
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Data-Driven Anytime Algorithms for Motion Planning with
Safety Guarantees

Jha, Devesh K.; Zhu, Minghui; Wang, Yebin; Ray, Asok

TR2016-041 July 06, 2016

Abstract
This paper presents a learning-based (i.e., datadriven) approach to motion planning of robotic
systems. This is motivated by controller synthesis problems for safety critical systems where
an accurate estimate of the uncertainties (e.g., unmodeled dynamics, disturbance) can im-
prove the performance of the system. The state-space of the system is built by sampling from
the state-set as well as the input set of the underlying system. The robust adaptive motion
planning problem is modeled as a learning-based approach evasion differential game, where
a machine-learning algorithm is used to update the statistical estimates of the uncertainties
from system observations. The system begins with a conservative estimate of the uncertainty
set to ensure safety of the underlying system and we relax the robustness constraints as we
get better estimates of the unmodeled uncertainty. The estimates from the machine learning
algorithm are used to refine the estimates of the controller in an anytime fashion. We show
that the values for the game converges to the optimal values with known disturbance given the
statistical estimates on the uncertainty converges. Using confidence intervals for the unmod-
eled disturbance estimated by the machine learning estimator during the transient learning
phase, we are able to guarantee safety of the robotic system with the proposed algorithms
during transience.
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Data-Driven Anytime Algorithms for

Motion Planning with Safety Guarantees

Devesh K. Jha† Minghui Zhu⋆ Yebin Wang‡ Asok Ray†

Abstract— This paper presents a learning-based (i.e., data-
driven) approach to motion planning of robotic systems. This
is motivated by controller synthesis problems for safety critical
systems where an accurate estimate of the uncertainties (e.g.,
unmodeled dynamics, disturbance) can improve the perfor-
mance of the system. The state-space of the system is built
by sampling from the state-set as well as the input set of
the underlying system. The robust adaptive motion planning
problem is modeled as a learning-based approach evasion
differential game, where a machine-learning algorithm is used
to update the statistical estimates of the uncertainties from
system observations. The system begins with a conservative
estimate of the uncertainty set to ensure safety of the underlying
system and we relax the robustness constraints as we get better
estimates of the unmodeled uncertainty. The estimates from the
machine learning algorithm are used to refine the estimates
of the controller in an anytime fashion. We show that the
values for the game converges to the optimal values with known
disturbance given the statistical estimates on the uncertainty
converges. Using confidence intervals for the unmodeled distur-
bance estimated by the machine learning estimator during the
transient learning phase, we are able to guarantee safety of the
robotic system with the proposed algorithms during transience.

I. INTRODUCTION

Motion planning is a classic problem in robotics and has

received a lot of attention in robotics, computer science and

control systems society. The basic problem of computing a

collision-free trajectory connecting an initial configuration

or state to a target region through a cluttered environment is

well-understood and fairly well-solved [15], [16]. However,

the shortcomings of the basic path planning algorithms

are revealed when considering how these algorithms are

used for controlling an autonomous robotic system using an

auxiliary controller. A fundamental problem with control of

autonomous robotic systems (e.g., self-driving cars) is safety

control i.e., ensuring the system stays in the given safety

sets while simultaneously achieving the given objectives.

It becomes difficult to ensure safety for these systems in

dynamically changing and uncertain environments while us-

ing the path planning algorithms with the decades-old Sense
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Plan Act paradigm as the reachable sets in the presence of

dynamic uncertainties are not considered.

To date, the state-of-the-art motion planning algorithms are

sampling-based (like RRT and PRM [16]) and can guarantee

asymptotic optimality [13]. More recently, some algorithms

can provide convergence rates to the optimal solution [11].

Various algorithms have been proposed to solve related

stochastic and robust motion planning in the presence of

external disturbances and uncertainties. Some approaches to

solve robust planning can be found in [6], [17], [18] and

stochastic control could be found in [5], [10], [12]. However,

most of the proposed algorithms can not provide any per-

formance guarantees for safety. Recently, a sampling-based

approach-evasion game formulation of the motion planning

problem was proposed in [20]. A robust-adaptive motion

planning algorithm in the presence of moving obstacles has

been proposed in [22]. However, it is based on open-loop

control and makes use of a model-based estimator.

