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Abstract

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems.
The chordal completion based maximal clique decomposition is the preferred approach for
exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP
decomposition is primal degenerate when the SDP has a low rank solution. We also de-
rive conditions under which the multipliers in the maximal cliquebased SDP formulation is
not unique. Numerical experiments demonstrate that the SDP decomposition results in the
schurcomplement matrix of the Interior Point Method (IPM) having higher condition number
than for the original SDP formulation.
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Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Arvind U. Raghunathan and Andrew V. Knyazev

Abstract— Exploiting sparsity in Semidefinite Programs
(SDP) is critical to solving large-scale problems. The chordal
completion based maximal clique decomposition is the preferred
approach for exploiting sparsity in SDPs. In this paper, we show
that the maximal clique-based SDP decomposition is primal de-
generate when the SDP has a low rank solution. We also derive
conditions under which the multipliers in the maximal clique-
based SDP formulation is not unique. Numerical experiments
demonstrate that the SDP decomposition results in the schur-
complement matrix of the Interior Point Method (IPM) having
higher condition number than for the original SDP formulation.

I. INTRODUCTION

Semidefinite programming (SDP) is a subfield of convex
optimization concerned with the optimization of a linear ob-
jective function over the intersection of the cone of symmet-
ric positive semidefinite matrices with an affine space. Many
problems in operations research and combinatorial optimiza-
tion can be modeled or approximated as SDPs [3], [13]. For
an SDP defined over the set of n X n symmetric matrices the
number of unknowns in the problem grows as O(n?). Since
the seminal work of Nesterov and Nemirovskii [9], Interior
Point Methods (IPMs) have become the preferred approach
for solving SDPs. The complexity of the step computation
in IPM is typically O(mn? + m?n?) [10].

Given the quadratic, cubic growth in m,n of the compu-
tational cost respectively, it is imperative to exploit problem
structure in solving large-scale SDPs. For SDPs modeling
practical applications, the data matrices involved are typically
sparse. Denote by, N ={1,...,n} and by E = {(i,j) | i #
j, (i,7)—th entry of some data matrix is non-zero}. The set
E, also called the aggregate sparsity pattern, represents the
non-zero entries in the objective and constraint matrices, that
is the sparsity in the problem data. Consequently, only the
entries of the matrix variable corresponding to the aggregate
sparsity pattern are involved in the problem. From the com-
putational stand-point it is desirable to work only with such
entries to reduce the number of unknowns in the problem
from O(n?) to O(|E|). However, the semidefinite constraint
couples all of the entries of the symmetric matrix. Fukuda et
al [4] exploit the result of Grone et al [6] to decompose the
SDP defined on n x n symmetric matrices into smaller sized
matrices. Grone et al [6, Theorem 7] states that for a graph
G(N, E) that is chordal: the positive semidefinite condition on
n X n matrix is equivalent to positive semidefinite condition
on submatrices corresponding to the maximal cliques that
cover all the nodes and edges in the graph G(N, E). Nakata et
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al [8] implemented the decomposition within a SDP software
package SDPA [14] and demonstrated the scalability of the
approach. More recently, the authors of SDPA have also
extended the implementation to take advantage of multi-core
architectures [15], [16]. More recently, Kim and Kojima [7]
extended this approach for solving semidefinite relaxations
of polynomial optimization problems.

A. Our Contribution

In this paper, we study the properties of the conversion
approach of [4], [8] which converts the original SDP into an
SDP with multiple sub-matrices and additional equality con-
straints. We show that the SDP resulting from the conversion
approach is primal degenerate when the SDP solution has
low-rank. We show that this can occur even when the solution
to the original SDP is primal non-degenerate. Thus, this
degeneracy is a consequence of the conversion approach. We
also derive conditions under which the dual multipliers are
non-unique. We demonstrate through numerical experiments
that condition numbers of schur-complement matrix of IPM
are much higher for the conversion approach as compared
with the original SDP formulation. To the best of our
knowledge, this is the first result describing the degeneracy
of the conversion approach.

The rest of the paper is organized as follows. §II introduces
the SDP formulation and the maximal clique decomposi-
tion. The conversion approach [4] is described in §III. §IV
proves the primal degeneracy and dual non-uniqueness of the
conversion approach. Numerical experiments validating the
results are presented in §V, followed by conclusions in §VI.

