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and conveying the data independently of how it was captured. A point cloud consists of a
set of coordinates indicating the location of each point, along with one or more attributes
such as color associated with each point. Because the size of point cloud data can be quite
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block-based prediction and transform coding to compres point cloud attributes. Experimental
results using a modified shape-adaptive DCT tailored for use in 3-D point clouds and a
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Abstract

With the increased proliferation of applications using 3-D capture technologies for appli-
cations such as virtual reality, mobile mapping, scanning of historical artifacts, and 3-D
printing, representing these kinds of data as 3-D point clouds has become a popular method
for storing and conveying the data independently of how it was captured. A point cloud
consists of a set of coordinates indicating the location of each point, along with one or more
attributes such as color associated with each point. Because the size of point cloud data
can be quite large, compression is needed to efficiently store or transmit this data. This
paper, motivated by techniques currently being used for image and video coding, proposes
methods using 3-D block-based prediction and transform coding to compress point cloud
attributes. Experimental results using a modified shape-adaptive DCT tailored for use in
3-D point clouds and a benchmark using 3-D graph transforms are shown.

1. Introduction

With the recent advancements and reductions in cost of 3-D capture technologies,
there has been an increasingly wide proliferation of 3-D applications such as virtual
reality, mobile mapping, scanning of historical artifacts, and 3-D printing. These
applications use different kinds of sensors to capture the world in three dimensions,
producing massive amounts of data. Representing these kinds of data as 3-D point
clouds has become a practical method for storing and conveying the data indepen-
dently of how it was captured.

A point cloud consists of a set of coordinates or meshes indicating the location
of each point, along with one or more attributes such as color associated with each
point. Point clouds that include connectivity information among vertices are known
as structured or organized point clouds. Point clouds that contain point locations
without connectivity information are unstructured or unorganized. Much of the ear-
lier work in reducing the size of point clouds, primarily structured, has come from
the computer graphics community. Many of those approaches achieved compression
reducing the number of vertices in triangular or polygonal meshes, for example by
fitting surfaces or splines to the meshes. Surveys of many of these methods can be
found in [1], [2], and [3].

Block-based and hierarchical octree-based approaches have also been used to com-
press point clouds. For example, octree representations were used to code structured
point clouds (meshes) in [4], and more recent work on coding unstructured point
clouds in real time is described in [5]. The work of latter paper was implemented



using the open-source Point Cloud Library (PCL) [6]. An example of this point cloud
compression implementation is available at [7].

Separately from the work on processing point clouds, significant progress has been
made over the past several decades on compressing images and video. Popular stan-
dards such as JPEG [8], H.264/AVC [9] and HEVC [10] are in widespread use today.
These image and video coding standards also utilize block-based and/or hierarchical
methods for coding pixels. Concepts from these image and video coders have also
been used to compress point clouds. For example, H.264/AVC was used to compress
point clouds in a teleoperation environment [11]. Significant improvements in coding
efficiency were reported in [12], in which the PCL-based implementation of [5] was
extended to use JPEG to code blocks of attribute values. As mentioned in the pre-
viously cited surveys, signal processing based approaches such as wavelets have also
been used to compress point clouds. Another recent work that reports significant
improvement over the PCL-based implementation of [5] is described in [13], in which
a graph transform is applied to blocks of point cloud attributes.

In this paper, we build upon the idea of using approaches from image and video
coding to improve the compression efficiency of point cloud coding systems. Specif-
ically, we extend the concepts of block-based intra prediction and shape-adaptive
transforms for compressing attributes from unstructured point clouds. In Section 2,
we describe how point clouds are preprocessed and partitioned to comprise 3-D blocks
of points on a uniform grid. Section 3 describes the 3-D block-based intra prediction
of point cloud attributes. In Section 4, we introduce a modified shape-adaptive dis-
crete cosine transform, and we describe an existing graph transform that is used for
benchmarking. Section 5 presents experimental results, followed by a summary and
conclusions in Section 6.