Contributions: In this paper, we propose data-driven

anytime algorithms for motion planning with safety and per-

formance guarantees for the underlying autonomous robotic

system. In particular, we use incremental sampling to con-

struct the state-space of the system and synthesize a ro-

bust controller by solving an approach-evasion differential

game to reach the target set in the presence of unmodeled

uncertainty in the system. The system uses a statistical

estimator to estimate the unmodeled uncertainty based on

observations of system trajectories. These estimates are then

used by the controller to refine the estimates of the value

functions for the underlying differential game to improve

performance while preserving safety guarantees. This allows

the system to learn from data and find better policies for

performance enhancement while maintaining the desirable

safety guarantees which are critical in modern autonomous

robotic systems like self-driving cars etc..

Literature. Reinforcement learning has been widely used

to design feedback controllers for systems without know-

ing full dynamics of the underlying systems [14]. A lot

of work has been done in reinforcement learning using

different approaches like Hidden Markov Models, Bayesian

Methods, Q-learning, Temporal Difference (TD) learning [4]

etc.. However, a big concern in these algorithms is the

transient learning phase when a bad initial policy could

be disastrous for the autonomous systems. More recently,

an elegant Model Predictive Control (MPC) formulation of

the problem with safety guarantees was presented in [2]



using reachability analysis of the dynamical system and Tube

MPC for robust, learning-based control for linear systems

with asymptotic performance guarantees. Some Hamilton-

Jacobi-Issacs (HJI)-based approaches have been presented

for control applications in [1], [9]. The basic idea in these

papers is to first calculate the discriminating kernel and

let the system explore and find better policies inside the

discriminating kernel. However, there are no performance

guarantees.

II. PROBLEM FORMULATION

Consider a non-linear dynamical system governed by the

following differential equation:

ẋ(t) = f(x, u, d) = g(x, u) + d(x), (1)

where x(t) ∈ X ⊆ R
N is the system state, and u(t) ∈ U

is the control input of the system. Furthermore, g : RN ×
R

M → R
N is locally Lipschitz continuous functions which

represent the known part of the dynamics of the underlying

system. The function d : RN → R
N represents the unknown

dynamics of the system. We assume that d(x) ∈ D, where

D ∈ R
N . For system (1), the set of admissible (feedback)

control strategies is defined as:

U , {u(·) : [0,+∞) → U, measurable},

where U ⊆ R
M . Denote by φ(·;x, u, d) , {φ(t;x, u, d)}t≥0

the solution to system (1) given the initial state x, the controls

of u and the unmodeled dynamics d.

Throughout this paper, we impose the following assump-

tion on system (1):

Assumption 2.1: The following properties hold:

(A1) The sets X , U and D are compact.

(A2) The disturbance function d(x) is locally Lipschitz

continuous.

(A3) The function f is continuous in (x, u, d) and Lipschitz

continuous in x for any (u, d) ∈ U ×D.

(A4) For any pair of x ∈ X and u ∈ U , F (x, u) is convex

where the set-valued map F (x, u) , ∪d∈Df(x, u, d).

The problem of controller synthesis for the underlying

system when d(x) is unknown is formulated as an adaptive

approach-evasion game with time-varying estimates on the

disturbance. The objective of the controller is to maximize

the performance of the dynamical system which is affected

by some disturbance d(x). Disturbance (which in our case

is the unmodeled dynamics) wants to maximize the cost

of the control input u. We formalize the aforementioned

objectives as follows. Define by t(x, u, d) the first time when

the trajectory φ(·;x, u, d) hits Xgoal while staying in Xfree

before t(x, u, d). More precisely, the functional t(x, u, d) is

defined as follows:

t(x, u, d) , inf{t ≥ 0 | φ(t;x, u, d) ∈ Xgoal,

φ(s;x, u, d) ∈ Xfree, ∀ s ∈ [0, t]}.

If φ(·;x, u, d) leaves Xfree before reaching Xgoal or never

reaches Xgoal, then t(x, u, d) = +∞. This formulation leads

to a zero-sum differential game between two players i.e., the

controller and the disturbance. We call it the time-optimal-

approach-evasion (TO-AE) differential game.

We use the notion of non-anticipating or causal strategy in

the sense of [21] to define the value of the TO-AE differential

game. The set Γa of such strategies for the controller is such

that γa : D → U satisfies for any T ≥ 0, γa(d(t)) =
γa(d′(t)) for t ∈ [0, T ] if d(t) = d′(t) for t ∈ [0, T ]. The

lower value of the TO-AE differential game is given by:

T ∗(x) = inf
γa(·)∈Γa

sup
d(·)∈D

t(x, γa(d(·)), d(·)).