B. Notation

In the following, R denotes the set of reals and R" is
the space of n dimensional column vectors. For a vector
x € R™, [z]; denotes the i-th component of = and 0,, € R”
denotes the zero vector, e¢; € R"™ the vector with 1 for the i-th
component and O otherwise. The notation diag(Aq,...,A,)
denotes a diagonal matrix with the values A; on the diagonal.
Given a vector v € R"™ and subset C C {1,...,n}, vc
denotes the subvector composed of [v]; for i € C. S"
denotes the set of n X n real symmetric matrices and S’}
(S? ;) denotes the set of n x n real symmetric positive semi-
definite (definite) matrices. Further, A > (>)0 denotes that
A € ST(St,). For a matrix A € S", [A];; denotes the
(4, 7)-th entry of the matrix A and rank(A) denotes the rank
of A. For a pair of matrices A;, Ay € S™, range{ A1, A3}
denotes the subspace of symmetric matrices spanned by
Ay, As. Denote by N = {1,...,n}. The notation A e B
denotes the standard trace inner product between symmetric



matrices Ae B = Y71 | 37" [A];;[B]; for A, B € S™. For
sets C5,C; C Nand A € S™, Ac,c, is a |Cs| x|C;| submatrix
of A formed by removing rows and columns of A that are
not in C,, C; respectively.

C. Background on Graph Theory [2]

In this paper we only consider undirected graphs. Given
a graph G(N,F), a cycle in F is a sequence of vertices
{il,ig,...,iq} such that ij #* ijl, (ij,ij+1) € F and
(i¢,11) € F. The cycle in F with ¢ edges is called a cycle
of length ¢. Given a cycle {i1,...,i,} in F, a chord is an
edge (ij,1;.) for j,j' that are non-adjacent in the cycle. A
graph G(N, F) is said to be chordal if every cycle of length
greater than 3 has a chord. Given G(N,F), F' D F is called
a chordal extension if the graph G'(N,F’) is chordal. Given
a graph G(N,F), C C N is called a clique if it satisfies the
property that (¢, j) € F forall ¢, j € C. A clique C is maximal
if there does not exist clique C’ O C. For a chordal graph, the
maximal cliques can be arranged as a tree, called clique tree,
T(N,E) in which N = {Cq,...,C,} and (C,,Cy) € € are
edges between the cliques. The interested reader is referred
to [2] for an in-depth exposition of chordal graphs and clique
trees.

D. Matrix Terminology [4]

For a set F C N x N, S*(F) denotes the set of symmetric
n X n matrices with only entries in F specified. A matrix
X € S*(F) is called a symmetric partially specified matrix.
A matrix X € S" is called a completion of X € S"(F) if
[X1;; = [X]i; for all (i,5) € F. A completion X € S" of
X € S"(F) that is positive semidefinite (definite) is said to
be a positive semidefinite (definite) completion of X.

II. MAXIMAL CLIQUE DECOMPOSITION IN SDP
Consider the following SDP:
min Age X
XESTI
st. A,e X =b,Vp=1,...,m (1)
X>0

where A, € S™. Denote by E = {(¢,7) | i # j, [Aplij #
0 for some 0 < p < m}. The set E, also called the aggregate
sparsity pattern [4], represents the non-zero entries in the
objective and constraint matrices, that is the sparsity in the
problem data. Clearly, only the entries [X];, for (j,k) €
E feature in the objective and equality constraints in (1).
In a number of practical applications, |E| << n?. From a
computational standpoint, it is desirable to work only with
[X];x for (j,k) € E. In other words, we want to solve
_min
Xes®
s.t. Z [Ap]”[X]” :bp Vp: 1,...,m (2)
(4,4)€E
X has a positive semidefinite completion.

The result of [6] provides the conditions under which such
a completion exist. We state this below in a form convenient
for further development as in [4, Theorem 2.5].

Lemma 1 ([4, Theorem 2.5]): Let G(N,F) be a chordal
graph and let {Cy,....C/} be the family of all maximal
cliques. Then, X € S"(F) has a positive semidefinite
(definite) completion if and only if X satisfies

Xc.c,=0(=0)Vs=1,...,0 3)
Using Lemma 1 Fukuda et al [4] proposed the conversion
approach which we describe next.