2. Point cloud preprocessing and block partitioning

Sometimes, point clouds are already arranged in a format that is amenable to block
processing. For example, the graph transform in [13] operates on point clouds that are
generated using the sparse voxelization approach described in [14]. The data in these
point clouds are already arranged on a 3-D grid where each direction has dimensions
2j with j being a level within a voxel hierarchy, and the points in each hierarchy
level have integer coordinates. Partitioning such a point cloud into blocks, where
the points are already arranged on a hierarchical integer grid, is straightforward. In
general, however, point clouds captured using other techniques may have floating-
point coordinate positions, not necessarily arranged on a grid.

In order to be able to process point clouds without constraint to any specific
capture technique, we preprocess the original point cloud data so the points are
located on a uniform grid. This preprocessing can also serve as a form of down-
sampling. This process is shown in Figure 1.

The first step of preprocessing is decomposing the point cloud to an octree repre-
sentation. Related works using this kind of octree decomposition, implemented using
the PCL software [6], can be found in [5] and [12]. Given an minimum octree res-
olution r, the point cloud is partitioned into into octree nodes. If a node contains
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Figure 1: Preprocessing and block partitioning

no points, it is removed from the octree. If a node contains one or more points, it
is further partitioned. This process continues until the size, or edge length of a leaf
node reaches the minimum octree resolution r.

Each leaf node corresponds to a point output by this preprocessing step. The
location of the output point is set to the geometric center of the leaf node, and the
value of any attribute associated with the output point is set to the average value of
the one or more points contained within the leaf node. This process ensures that the
points output by the preprocessing step are located on a 3-D grid having resolution
r.

Now that the points lie on a uniform grid, the region encompassing the set of
points is partitioned into 3-D blocks of size k × k × k. A block contains k3 positions
or elements, however, many of these positions will be empty unless the point cloud
happens to contain points at every possible position in each block.

At this stage, the difference between these 3-D point cloud blocks and 2-D blocks
of pixels from image processing becomes apparent. In traditional image processing,
all elements of a 2-D block correspond to pixel positions present in an image. In other
words, the block is fully occupied. In the block-based point cloud processing in this
paper, the 3-D blocks are not necessarily fully occupied. They can contain between
1 and k3 elements. Tools such as intra prediction and block-based transforms used
for image and video coding therefore cannot be directly applied to these 3-D blocks;
modifications are needed to accommodate the empty positions.
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Figure 2: 3-D block-based prediction

3. Intra prediction of 3-D point cloud blocks

Using prediction among blocks to reduce redundancy is a common technique in cur-
rent coding standards such as H.264/AVC and HEVC. Neighboring decoded blocks
are used to predict pixels in the current block, and then the prediction error or resid-
uals are optionally transformed and then are coded in a bit-stream. For this paper,
we will introduce a block prediction scheme for proof-of-concept purposes using a
low-complexity prediction architecture in which the prediction is available from three
directions. As shown in Figure 2a, points in the current block can be predicted from
points contained in non-empty neighboring blocks, when adjacent neighboring blocks
are available. The point cloud encoder performs prediction in the x, y, and z direc-
tions and chooses the prediction direction that yields the least distortion. Coding
the current block without prediction from neighboring blocks is also considered if it
yields lower distortion. Therefore, the current block has the option of being coded
with or without prediction.

As mentioned in Section 2, many of the k3 positions in a blocks may not be occu-
pied by points. Moreover, points within a block may not necessarily be located along
the edges of the block. The intra prediction techniques of H.264/AVC and HEVC
use pixels along the neighboring blocks’ boundaries to compute predictions for the
current block. For our 3-D point cloud block prediction method, we will use multi-
variate interpolation/extrapolation to compute a projection of the attribute values in
the neighboring block onto the adjacent edge plane of the current block. An example
of this step is shown in Figure 2b. Here, data from known points are used to compute
an interpolation or prediction located at an arbitrary point, in this case, along the
boundary between the previous block and the current block. In our case, suppose the
block above the current block contains a set of point locations P = {p1,p2, . . . ,pN},
with the points having associated attribute values A = {a1,a2, . . . ,aN}. Given a
point location along the boundary pboundary, the prediction takes the form

aboundary = f(P ,A,pboundary) (1)



where aboundary is the predicted value of the attribute at the boundary. For this
paper, we use nearest-neighbor interpolation/extrapolation, which reduces complexity
and simplifies the handling of degenerate cases in which the neighboring block contains
only one or two points, or when all the points in the neighboring block are aligned
on a plane perpendicular to the projection plane.