The function T ∗ is then referred to as the minimum time

function. It is noted that t(x, u, d) is potentially infinite

and this may cause numerical issues. To deal with this, we

normalize the hitting time by the Kružkov transform Ψ(r) =
1−e−r. With this nonlinear transform, we further define the

discounted cost functional J(x, u, d) = Ψ ◦ t(x, u, d), and

the discounted lower value v∗ as follows:

v∗(x) = inf
γa(·)∈Γa

sup
d(·)∈D

J(x, γa(d(·)), d(·)).

One can easily verify that v∗(x) = Ψ ◦ T ∗(x) for ∀x ∈ X .

We will refer v∗ to as the optimal value function.

Next under the TO-AE game setting, we allow the system

to learn from observations and thus use new estimates on

the disturbance function to make more accurate and better

estimates on the minimum time function. To achieve this,

we use a machine learning(ML)-based statistical estimator

to estimate the function d(x). Making use of observations

for predicting the disturbance function results in inherent

probabilistic estimates such that the point-wise functional

estimates lie in some interval say D̃k(x) at kth iteration

with significance level (1 − α) for α ∈ (0, 1). A sufficient

condition for the safety of the underlying system in the

presence of the disturbance is that d(x) lies in the estimated

set D̃k(x) for all k ∈ N. While a possible solution to

guarantee safety is to use the conservative bounds; our

objective here is to estimate d(x) or at least a tighter bound

represented by the set D̃k(x) so that we can improve system

performance while maintaining provable-safety guarantees.

The objective here is to optimize system performance by

updating modeling uncertainties or exogenous disturbance

interfering with the system while retaining safety guarantees.

The difference from classical control theory-based robust

adaptive control is that we use a machine learning-based

statistical estimator (model-free) instead of a Kalman filter-

type estimator.

Thus, our problem consists of two steps.

1) Making tighter estimates on the bounds of the distur-

bance function using a statistical method from obser-

vations on system trajectories.

2) Use the statistical estimates to make better estimate of

minimum time function for the underlying approach-

evasion game.

III. DATA-DRIVEN ANYTIME ROBUST-ADAPTIVE

ALGORITHM

In this section, we present the algorithms and ideas for

solving the learning-based TO-AE differential game. We

allow the controller and estimator to run in parallel, inde-

pendent of each other using the separation principle. The



key idea is that we ensure the safety of the system by

solving the TO-AE game which calculates the discriminating

kernel [3], [20] as well the optimal controller simultaneously

for the underlying system; we further refine the controller by

getting new updates on the disturbances of the system using

bootstrapping.

A. Machine Learning-based Estimator

We focus on the special case where we can measure all the

states of our system and assume that there is no measure-

ment noise. The key idea here is that to guarantee safety

of the underlying system, we need to have deterministic

convergence guarantees on the estimates provided by the

statistical regression algorithm. While such guarantees might

be elusive with finite amount of data, it is possible to esti-

mate generative functions along with point-wise confidence

intervals [8]. We try to estimate the unmodeled dynamics

using non-parametric kernel-based regression technique.

To estimate the unmodeled dynamics of the underlying

system, we first numerically calculate the system state deriva-

tives using observations on the system state and then, we

calculate the residuals using the known part of the system

model. More formally, the residuals are calculated as

d̄(x) = ḡ(x, u)− g(x, u) (2)

where ḡ(x, u) represents the numerically calculated gradient

using the observations on system trajectories and g(x, u) is

the known part of the system dynamics. The term d̄(x) in

equation (2) represents anomaly in the system observation

which can’t be explained using the known model and is thus

considered to be present due to the unmodeled disturbance

(dynamics). These residuals are then used to predict the

unknown disturbance function using a least square support

vector machine (LS-SVM) regression algorithm. Along-with

estimating the underlying unknown function we also cal-

culate the point-wise confidence bounds for the estimates.