III. CONVERSION APPROACH

Given the graph G(N,E), with E the aggregate sparsity
pattern of SDP (1), the conversion approach [4] proceeds by
: (a) computing a chordal extension F O E; (b) the set of
maximal cliques N' = {Cy,...,C,} of the graph G(N,F)
are identified; (c) the clique tree T (N, E) is computed; and
(d) a SDP is posed in terms of matrices defined on the
set of maximal cliques that is equivalent to SDP in (1).
Additional equality constraints are introduced to equate the
overlapping entries in the maximal cliques. Prior to stating
the SDP formulation we introduce notation that facilitates
further development. Denote,

os: N —{1,...,]C,s|} mapping the original
indices to the ordering in the clique C,
{MMUﬂSmeﬁ|@ﬂEC&

As os()os(j) = 1
[As,p] s(1)os(d) 0 otherwise

1 T T -
Esﬂvj = 5 <605(i)605(j) + 605(]-)605(7:)> Vi, j € Cs
(s,t) eT <= (C5,C) €&
Ca =CsNGC
“4)
where e, ;) € RIC:|. The SDP in (1) can be equivalently
posed using the above notation as,

¢
min E Asoe X,
X, €eSlICsl 1 ’

s=

14
s.t.Z;As,poXs:bp Vp=1,....,m )

EyijoXs=FE ;j0X, Vi<ji,je€Cy,
(s,t) e &

X, =0 Vs=1,...,0.

We refer to the SDP in (5) as the conversion SDP. In the
following we present and analyze an analogue of the conver-
sion approach for linear programming. The analysis shows
that primal degeneracy results for the linear program under
certain assumptions. Formal proofs for primal degeneracy of
conversion SDP are left for §IV.

A. Intuition for Primal Degeneracy

To motivate the primal degeneracy of conversion SDP we
provide a conversion approach inspired decomposition for



linear programs (LPs). Consider a LP of the form,

min aj
TER™
s.t.aZx:prp:L...,m (6)

x>0

where a, € R"” and b € R™. Suppose we decompose the LP

(6) using the sets in {Cy,...,Cy} as,
l
. T
wsrgﬂéﬂs\ ;ao’sxs
l
s.t.Zaszs:prpzl,‘..,m (7)
s=1
["ES]O.EP@) = [xt:lg'%P(i) Vie Csh (S,t) eé&
rs>0Vs=1,...,¢
where

olP N = {1, ]G}

[a’87p]o'£‘P(i) — { [Clg]z
With the above definition of the matrices it is easy to see that
the LPs in (6) and (7) are equivalent. Further, if 2* is an
optimal solution to LP (6) then, x = x¢_ is optimal for (7).
Suppose, there exists ¢ € C; N C; for which [2*]; = 0 then,
the set of constraints

if s = min{t|i € C;}
otherwise ’

[xs]ogp(i) = [l”t]agp(i)
[Ts]ore i) = 0, [¢]ore () = 0

are linearly dependent. The linear dependency of the con-
straints can be avoided if the nonnegative bounds on shared
entries are enforced exactly once for each index . For
example, the non negativity constraints in (7) can be enforced
for each 7 € N:

[Ts]orp (s > 0 if s = min{t|i € C;}.

In summary the degeneracy occurs due to a shared el-
ement activating the bound at the solution. In a direct
analogy, the conversion SDP in (5) is primal degenerate
when, rank(Xc,,c,,) < |Cyl|. This degeneracy is directly
attributable to the duplication of the semidefinite constraints
for the submatrix Xc_,c., in both X; = 0 and X; = 0
for every pair of (s,t) € T : s # t. Unfortunately, the
duplication of the semidefinite constraints cannot be avoided
in the case of SDP without losing the linearity. We provide
formal arguments for the degeneracy and dual multiplicity
of the conversion SDP (5) in the following section.

IV. PRIMAL DEGENERACY & DUAL NON-UNIQUENESS
OF CONVERSION APPROACH

We review the conditions for primal non-degeneracy and
dual uniqueness for the SDP (1) introduced by Alizadeh et
al [1] in §IV-A. We also extend this notion to that of the
conversion SDP (5). §IV-B proves the primal degeneracy
result for the conversion approach and §IV-C proves the dual
non-uniqueness.

