → U → Y forms a
Markov chain [17].

We give the following lemma which aids our proof of
Theorem 3 in Appendix D.

Lemma 1. If C(X;Y ) 6= I(X;Y ), then there exist x0, x1 ∈
X and y0, y1 ∈ Y , such that y0 6= y1, PXY (x0, y0) > 0,
PXY (x0, y1) > 0, and PX|Y (x1|y0) 6= PX|Y (x1|y1).

Proof: We will prove this lemma by showing the con-
trapositive, that is, if there does not exist x0, x1 ∈ X and
y0, y1 ∈ Y satisfying the conditions stated in the lemma,



then C(X;Y ) = I(X;Y ). First, note that if for all x0 ∈ X
and y0, y1 ∈ Y , either y0 = y1, PXY (x0, y0) = 0, or
PXY (x0, y1) = 0, then Y is a deterministic function of X ,
which would result in C(X;Y ) = I(X;Y ). Thus, we are
left with showing that for all x0 ∈ X and y0, y1 ∈ Y , with
y0 6= y1, PXY (x0, y0) > 0, and PXY (x0, y1) > 0, if we
also have that for all x1 ∈ X , PX|Y (x1|y0) = PX|Y (x1|y1),
then C(X;Y ) = I(X;Y ). This follows since these condi-
tions would imply that for the common part U of (X,Y ),
X → U → Y forms a Markov chain.

APPENDIX B
PROOF OF THEOREM 1

It is sufficient to show that for any mechanism PZ|X that is
a feasible solution in the inference optimization of (6), there is
a corresponding mechanism PZ′|Y for the output perturbation
optimization of (5) that achieves the same distortion and only
lesser or equal privacy-leakage.

Let PZ|X be a mechanism in the feasible region of the in-
ference optimization problem of (6). Define the corresponding
mechanism for the output perturbation optimization of (5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|X(z|x)PX|Y (x|y).

Let (X,Y, Z, Z ′) ∼ PXY PZ|XPZ′|Y . Note that by con-
struction, (Y,Z) and (Y, Z ′) have the same distribution
PY PZ′|Y . Thus, both mechanisms achieve the same distortion
D(PY PZ′|Y ) and I(Y ;Z) = I(Y ;Z ′). Further, by construc-
tion, Y → X → Z and X → Y → Z ′ form Markov chains.
Thus, by the data processing inequality,

I(X;Z ′) ≤ I(Y ;Z ′) = I(Y ;Z) ≤ I(X;Z),

showing that the output perturbation mechanism has only
lesser or equal privacy-leakage.

APPENDIX C
PROOF OF THEOREM 2

Since πFD(δ) ≤ πOP(δ) is immediate, we only need to show
that πOP(δ) ≤ πFD(δ). It is sufficient to show that for any
mechanism PZ|XY that is a feasible solution in the full data
optimization of (4), there is a corresponding mechanism PZ′|Y
for the output perturbation optimization of (5) that achieves the
same distortion and only lesser or equal privacy-leakage.

Let PZ|XY be a mechanism in the feasible region of the full
data optimization problem of (4). Define the corresponding
mechanism for the output perturbation optimization of (5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|XY (z|x, y)PX|Y (x|y).

Let (X,Y, Z, Z ′) ∼ PXY PZ|XY PZ′|Y , and let U be the
common part of (X,Y ), where, by construction, U is a
deterministic function of either X alone or Y alone. Since
C(X;Y ) = I(X;Y ), we have that X → U → Y forms
a Markov chain, i.e., I(X;Y |U) = 0. By construction,
X → Y → Z ′ also forms a Markov chain, and hence

I(X;Z ′|UY ) = I(X;Z ′|Y ) = 0, since U is deterministic
function of Y . Given these two Markov chains, we have

0 = I(X;Y |U) + I(X;Z ′|UY )

= I(X;Y Z ′|U)

= I(X;Z ′|U) + I(X;Y |UZ ′)

≥ I(X;Z ′|U),

and hence I(X;Z ′|U) = 0, i.e., X → U → Z ′ also forms a
Markov chain. Continuing, we can show the desired privacy-
leakage inequality,

I(X;Z ′)
(a)
= I(XU ;Z ′)

= I(U ;Z ′) + I(X;Z ′|U)

(b)
= I(U ;Z)

≤ I(U ;Z) + I(X;Z|U)

= I(XU ;Z)

(c)
= I(X;Z),

where (a) and (c) follow from U being a deterministic
function of X , and (b) follows from the fact that PY Z = PY Z′

(and hence PUZ = PUZ′ ) by construction and the Markov
chain X → U → Z ′.