Once the attribute values along the boundary plane are estimated, these values are
then projected or replicated into the current block along the direction of prediction,
similar to how prediction values are projected into the current block for the directional
intra prediction used in standards such as H.264/AVC and HEVC. These projected
and replicated values are then used to predict attributes for points present in the
current block. For example, if the neighboring block in the y direction is used for
prediction, then the set of points along the boundary pboundary are indexed in two
dimensions, i.e. p(x, z), and the attribute for a point the current block pcurr(x, y, z)
is predicted using aboundary(x, z) for all values of y.

4. Transforms for 3-D block data

After the prediction process, a 3-D block containing prediction residuals for each point
in the current block, or the current block itself if it yields lower coding distortion,
is ready to be transformed. As was the case for the prediction process, not all the
positions in the block may be occupied by a point. The transform must therefore be
designed so it will work on these potentially sparse blocks. We consider two types of
transforms: a new variant of the shape-adaptive discrete cosine transform (SA-DCT)
designed for 3-D point cloud attribute compression, and a 3-D graph transform.

4.1 Modified shape-adaptive DCT

The shape-adaptive DCT (SA-DCT) [15] is a well-known transform designed to code
arbitrarily shaped regions in images. A region is defined by a contour, e.g. around
a foreground region of an image. All the pixels inside the region are shifted and
then transformed in two dimensions using orthogonal DCTs of varying lengths. The
contour positions and quantized transform coefficients are then signaled in a bit-
stream. For our 3-D point cloud application, we extend this concept to treat the
presence of points in a 3-D block as a “region” to be coded, and positions in the
block that do not contain points are considered as being outside the region. For the
attribute coding application presented in this paper, the point positions are already
available at the decoder irrespective of what kind of transform is used. Since the
modified SA-DCT regions are defined by the point locations and not by the attribute
values of the points, there is no need to perform operations like foreground and
background segmentation and coding of contours as is typically done when the SA-
DCT is used for image coding.

The modified SA-DCT process is shown in Figure 3. Given a 3-D block of attribute
values or prediction residual values, the points present in the block are shifted line
by line along dimension 1 toward the border so that there are no empty positions
in the block along that border, except for empty lines. One-dimensional DCTs are
applied along each occupied column of data along dimension 1, starting at the block
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Figure 3: Modified shape-adaptive DCT

border and ending at the last data point present in the block for each column. If
there are empty positions between the first and last points in the column, we insert
filler values, e.g. zero. An alternative method that will be considered for future work
would be to shift the remaining data in the column into those empty positions, thus
reducing the lengths of the DCTs.

After the DCTs are applied along dimension 1, the shift and transform process is
repeated on the transform coefficients along dimension 2. Finally, the process is ap-
plied along the third dimension, resulting in one DC and one or more AC coefficients.
Compression is achieved by quantizing the coefficients.

4.2 3-D graph transform

One benchmark transform on 3-D blocks of attributes uses a graph transform, which
draws upon the research performed on graph signal processing [16]. Because our point
cloud is now partitioned into 3-D blocks, we can adapt the graph transform described
in [13] into our framework by applying the graph transform on each block. For full
details on how the graph transform is implemented, the reader is referred to [13].