A. Primal Nondegeneracy and Dual Uniqueness in SDPs

Suppose X € S" with rank(X) = r with eigenvalue
decomposition X = Qdiag(A1,...,\,0,...,0)Q7T then,
the tangent space T x of rank-r symmetric matrices is

_ u V| r
and the space orthogonal to Tx is given by,
L _ 0 0| r

The null space of equality constraints N4 is,

UeS', Ve R”<"’”>} (8)

W e S"‘T} . 9)

Nyg={Y eS"A,eY =0Vp=1,...,m} (10)
and the space orthogonal to N4 is given by,
N} = span{{4,}7, }. (1)

Definition 1 ([1]): Suppose X is primal feasible for (1)
with rank(X) = r, then X is primal nondegenerate if the
following equivalent conditions hold:

Tx + Ny =S" (12a)
Tx NNg = {0} (12b)
m

ZapApeT)L( = o, =0Vp=1,....m. (120)

=1

Lel;nma 2 ([1, Theorem 2]): Suppose X* € S™ is primal
nondegenerate and optimal for (1). Then the optimal dual
multipliers (¢*,.S*), for the equality and positive semidef-
inite constraints respectively, satisfying the first order opti-
mality conditions (13) are unique,

A+ > (A, -5 =0
p=l (13)
Ape X =b,Vp=1,....m
X* 5" = 0,X*S* =0.
We extend the notions of non-degeneracy to the conversion

SDP (5) in the following. The tangent space for the matrices
X, is defined as,

Ts,X = {Qé |:‘£']T ‘(;:l QZ

UesS™, Ve R”X(CS|"”S)}

(14)
and the space orthogonal to T x is

Tj_,X = {Qs |:8 V(I)/:| Qz

where X, = Q diag(\,...,\r.,0,...,0) (Qs)T and ry =
rank(X,). The tangent space for the conversion SDP (5) is
denoted by T and the space orthogonal to the tangent space
is denoted by T+ are,

W e S'CS“} (15)

4 iR ¢ ol
T=x3-1Tsx and T~ = x;_; T x.



The null space of equality constraints for the conversion
SDP (9) is,

¢

D AspeY, =0Vp=1,....m
-1

EsijoYs=FE;;0Y;
Vi<j,i,j€ Cq,l(s,t)el

»

N={ x!_Y, e sl

(16)
The nullspace for conversion SDP (5) couples all the matrices
corresponding to cliques. The space orthogonal to N denoted
by Nt is a lot more convenient to work with since it can
be written as product of spaces. The range space of the
constraint matrices corresponding to a particular clique C,
is given by,

Zap s,p
Nj': + Z Z 657&1] s,17

t:(s,t)€E1<jECst

Z Z 5ts,ijEs,ij

t:(t,s)€EE i<jECys

for some «,
=1,...,m,

ﬁst,ij (s,t) € €&,

1<j€Cy

not all 0

7)
The range space of the conversion SDP is,

STRY Bt for some ({ap};”:l, Cas)
s=1"" s
{Bst,ij}(s,pyee.i<ijec,,) # 0

Analogous to Definiton 1, the conditions for primal non-
degeneracy of conversion SDP is stated below.

Definition 2: Suppose {X,}’_, is primal feasible for (5)
with rank(X;) = rs, then {X,} is primal nondegenerate if
the following equivalent conditions hold:

T+N=8"
T+ NN+ = {0}

(192)
(19b)

where 71 = Zi:l 1C[(ICs[ + 1),

B. Primal Degeneracy of Conversion SDP

Assumption 1: The SDP (1) has an optimal solution X*
with rank(X™*) < |Cg| for some (s,t) € £.

In the following we denote by X the optimal solution to
the conversion SDP (5). The following result is immediate.

Lemma 3: rank(X}) <rank(X*)Vs=1,... L

Proof: By definition, X7 = X¢ - is a principal

submatrix of X*. The claim follows by noting that the rank
of any principal sub-matrix cannot exceed that of the original
matrix. |
The following result characterizes the eigenvectors of the
matrices X7, X/ for cliques s,t satisfying Assumption 1.
Without loss of generality and for ease of presentation, we
assume that the shared nodes of C,, C; are ordered as,

04(i) = 0u(i) and 1 < 0,(i) < |Cot] Vi € Cor.  (20)

Lemma 4: Suppose Assumption 1 holds for cliques s, t.
Then, there exists u € R/l such that v, = [u” OTCQ\CS,\]T
is a O-eigenvector of X and v; = [u” 0jc, " is a O-
eigenvector of X;.