A least square support vector regression algorithm with

confidence intervals was presented in [8]. We use the algo-

rithms presented in [8] to estimate the unknown disturbance

function. We use the following notation to describe the LS-

SVM regression: the data set at any epoch n is the set

{(X1, Y1), . . . , (Xn, Yn)} where Yi = d̄(xi) and Xi = xi.
Thus, Xi’s are the independent state variables and Yi’s
represent the corresponding observations corresponding to

Xi’s. The goal is to find the underlying generative function,

with probabilistic bounds on accuracy of the same. The

motivation behind using the LS-SVM regression is to be able

to find the disturbance function with probabilistic bounds

using confidence intervals for the function.

For the completeness of the paper, we very briefly describe

the key idea behind the regression-based estimation process.

In particular, we model our data is being generated by

Y = d(X) + σ(X)ε, where E[ε|X ] = 0, Var[ε|X ] = 1
and X & ε are independent (Y is the observation and X
represents the independent variable in the domain of the

unknown function). What we are interested is an estimate of

the function d(x) (we denote it by d̂n(x) where n denotes the

number of observations) and the corresponding confidence

interval for d(x) i.e., given α ∈ (0, 1) we want to find a

bound ηα such that P(sup
x∈X

|d̂n(x) − d(x)| ≤ ηα) ≤ 1 − α,

where X is the domain of the function d(·). As such, we

estimate the confidence interval for the unknown function

d(x) point-wise as well as the interval over the domain

of the function. The LS-SVM problem is formulated as an

optimization problem as follows

min
w,b,e

J (w, b, e) =
1

2
wTw +

γ

2

n
∑

i=1

e2i (3)

such that Yi = wTψ(Xi) + b + ei , i = 1, 2, . . . , n where

ei ∈ R are assumed to be i.i.d. random variables with

E[e|X ] = 0 and Var[e|X ] <∞. We assume that the d is a

smooth function and E[Y |X ] = d(X), ψ is a feature map or

kernel used in standard SVM. Based on the observations on

the system trajectories, an estimate of the unknown function

(denoted as d̂) using LS-SVM regression is obtained as

d̂(x) =
n
∑

i=1

α̂iK(x,Xi) + b̂ (4)

where, K : Rm × R
m → R represents a kernel function

(e.g., Gaussian or radial basis functions),m is the dimension.

The terms α̂ are the dual Lagrange multiplier obtained by

solving the LS-SVM problem. In the next step we calculate

the linear smoother matrix L for the LS-SVM regression such

that we can estimate the conditional mean and variance for

the estimated unmodeled function. The conditional mean and

variance of the estimated function is given by the following

expressions.

E[d̂(x)|X = x] =
n
∑

i=1

li(x)m(xi) (5)

Var[d̂(x)|X = x] =

n
∑

i=1

li(x)
2σ2(xi) (6)

Then, the expected value or the bias is approximately calcu-

lated by the following equation (see Theorem 2 in [8] for a

proof).

b̂ias[d̂(x)|X = x] = L(x)T d̂− d̂(x) (7)

where, d̂ = (d̂(X1), . . . , d̂(Xn)) and L is the smoother

matrix. The variance of the estimates is then calculated using

the following equation (for a proof see Theorem 3 in [8]).

Var[d̂(x)|X = x] = L(x)T Σ̂2L(x) (8)

where, Σ̂ = diag(σ̂2(X1), . . . , σ̂
2(Xn)) and L is the

smoother matrix. The term σ̂2(x) is calculated using the

following equation.

σ̂2(x) =
S(x)T diag(ε̂ε̂T )

1 + S(x)T diag(LLT − L− LT )

where, S(x) is smoother vector at an arbitrary point X such

that S : Rm → R
n and S1n = 1n, ε̂ represents the residuals

(i.e., deviation from the bias term) and diag(A) represents

the diagonal terms of A expressed as a column vector. The

LS-SVM guarantees that under some regularity conditions,

the central limit theorem is valid and the following is



true asymptotically. More formally we state the following

theorem.

Theorem 3.1: For finite variance of the residuals ε̂ (cal-

culated using equation (8)), the following is true.

lim
n→∞

d̂n(x) −E[d̂n(x)|X = x]
√

Var[d̂n(x)|X = x]

D
−→ N (0, 1)

where
D
−→ implies convergence in distribution.

Proof: Follows from Theorem 7.4 in [7].