APPENDIX D
PROOF OF THEOREM 3

We will show the following result, which is key to the proof.

Lemma 2. If C(X;Y ) 6= I(X;Y ) then there exist random
variables Z and Z ′ with PY Z = PY Z′ , such that X → Y →
Z ′ forms a Markov chain, I(X;Z) = 0, and I(X;Z ′) > 0.

The proof of Theorem 3 then follows by defining the
distortion functional (metric) D(PY Z) to equal 1 for the par-
ticular choice of PY Z′ in Lemma 2 and to equal 2 otherwise,
and choosing δ = 1. This choice for the distortion metric
and distortion level restricts the feasible output perturbation
mechanism to only PZ′|Y , which by Lemma 2 results in
πOP (δ) = I(X;Z ′) > 0. However, Lemma 2 also ensures
the existence of Z produced by a full data mechanism PZ|XY

that results in πFD(δ) = I(X;Z) = 0.
Using the symbols (x0, x1, y0, y1) shown to exist by

Lemma 1, we can prove Lemma 2 by constructing a binary Z
with alphabet Z = {0, 1} as follows. Choose any s ∈ (0, 1)
and any t ∈

(
0,min{s′/PY |X(y1|x0), s/PY |X(y0|x0)}

)
,

where s′ := (1− s). Define Z with (X,Y, Z) ∼ PXY PZ|XY ,
where

PZ|XY (0|x, y) :=


s+ tPY |X(y1|x0), if (x, y) = (x0, y0),

s− tPY |X(y0|x0), if (x, y) = (x0, y1),

s, otherwise.

The choice of s and t ensures that PZ|XY (0|x, y) ∈ (0, 1)
for all (x, y) ∈ X ×Y . This construction of PZ|XY makes Z
independent of X , since for all x ∈ X in the support of PX ,

PZ|X(0|x) =
∑
y∈Y

PZ|XY (0|x, y)PY |X(y|x) = s.



With the above construction, we have

PZ|Y (0|y) =
∑
x∈X

PZ|XY (0|x, y)PX|Y (x|y)

=


s+ tPY |X(y1|x0)PX|Y (x0|y0), if y = y0,

s− tPY |X(y0|x0)PX|Y (x0|y1), if y = y1,

s, otherwise.

Next, we construct binary Z ′ such that X → Y → Z ′ forms
a Markov chain, with (X,Y, Z ′) ∼ PXY PZ′|Y , where we set
PZ′|Y := PZ|Y . Then, consider

PZ′|X(0|x) =
∑
y∈Y

PZ′|Y (0|y)PY |X(y|x)

=
∑
y∈Y

PZ|Y (0|y)PY |X(y|x)

= s+ tPY |X(y1|x0)PX|Y (x0|y0)PY |X(y0|x)
− tPY |X(y0|x0)PX|Y (x0|y1)PY |X(y1|x)

= s+ tPX(x0)PY |X(y0|x0)PY |X(y1|x0)
× [PX|Y (x|y0)− PX|Y (x|y1)]/PX(x).

Finally, we show that PZ′|X(0|x) is not constant for all x ∈ X
in the support of PX , which implies that Z ′ is not independent
of X , i.e., I(X;Z ′) > 0. This can be proved by contradiction,
by supposing that PZ′|X(0|x) is constant for all x ∈ X in the
support of PX . Then, for all x ∈ X ,

PX|Y (x|y0)− PX|Y (x|y1) = cPX(x),

for some constant c. By summing over all x ∈ X , we have
that c = 0. This would imply that PX|Y (x|y0) = PX|Y (x|y1)
for all x ∈ X , contradicting the existence of x1 ∈ X given by
Lemma 1 for the choice of y0 and y1.
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