Proof: From Lemma 3, we have that
rank(X ), rank(X;) < rank(X*) < |Cs| where the
second inequality follows from Assumption 1. Applying
Lemma 3 X, X/, it is also true that the submatrix of
X7, X} corresponding to C,; must have rank smaller than
|Cs¢|. Hence, there exists a vector u € RICt| that lies in
the nullspace of the principal submatrix Xc_,c,,. Defining
the vector vy = [u” 0f¢ \c,|" and taking the right and left
products with vs of the matrix X,

vI X, = ul (X c,cou=0 =

stcst

= v; is in the span of 0 — eigenvectors of X

=—> v, is a 0 — eigenvector of X

The claim on X} can be proved similarly and this completes
the proof. [ ]
We can now state the main result on the primal degeneracy
of the conversion SDP (5).
Theorem 1: Suppose Assumption 1 holds. Then, the so-
lution X} of the conversion SDP (5) is primal degenerate.
Proof: Suppose there exists scalars o, Bs1,i; 7 0 such
that

ZapAsp+ Z Z ﬁstm 5,17 GT

(s,t)e€i<j€eCst

ZapAm,— > > BeijErij € T
p=1

(s,t)e€i1<jeCysy

2y

holds. Then, we have that X} is primal degenerate since the
condition in (19b) does not hold. In the following we will
denote by S, t a pair of cliques satisfying Assumption 1. We
will show in the following that:

Biii; for (s,t) = (5,1)

. (22)
0 otherwise

Qp = Ovﬂst,ij = {

satisfies (21). The choice in (22) results in the left hand side
of (21) evaluating to 0 for all (s,t) # (5,%). Thus, (21)
holds trivially for all (s,t) # (3,%) since 0 € Tj‘,X*,T#X*.
In the rest of the proof we will consider only the cliques
(s,) = (3,1).

By Lemma 4 and (15), v,0! € Ty y. and vof € T#X*.
Define ﬁst’” = Es ;o (vsvl) = vl E, ;;v5. By definition of

ﬁst,ij,
Z Bst,ijEs,ij~

1<j€Cs

(23)

By definition of vs,v; in Lemma 4 and (20), we also have
that vv] = >i<jec., Dst,ijErij- Thus, the choice in (22)
satisfies (21). This completes the proof. |

C. Dual Non-uniqueness in Conversion SDP

The solution X and multipliers (7 ,, &%, ;;, 57 satisfy the

first order optimality conditions for the conversion SDP (5)



forall s=1,...,¢,

SO+ZCSPAP+ Z Z gstlj 8,ij

t:(s,t)eE1<jE€Cst
* j—
E E gtsﬂ'j s, s =0
t:(t,s)€Ei<jECs

4
ZASJ’ e X =b,
s=1

Es,ij [ ] X;k = Et,ij o Xt*
X*,8% = 0,X3S* =0.

(24)

Theorem 2: Suppose Assumption 1 holds and v! S¥v, >
0 or v} Sfv; > 0. Then, the optimal multipliers for the
conversion SDP (5) are not unique.
Proof:  Let (J,, &5, ;.S satisty the first order opti-
mality conditions (24) for the conversion SDP (5). In the
following we show by construction the existence of other
multipliers satisfying the conditions in (24) for the cliques
(5,1) as defined in Theorem 1. In the rest of the proof
(s,t) = (5,1). Suppose, vI'S*v, = v > 0. Since, v, is a 0-
eigenvector of X (Lemma 4) and X*S* = 0 (24) we have
that v, is also an eigenvector of S¥. Thus, for all 0 < < 7,

XIS — dvsvl) = 0,87 — dvvl =0 25)
X/ (S; + dvewl) =0,8; + dvwl =0

Following the proof of Theorem 1 we have that there exist
Bst,i; such that (23) holds. Hence,