Then, the point-wise (1 − α), where α ∈ (0, 1), confidence

interval for the unknown function d(x) is given by the

following expression

d̂n(x)− b̂ias[d̂n(x)|X = x]± z1−α/2

√

Var[d̂n(x)|X = x]
(9)

where, the b̂ias is the correction term given by equation (7)

and z1−α/2 denotes the (1 − α/2) quantile of the standard

Gaussian distribution. For prediction at a new state x̃ the

confidence interval is given by the following equation.

d̂n(x̃)− b̂ias[d̂n(x̃)|X = x̃]

± z1−α/2

√

σ̂2(x̃) +Var[d̂n(x̃)|X = x̃] (10)

With point-wise confidence interval for the statistical esti-

mates, we can define the expected bound for disturbance with

probabilistic significance level point-wise, i.e., the set D̃k(x)
which was introduced earlier in section II. Using the sets

D̃k(x), we can construct the function Dk which contains the

point-wise bounds for disturbance functions corresponding

to a chosen significance level. This function is then used

for synthesizing the control law. The original disturbance

function then lies in this interval with significance level of

(1− α).
The statistical estimator can thus maintain an estimate of

the unknown disturbance function with expected deviation

from the actual function. Using the central limit theorem, the

LS-SVM regression guarantees convergence of the expected

deviation of the function to the standard Gaussian distribu-

tion. This allows us to calculate the disturbance function

bounds with probabilistic confidence intervals. Then, the idea

is that we use these bounds corresponding to significantly

high confidence intervals to relax the safety constraints on

the system for improvement of performance.

B. Controller Synthesis using Iterative Incremental Game

Algorithm

In the proposed approach, we decouple the controller and

estimator such that sampling of estimates by the controller is

independent of sampling rate of data used by the sensors and

the estimator. Let the supremum of the disturbance vector

norm in the set Dk be denoted by rk, i.e., rk = sup
x∈X

|Dk(x)|.

The estimate rk is allowed to vary with time and it is not

assumed to be monotonic. However, to establish the results

the results presented in the paper we make the following

assumption.

Assumption 3.1: The norm of the disturbance function is

upper bounded by R which gives a conservative estimate of

the disturbance i.e., |d(x)| < R for all x ∈ R.

The above assumption is not very restrictive in the sense that,

in general, models with very high accuracy are available for

engineered systems and a conservative bound for uncertain-

ties involved with the environment could be approximated

using statistical estimates of past experiences. However, this

is important to ensure the safety of the system as otherwise

the system might end up using policies which might result

in very high penalties. With this structure on the estimates

provided by the statistical estimator, a new TO-AE game is

defined for a new estimate of the disturbance. This leads to

a family of parametric differential game [19] in the sense

that v⋆rk ≤ v⋆rn for any pair of rk ≤ rn and for all x ∈ X
(where v⋆ri denotes the estimates of optimal value functions

parameterized by ri). Thus when we get a new estimate of

the disturbance, it can be used to solve a new TO-AE game

parameterized by a new disturbance bound estimate using

bootstrapping on the sampled graph, i.e., the values for the

new game could be initialized by already existing estimates

for the same parameterized by a different bound.

To begin with, we solve the approach-evasion game using

the conservative bound on the unmodeled disturbance; thus

we recover discriminating kernel and the corresponding

optimal control inputs corresponding to the expected con-

servative disturbance bound. We estimate the unmodeled

disturbance, based on the observations on system trajectory,

using the the statistical estimator described in section III-

A. With a new estimate on the bounds of the unmodeled

dynamics, we can initialize a new approach-evasion game

and solve to find new control law. However, the statistical

estimates of the bounds of deviation from the actual distur-

bance function may not monotonically converge to normal

distribution (equation (9) implies asymptotic convergence;

however no convergence rates are provided). Here, we would

like to point out that if the estimator can provide monotonic,

deterministic estimates on the bounds, we can use them to

refine the estimates on the value functions for the system

while ensuring safety. With probabilistic bounds, a risk-

averse strategy is to maintain a bank of controllers for safer

control during transience.

However, the problem becomes more complex with

stochastic time-varying estimates on the bounds of distur-

bance function deviation and it requires a better switching

law to retain system safety. Nevertheless, if we can estimate

the confidence intervals with high significance level, we

can still ensure safety with very high confidence during

transience. This motivates the use of confidence intervals

with the statistical estimates. Since we have a conservative

bound on the expected disturbance to the system, the ac-

tual discriminating kernel of the system corresponding to

the actual disturbance function is thus a superset of the

discriminating kernel calculated corresponding to the initial

conservative bound. Thus the new estimates can still be used

with low-confidence intervals to refine the value functions

inside of the discriminating kernel and guarantee safety.

