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Abstract

This paper considers state feedback optimal control design for a class of nonlinear descriptor
systems. Prior work either stops at the Hamilton-Jacobian-Bellman equations and thus is non-
constructive, or converts the optimal control problem into a large scale nonlinear optimization
problem and thus is open-loop control design. This paper proposes a generalized policy
iteration algorithm to compute the state feedback optimal control policy in a constructive
manner, and presents the convergence analysis. Compared with the conventional one for
systems in a classic state space form, the generalized policy iteration algorithm for nonlinear
descriptor systems differs in the presence of an extra partial differential equation system
from which the value function is solved. Necessary and sufficient conditions guaranteeing
solvability of the value function are established. Sufficient solvability conditions for a special
case, where the value function is a linear combination of a set of basis functions, are also
derived.
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Policy iteration-based optimal control design for
nonlinear descriptor systems

Yebin Wang

Abstract— This paper considers state feedback optimal con-
trol design for a class of nonlinear descriptor systems. Par
work either stops at the Hamilton-Jacobian-Bellman equatbns
and thus is non-constructive, or converts the optimal contol
problem into a large scale nonlinear optimization problem ad
thus is open-loop control design. This paper proposes a gere
alized policy iteration algorithm to compute the state feethack
optimal control policy in a constructive manner, and preselts
the convergence analysis. Compared with the conventionahe
for systems in a classic state space form, the generalizedljpy
iteration algorithm for nonlinear descriptor systems differs in
the presence of an extra partial differential equation systm
from which the value function is solved. Necessary and suffient
conditions guaranteeing solvability of the value functionare
established. Sufficient solvability conditions for a speal case,
where the value function is a linear combination of a set of
basis functions, are also derived.

|. INTRODUCTION

This paper investigates the state feedback optimal control

design for a class of nonlinear descriptor systems

Ei = f(x,u), FEz(0)= Ex, (2)

where E € R™*™ is a constant matrix with a rank =
rank E) < n, z € Q, C R" the system state vectd, a
compact set containing the origin in its interiare R™ the
control input, andf : R™ x R™ — R™ is a vector field. All
components off are locally Lipschitz inz. When E is an

identity matrix, the system (1) is in classic state spacenfor

The optimal control objective is represented by

T
J(u) = S(Ex(T)) —|—/O L(z,u)dt, 2

the open-loop optimal control trajectory through solving
a discretized numerical optimization problem. These work
suffer, more or less, limitations and thus motivate redezsc
beyond the existing frontier. For instance, the aforenosrweti
HJB equations are not much instructive to allow straightfor
ward computation of the optimal control policy [3]. Turning
to numerical optimization generally ends up with solving a
large scale nonlinear (very often non-convex) optimizatio
problem, which could be expensive in computation or even
fail to work out a valid solution [5].

This paper contributes to alleviate the non-constructive
restriction in the existing work by resolving two challesge
solving the HJB (3): coming up with a constructive algorithm
to solveW in (3), and deriving solvability conditions under
which the value functio¥’ can be computed from (3a) given
W. Major contributions of this paper are

o based on the HJB (3), propose a generalized policy
iteration algorithm such that the state feedback optimal
control policy of the system (1) can be computed
iteratively and constructively;

« establish necessary and sufficient conditions 1onh
under which the solution of the value function is guar-
anteed to exist;

o whenW is parameterized as a linear combination of a
set of basis functions [6], [7], derive sufficient condi-
tions on the basis functions such that the generalized
policy iteration algorithm succeeds in producing the
value function.

It is worth mentioning that viewed as a powerful tool to

where S, L are continuously differentiable in all arguments.construct state feedback optimal control policy, the conve
This problem has been studied by researchers from diffelional policy iteration algorithm has been widely used for
ent perspectives, for instance dynamic programming [}]—[3Systems in a classic state space form [6]-[10]. To the best of
the minimum principle [4], etc. In work [1], the state feed-Our knowledge, its extension to nonlinear descriptor sgste
back optimal control design arrives at solving the follogiin has not been reported. In fact, the extension turns out to

Hamilton-Jacobian-Bellman (HJB) equations

VY g v (Bo(T),T) = S(Ex(T))  (3a)
ox
WT(zc,ﬂ = Irhin{L(x, w)+ W*fx,u)}. (3b)

be non-trivial due to the presence &f. The solvability
conditions established in this paper are the key to ensure
the soundness of the generalized policy iteration algarith
Also, the solvability conditions can be readily utilized to
verify whether the set of basis functions are appropriate.
The remainder of this paper is structured as follows.