Z (€st,ij — 0Bst.ij) Esij — (8 — dvgvl)

i<j€eCst

* *
E Eat,ijEsyi — S5

i<j€Cst
Further, by Lemma 4 we also have that,

- Z (fst Jij 5631& zg)Et ij

i<j€Cst

> &iBui— S

i<jECat

— (87 + bvp])

+ > 0BaiiErij — dvwf

i<j€Cs
* * T T
E fst,ijEt,ij =S¢ + 0(vvy —vevy )
1<j€Cst
* *
E fst,ijEt,ij - St .
1<j€Cs

Thus, for any 0 < 6 <~ replacing &, .,

S, 8¢ with

gst ,ig + 5/35t 1_77 57}5 S + (SUt’Ut

will also result in satisfaction of the first order optimality
conditions in (24). Hence, the multipliers are not unique
when v1 S*vg > 0. The proof follows in an identical fashion
for vl Sfv; > 0. This completes the proof. ]

V. NUMERICAL EXPERIMENTS

We demonstrate the results of the previous section through
numerical experiments on a simple SDP. Consider the SDP
with data

Ag =

1
0 T
1 epey by =1Vp=1,...,4.
1

1
1
0
1

O~ = =

(26)
This form of the SDP has the same structure as the
SDP relaxation for MAXCUT investigated by Goemans and
Williamson [5]. The eigenvalues and eigenvectors of A are,

19 L 1
-1 0 0 O 12 ) V2 %
A_0100Q 3 —» 0 =3
CTlo oo Ty 5 00 =3
0 0 0 3 19 -1 _1

2 V2 2

Since Ay has the smallest eigenvalue to be —1, the optimal
solution to the SDP defined by (26) is X* = 4qiqf
where ¢ is the first column of @y (the eigenvector of Ay
corresponding to eigenvalue of —1). The factor 4 ensures
that the equality constraints are satisfied.

A. Primal Non-degeneracy of X*

We show in the following that X* is primal non-
degenerate by verifying satisfaction of (12c). From the
definition of T% in (9) we have,

(o} 8o

o) # 0 such that (12¢) holds,

WeS3}

Suppose, there exists (o, .. .,

ZapA €Ty = ZapQTApQ [0 12/] 27)
p=1 p=1

for some W € S2. In order for (27) to hold the first column
of the matrix on the left hand side of (27) must be O for
some {a,} # 0. We show that such O does not exist. The
condition that the first column of Z QT ApQ is 0 can
be written as,

4
o_ZapQ ApQer = ay(QTey) (e q1)
p=1
A a1gh
Z Q ep [@1 pO‘p) QT
p=1 4(q1)4

Since Q7 is a non-singular matrix the above can only occur
if [q1]pap = 0 for all p. Since [¢q1], 7# O this implies that

p = 0 for all p = 1,...,4. Thus, (27) does not hold for
oy, # 0 which proves the non-degeneracy of X*.



(@) G(N,E) (b) G(N,F)

ﬁ)

(© C1={2,3,1},C2 ={2,3,4}

Fig. 1. (a) Graph of the original SDP. (b) Graph of the chordal completion.
(c) Maximal clique decomposition of chordal completion.

B. Conversion SDP

For the data in (26), the graph of the aggregate sparsity
pattern is depicted in Figure 1(a). The G(N, E) is a 4-cycle
and not chordal. Figure 1(b) shows a chordal extension where
an edge (2,3) has been introduced. The maximal clique
decomposition for the chordal graph G(N,F) is shown in
Figure 1(c). Note that we have ordered the vertices such
that (20) for ease of presentation. The conversion SDP is
given by the data,

C, ={2,3,1},Cy, ={2,3,4}

101 00 1
Aio=10 1 1|,4,0=10 0 1
111 111

T . _ T _
A1 =esez,A21 =0;A12 =e1e7,A422 =0

T . _ — T
Az =ege5,A23=0;A414=0,A54 = eze3

T T T
Ei 99 = FEs99 =e1e],E123 = E2 23 = - (e1€; +e2e7 )

5
E 33 = B3 33 = egel.
The solution to the conversion SDP is,
1 1 -1
Xi=X=1|1 1 -1
-1 -1 1

Clearly, rank(X7) = rank(X35) = 1 < |C;2|. Hence, Assump-
tion 1 holds. The eigenvectors and eigenvalues of X7 are,

1 1 1
oo [H 7
A=1000l.=|5 7% 5
0 0 0 1 2
V3 V6
C. Primal Degeneracy
As shown in Lemma 4 we have that u = [% %]T is

a O-eigenvector of the submatrix which corresponds to the
intersection of the cliques, C12. As shown in Lemma 4, v; =
vo = [uT 0]T are O-eigenvectors of X7, X; respectively.