At the boundaries of the discriminating kernel, using a

bound with low confidence interval might have low safety



guarantees. This observation can be used to further improve

the performance of the system in some regions of the state-

space. However, we use the estimates with confidence inter-

vals corresponding to high significance levels for deciding

new control laws to avoid unnecessary switching. While a

deterministic estimate would lead to maximum performance,

probabilistic estimates leads to a trade-off in performance for

safety. However, this is a restriction imposed by the statistical

model-free estimator.

To decide the control law, a user-defined significance

level for statistical estimates is used to find the confidence

interval for the unmoded disturbance function. Then, suppose

that the controller samples new estimate of the unmodeled

disturbance at an epoch n. Then, the uncertainty with a

significance level (1−αCI) (αCI is user input) over the state-

space is bounded by the following term, rn = sup
x∈X

|Dn(x)|.

The term rn provides the bound on the expected deviation

of the estimated function from the original disturbance

function over its domain with a significance level (1−αCI).
Then, a new game could be initiated which is parameterized

by rn. Then, we get a series of such estimates and the

corresponding value function which we arrange in an ordered

fashion. We represent the sets by Ek = {R, r1, r2, . . . , rk}
and Vk = {v⋆R, v

⋆
r1 , v

⋆
r2 , . . . , v

⋆
rk
} for the estimates and the

corresponding value functions respectively where, R ≥ r1 ≥
r2 ≥ · · · ≥ rj ≥ . . . and it follows that v⋆R ≥ v⋆r1 ≥
v⋆r2 ≥ · · · ≥ v⋆rj ≥ . . . . Then, when a new estimate rn
is sampled by the controller with confidence level αCI, it

is compared to the elements of the existing elements of

En−1 and a controller corresponding to v⋆rk is used where

rk ≥ rn ≥ rk−1. Consequently, the new estimate to the set

Ek and a new game parameterized by rn is initiated with

v⋆rk (technically we recover the optimal costs asymptotically;

with some abuse of notation we use the v⋆rk to denote the

converged numerical estimates). As the estimates for vrn
converge, we switch to the control given by the same. With

this we incrementally populate the set Ek and the set Vk.

This process is repeated till the elements of set Ek converge.

The controller is always decided by the latest estimates on

the bounds of the disturbance function estimated by the

ML-based estimator with significance level (1 − αCI). The

adaptive controller synthesis is presented in algorithms 1

through 4. It is noted that since the controller and estimator

are decoupled, the iteration number for them are different.

The estimator is collecting data and making estimates based

on the sampling rate of the sensors.

The controller synthesis is based on the iGame algo-

rithm earlier presented in [20] where the states-space for

the robot is incrementally built by sampling from the free

configuration space of the robot. The input set for the

robot is also incrementally built by sampling from its input

set. At every iteration of the algorithm, a single update of

the value iteration is solved on the sampled graph for the

corresponding pursuit-evasion game. Thus, by incremental

sampling from the state-space a better refined discrete state-

space for the robot is created and the estimates for the

Algorithm 1: Data-Driven Anytime Control

Require: Initially, use the conservative bound R to solve
iGame with values vR and E0 ← {R}. Pick a
sampling interval Ts to get a new estimate for d(x)
using Algorithm 4

Ensure: Repeat the following steps at every iteration
1 if n mod Ts = 0 then
2 flag = 1
3 else
4 flag = 0

5 if flag == 1 then
6 k = n/T ;
7 Ek = Ek−1 ∪ {rk = sup

x∈X

|Dm(x)|};

8 Find m s.t. rm ≥ rk ≥ rm+1 and order the set
Ek = Ek−1 ∪ {rk};

9 Initialize vrk with values from vrm on Sn−1;
10 Vk ← Vk−1 ∪ {vrk};
11 un(x)← solution to u from vrm ;
12 go to Algorithm 2;
13 else
14 go to Algorithm 2

Algorithm 2: The iGame Algorithm

1 yn ← Sample(X , 1);
2 Sn ← Sn−1 ∪ {yn};

3 hn ← ζ
1

1+γ
n ;

4 γn ← 2ζn + ℓhnζn +Mℓh2
n;

5 vn−1 = vrm ;
6 for x ∈ Sn−1 do
7 ṽn−1(x) = vn−1(x);