In work [2], # control for nonlinear descriptor systems (1)gection 11 introduces fundamentals of nonlinear descripto

is studied and sets of equations similar to (3) are derivedysiems, and formulates the optimal control problem. The
Work [3] deals with optimal control design for a specialyeneralized policy iteration algorithm for nonlinear désc
class of nonlinear descriptor systems with= diag{/,, 0}.  {or systems is presented in Section Iil. Solvability coiodis
Focusing on a special case of systems (1), work [4] cOmPUtgS; the value function is discussed in Section IV. FinallgcS
tion V offers some future research directions and concludes
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Il. PRELIMINARIES AND PROBLEM FORMULATION 1) Policy evaluation

We state assumptions on nonlinear descriptor systems,SOIVe for the positive definite functiol;(x) and Wi (x)

the definition in regard to admissible control policy, and@lisfying

problem statemgnt. Reade_rs are reft_—zrred to [1],_ [2], [1d] an Wi(2)f(z,u;) + L(z,u) =0, V€ Qy (4a)

references therein for details on nonlinear descriptaesys. W(\E — UV b
Assumption 2.1For any initial conditionEz, and any i(@)E =VV, (4b)

controlu, system (1) has a unique solution. whereVV; = 9V; /dx is a row vector.
Assumption 2_.2:[_/(x,u) > 0, forTany z,u, and there 2) policy improvement

exists a factorizationl.(z,u) = h'(x,u)h(z,u) where — ypdate the control policy according to

h(z,u) is continuous differentiable and to be interpreted as

an output. FurtherS(Ex(T)) > 0, for any z(T). uiy1(x) =arg glei[IJl{L(x,U)+Wi(a:)f($,u)}aVI € Q.. (5)
Assumption 2.3The functionL(z, «) and the integral are . . _

defined such thay;JT L(z,u)dt = oo whenever the output For the case? = I, the generalized algorithm is reduced

h(z,u) has an impulsive component. to the conventional policy iteration [9], [12]-[14], whe{4a)

Definition 2.4 (Admissible feedback controx feedback 1S used to solve a Lyapunov functiow; with VW, =
control policy u(z) € U ¢ C'[0,T] is admissible if, for W;. As a system of first order linear partial differential

any initial condition Ezy, the resultant closed-loop system&duations, the closed-form solution of (4a) is difficult to
has no impulsive solution. Correspondingly,is called the establish. Instead, a good approximate solution is uswélly
admissible control set. practical interest. Given parameterizationsipfnd1;, (4a)

In Definition 2.4, the admissible control is assumed to b reduced to algebraic equations, and thus the approximate
state feedback. This technical assumption makes the aesultSOlution can be computed. The two steps (4)-(5) can be
optimal control problem exposed to well-established thempr fePeated until the convergence is attained. .

e.g. dynamic programming. Definirlg as the set of all the ~ Rémark 3.L:With VV; = W;, the function)V; is not
admissible feedback control policies, we assume that thefgcessarily positive definite. However, while solviig, we
exists an initial control policyu(z) such thatu, € U. should make sure that (4b) admits a postiche definite solutio

Taking account of Definition 2.4 and Assumption 2.3, wei- This is becaus; is required to show the stability of the
know that given an admissible control polieyz), the output closed-loop system, and the convergence of the generalized
h(z,u) does not have impulsive components, and the resilgorithm. Section IV identifies conditions under which a
tant cost function (2) has a finite value. Conversely, when trsolution of (4b) is ensured. _ _
cost function (2) associated with the closed-loop systeasgo FOr @ class of control-affine nonlinear descriptor systems

to infinity, thenh(x,«) has impulsive components, and the Ei = f(z) + g(x)u, Ex(0) = Exo )
closed-loop system has an impulsive solution, which means ’ ’
the corresponding control policy is not admissible. whereg : R® — R"™*™ consists ofm smooth vector fields,

Assumption 2.5There exists an non-empty admissibleand a commonly used cost functional given by
control set for the system (1). 0o
Without loss of generality, this paper deals with the cost J(u) = / [Q(z) +u" Ru]dt, z(0)=mz9€Q, (7)
function (2) withT" = oo. For such a case, the admissible 0
control should yield a finite value of the cost function, and avhere Q(x) is a positive definite function orf2,, and
stable closed-loop system. The optimal control problem forR = R is a positive definite matrix, the generalized policy
nonlinear descriptor system (1) can be formulated as fallowiteration algorithm can be slightly modified by replacing th
Problem 2.6 (Optimal control problem)Given the sys- step (5) withu;1(z) = —1R~g T W,".
tem (1), findu* € U which minimizes the cost function (2), The generalized policy iteration algorithm is meaningful
i.e.u* = argmin, ey J(u). only if the resultant contrak;+; has the following properties

Problem 2.6 is difficult to solve for at least two reasons. 1) the new controli;;; gives a stable closed-loop system:
First, nonlinearities involved in the problem make it alinos 2) the new controk,; results in improvement of the

impossible to find an analytic solution. Second, the corre- closed-loop system performance measured by the cost
sponding numerical optimization problem is generally non- function.
convex.