From the definition of Tj‘ x« it is easy to see that,

i -10 000
vl = |-+ L 0l =Q. |0 0 0|QTeT;
1Y — 2 2 1 1,X*
0 0 0 0 0 1

1
viv] = §E1,22 — B3+ §E1,33'

Similarly, it can be shown that

0 0 O
—wl =Q1|0 0 0 |QT €Tyx-
0o 0 -1
s 1 1
— V¥y = 5(—E2,22) — (—E323) + 5(—E2,33)~

Thus, there exists an element in T{ y. and Tj y. that is in
the span of the constraints that equate the elements in Cy,.
Hence, the conversion SDP is primal degenerate.
D. Non-unique Multipliers

For the original SDP, the optimal multipliers are,

—1 21 10
« -1 « (1 2 0 1
<= -1 57 = 1 0 2 1
—1 01 1 2
For the conversion SDP, multipliers satisfying (24) are
-1 0
* -1 * O * * *
Cl = 1 ,Cz = 0 >§12,22 = 1»512,23 = 0,512,33 =1
0 -1
1 0 1 1 01
Sr=10 1 1|,5; 0 1 1
1 1 2 1 1 2

Asi =Ago =

= o O

Thus it is easy to see that X;7S7 = 0 and they satisfy
strict complementarity. The same is also true of XJ and
S5. The eigenvalue of v; is 1 and satisfies the conditions
in Theorem 2 and hence, for all 0 < § <1,

St — dvvl =0, X5 (SF —dvivl) =0
* 1 *
(§12,20 — 55)E12,22 + (€12,23 + 6)E12,23
* 1 *
+ (12,33 — 55)E12,33 — (57
= &12,00E12,22 + €12 03 B12,23 + €12 33 12,33 — ST
Further, it can also be shown that,
* 1 *
(§12,20 = 50)(—F12,22) + (§72,03 + 6)(—Er2,23)

2
T
+ (&12,33 — 55)(*]512,33) -

= — {900 F1222 — 1903 F12,23 — 12 33F 12,33 — 55
S5+ dvav] = 0,X3(S5 + dvvy ) = 0.

— dvyol)

(Sék + 51)21};)
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Fig. 2. Plot of the condition number of the schur-complement matrix
in the IPM against the optimality gap. o - original SDP formulation, A -
conversion SDP.

Thus, we have that the multipliers

¢y Coy Eio00 — 55, 12,03 10, o33 — 55
S§ 4+ svvl, Sy + dvgvd

also satisfy the first order optimality conditions for con-
version SDP. This shows that there are an infinite set of
multipliers for the conversion SDP.

E. Ill-conditioning in IPM

Since the multipliers are not unique, the matrix used in the
step computation of the IPM for SDP must be singular in
the limit. Figure 2 plots the condition number of the schur-
complement matrix in SDPT3 [12] against the optimality
gap. SDPT3 takes 7 iterations to solve either formulation. But
the plot clearly shows that the condition number of the schur-
complement matrix is higher for the conversion SDP. This is
attributable to the non-uniqueness of the dual multipliers. The
plot shows that conditioning for the conversion SDP grows
as O(1/u?) as opposed to O(1/u) for non-degenerate SDPs.
This observation is consistent with the analysis of Toh [11].

VI. CONCLUSIONS & FUTURE WORK

We analyzed the conversion approach for SDP proposed
by Fukuda et al [4]. The analysis showed that for SDPs
with a low rank solution, the conversion SDP was primal
degenerate. We also provided conditions under which the
multipliers for the conversion SDP were non-unique. The
theory was exemplified using a simple 4 x 4 SDP. In the
example, the ill-conditioning in the schur-complement matrix
was greater for the conversion SDP. Nevertheless, this did not

affect the number of iterations to reach the said tolerance.
We believe the effect of the ill-conditioning is likely to be
more dramatic for larger problems and affect convergence of
IPM. This will be investigated in a future study.
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