8 ṽn−1(yn) = 1;
9 for x ∈ Kn ⊆ Sn \ B(Xgoal,Mhn + ζn) do

10 (vn(x), un(x))← VI(Sn, ṽn−1);

11 for x ∈ Sn \
(

Kn ∪ B(Xgoal,Mhn + ζn)
)

do

12 vn(x) = min
y∈B(x,γn−1)∩Sn−1

vn−1(y);

13 for x ∈ Sn ∩ B(Xgoal,Mhn + ζn) do
14 vn(x) = ṽn−1(x);

underlying pursuit-evasion game is further refined by solving

value iteration once after a new sample and input is added to

the corresponding state-space graph and input sets. Interested

readers are referred to [20] for more details of the iGame

algorithm. The iGame algorithm is anytime and guarantees

asymptotic optimality for the robust motion planning with

known disturbance bounds. Some of the notations in the

iGame algorithm are defined as follows. The state dispersion

ζn is the quantity such that for any x ∈ X , there exists x′ ∈
Sn such that ‖x − x′‖ ≤ ζn. The other quantities for time

discretization are defined as hn = ζ
1

1+γ
n and κn = hn − ζn.

IV. PERFORMANCE ANALYSIS

In this section, we discuss the performance of the data-

driven anytime algorithms. The controller is anytime as the

iGame algorithm which is used to calculate the system policy

is anytime and thus can be terminated anytime after the

sampled graph reaches the goal set of the robot. As the

robust approach evasion game is solved with a conservative

bound on the disturbance function, the existence of optimal



Algorithm 3: VI(Sn, ṽn−1)

1 Un ← Un−1 ∪ Sample(U, 1);
2 vn(x)← 1− e−κn +
e−κn max

cm,αCI
∈Dm

min
u∈Un

min
y∈B(x+hnf(x,u,d),γn)∩Sn

ṽn−1(y);

3 un(x)← the solution to u in the above step;

Algorithm 4: Confidence Intervals

Input: The observation set {(X1, Y1), . . . , (Xn, Yn)}
and significance level αCI

Output: d̂n(x) and the expected confidence intervals
with significance level (1− α)

1 Given the data {(X1, Y1), . . . , (Xn, Yn)}, calculate d̂
using the equation (4);

2 Calculate the expectation or bias using equation (7);

3 Calculate the residuals as ε̂k = Yk − d̂k, k = 1, . . . , n;
4 Calculate the variance using equation (8);
5 Set the significance level α = αCI;
6 Calculate the point-wise confidence intervals using

equations (9) and (10), say cn,αCI
(x);

7 Calculate the set Dn where Dn(x) = cn,αCI
(x);

policies leading to the goal set is guaranteed from the

discriminating kernel of the dynamical system parameterized

by the conservative bound. The asymptotic performance of

the anytime algorithm is guaranteed under the assumption

that the statistical estimates on the disturbance function

converge (these estimates converge in probability; thus, we

need the convergence of the variance for the estimates

described earlier). Suppose that the error bounds on the

statistical estimates converge to asymptotic bound denoted

by r⋆. Then, the the values corresponding to the game

parameterized by the sequence of bounds {rk}k∈N converges

to the game with parameter r⋆, i.e., the following is true

point-wise lim
k→∞

‖v⋆rk−v
⋆
r⋆‖X = 0 (where the norm is defined

as ‖v‖S = sup
v∈S

‖v‖). This follows from Theorem 3.1 in [20].

This shows that our controller is asymptotically optimal

and safe, as the solutions are optimal for the underlying

approach-evasion games.

During the transient behavior, i.e., when the estimates

of the value functions and thus the discriminating kernel

estimates are also based on the statistical estimates and the

corresponding confidence intervals for deviation from the

original function, the guarantees are based on the confi-

dence interval and we provide probabilistic optimality with

a high degree of confidence. During the transient phase, our

guarantees for safety are based on the probability that the

actual disturbance function lies inside the confidence interval

provided by the statistical estimator.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented some initial results for data-

driven anytime motion planning of robotic systems where

we use observations on system trajectories to statistically

estimate the unknown system dynamics which is then used

to improve the controller performance while retaining system

safety guarantee. The safety guarantees for the system during

the transient phase in this paper are based on the confidence

intervals provided by the statistical regression algorithm.

Use of recursive techniques for regression-based esti-

mation of the unmodeled disturbance is a topic of future

research.
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