The basic idea behind the graph transform is illustrated in Figure 4. A graph is
formed by connecting adjacent points present in the 3-D block. Two points pi and pj

are adjacent if they are at most one position apart in any dimension. Graph weights
wij are assigned to each connection between points pi and pj, also known as a graph
edge. The weights of a graph edge are inversely proportional to the distance between
the two connected points. As described in [13], an adjacency matrix A is populated
by the weights, from which a graph Laplacian matrix Q is computed. The eigenvector
matrix of Q is used as a transform for the attribute values. After the transform is
applied, each connected sub-graph has the equivalent of one DC coefficient and one
or more AC coefficients. In contrast to the modified SA-DCT which always produces
only one DC coefficient, the graph transform method will generate one DC coefficient
for every disjoint connected set of points in the block, and each DC coefficient will
have a set of corresponding AC coefficients. In the example of Figure 4, the graph is
composed of two disjoint sub-graphs, so the resulting graph transform will produce
two DC coefficients and two corresponding sets of AC coefficients.
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Figure 4: Example of block containing two disjoint sets of connected points, and the
corresponding adjacency graph

5. Experimental results

A flowchart showing the preprocessing and coding steps used for experiments is shown
in Figure 5. The input point cloud is preprocessed as described in Section 2 to
generate a point cloud situated on a uniform grid. Next, the block partitioning, intra
prediction, and transform steps are applied. We assume a sign-magnitude coder will
be used to code the transform coefficients, so the initial results presented in this
paper report the entropies of the data to be signaled vs. PSNR metrics computed
against the uniform-grid point cloud input to the block processing system. A uniform
quantizer is used to quantize the transform coefficients, with a fixed step size set
to determine the amount of compression. For the graph transform experiment, we
report additional results using bit rates achieved when an arithmetic coder is used to
code the quantized coefficients.

The input point cloud used for experiments is the Statue Klimt PointCloud.ply

unstructured point cloud described in [17] and shown in Figure 1. This point cloud
contains approximately 500k points, with each point having a floating-point (x, y, z)
location with a corresponding RGB color attribute. We convert the RGB color at-
tributes to YCbCr [18] luminance and chrominance values and use the 8-bit luminance
value Y as the attribute used in all experiments. The octree resolution used for pre-
processing is r = 1.0. Coding performance as luminance PSNR vs. the entropy in
bits needed to represent the attribute, assuming a sign-magnitude representation of
the coefficients, is shown in Figure 6. Coding performance results for block sizes
k = 5 and k = 10 are shown, along with results for when one large block is used to
contain the entire point cloud. Generally, the modified SA-DCT outperformed the
graph transform approach. Part of this difference in performance may be because
the graph transform typically produced a DC coefficient that was significantly larger
than the AC coefficients, and for sparse blocks containing few connected points, more
DC coefficients are present in each block when the graph transform is used. More
bits are therefore needed to represent that larger number of DC coefficients.
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Figure 5: Preprocessing and coding steps used for experiments

The graph transform approach in [13] uses a custom-designed arithmetic coder
to code the transform coefficients, where the eigenvalues associated with the eigen-
vectors of the graph transform matrix are used to compute the diversity parameters
of the Laplacian distributions used to derive the probability tables. We also apply
a Laplacian-based arithmetic encoder to code the graph transform coefficients, and
we compare the arithmetic coding results to the estimated entropies in Figure 7. As
expected, the arithmetic coding results are closer to the entropies as the block size
becomes larger, and when the entire point cloud is treated as one large block, the
arithmetic coding performance is almost the same as the entropy.

6. Summary and Conclusions

In this paper, we extended some of the concepts used to code images and video to
compress attributes from unstructured point clouds. Point clouds are first prepro-
cessed so the points are aligned to a uniform grid, and then the grid is partitioned
into 3-D blocks. Unlike image/video processing in which all points in a 2-D block
correspond to a pixel position, our 3-D blocks are not necessarily fully occupied by
points. After performing 3-D block-based intra prediction, we transform and quantize
the resulting data. A modification of the shape-adaptive DCT is presented, which is
used to transform these blocks of data that can have missing points. Compression
performance using the modified 3-D shape-adaptive DCT and 3-D graph transform
benchmark are presented, along with results comparing entropy performance to arith-
metic coding performance for the graph transform method. Future work will focus on
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Figure 7: Entropy and arithmetic coding performance with graph transform approach

reducing the number of DC coefficients generated by very sparse blocks, developing
entropy coders suitable for coding the modified shape-adaptive DCT coefficients, and
incorporating more concepts from state of the art codec such as HEVC into the point
cloud compression system.
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