B. Convergence Analysis
IIl. MAIN RESULTS .
In the convergence analysis, we assume that giién

A. A Generalized Policy Iteration Algorithm the value functionV; can always be solved. We have the
We generalize the conventional policy iteration algorithnfollowing result about the stability of the closed-loop ®m

for systems to the nonlinear descriptor system case. Assu@g an outcome of the generalized algorithm.

that an admissible control policy,(z) is known. The Proposition 3.2: Given an admissible control strategy

generalized policy iteration algorithm can be summarized ifor the system (1), the improved control poliay,; yields

the following two steps, with = 0,1, ---. a stable closed-loop system.



Proof: We first verify that given a stabilizing control where the left-hand side (LHS) is rearranged in such a way
policy u;, the V; solved in the policy evaluation step 1) Wi f (2, us) = Wof (2, wss1) + Lix, us) — L(w, uis1)

is positive definite. From (4), we havé, = —L(z,u;). _

Considering thaw; is a stabilizing control policy, we have = (Wi = W) f (2, uir1) + Wi(f (2, wi) = f(x, uiy1))
z(o0) = 0 and V;(z(0)) = S(E:c( ). With L(xz,u) >0, + L(x,w;) — L(x, wit1)

we obtainV;(z(t)) = S(E )+ Jy° Lz, ug)dt > 0. = (Wi = Wi) £ (@, uip1) + Wif(2,u;) + Lz, u;)

Letting V; be a Lyapunov function candidate for the
system (1) with the control policy = u; 1, we compute its
time derivative

=0
— (Wif(z,wi) + L(z,u;)) =0

: <W; f(z,uig1)+L(z,ui41)=0
Vi=Wif(z,uit1) o (W — Wi f(z,uir) = Wif (o, uisr) + Lz, ui).

= WilF (@, uitr) + (2, ui) — f (@, w4) Integrating the above equation ovigr, 7', and considering
= —L(z,ui) + Wi(f(#,uiv1) — f(z,ui) () Vy(x(T)) = Vi(2(T)), we have

= —L(x,u;) + L(x, uiy1) + Wi f (2, uig1) Vi(2(T)) = Vi(2(0)) = (Vi(2(T)) — Vi(2(0)))

— L(SC, ui+1) — Wlf(ac, ul) T
— (Wi f(x,wiv1) + L(z,uip1))dt =0
Sinceu;1 is obtained by solving (5), we have(x, u;41) + /0 o o
Wi f(z,uiv1) < L(z,u;) + Wi f (2, u;) = 0, and < Vi(2(0)) — Vi(z(0))

T
Vi < —L(z,u;) — Lz, uipr) — Wif(z, ug) = /0 (Wif (2, tig1) + L@, tig))dt <0

= ~L(@,wi) = (L@, w) + Wif (@, w)) (9)  We therefore show thdt;(z(0)) < V;((0)), which suggests
=0 that the generalized algorithm results in monotonic redact
< —L(z,uit1). of the cost function. [ |
. Combining Propositions 3.2-3.3, we have the following
SinceV; > 0,Vx # 0, andV; is negative definitevz #  conclusion about the convergence of the generalized algo-
0, we conclude that; is a Lyapunov function for the rithm.
closed-loop system (1) with;, ;. The closed-loop system  Theorem 3.4:Consider system (1) and the cost func-

is asymptotically stable. B tion (2). Suppose thaty € U, and a positive definite solution
We can also establish that throughout iterations of th¥; of (4) exists, fori = 0,1,---. Then,
generalized algorithm, the values of the cost function mono 1) wir, € U fori > 0;
tonically decrease. 2) J(uip1) < J(ug) fori > 0;
Proposition 3.3: The cost of the closed-loop system with  3) lim; o J(u;) = J* with 0 < J* < oo.
the improved control policy:; ;1 is no greater than that with Proof: We simply describe the rough idea. Fact 1)
the control policyu;. can be readily shown by employing induction and Propo-

Proof: Denotel¥; andW solutions of (4a) correspond- sition 3.2. Similarly fact 2) is a natural consequence of
ing to control policies:; andu; , 1, respectively, which means utilizing induction and Proposition 3.3. Fact 2) indicates
that the sequencéJ(u;)} is monotonically decreasing. It
is also evident that the sequence has a lower bauigince
Wi f(z,u;) + L(x,u;) =0 (10a) amonotonic decreasing sequence with a lower bound always
Wi f (2, uis1) + L(z, uis1) = 0. (10p) converges, fact 3) is established. [ |
Note that we however do not establish the optimality of
Also denoteV; and V; satisfyingVV; — W,E and V'V, — J* and the corresponding control policy.
W;E, respectively. Equations (10) are equivalent to the. parameterizations in the Algorithm

following two Lyapunov equations The generalized policy iteration algorithm requires to
solve the partial differential equation (4). Next we pravid

VV +L(w ui) =0 a practical implementation method by parameterizing the
d:c control policy and a pseudo value functioy;.
VV'd— + L(z,ui41) = 0. To begin with, let{¢;(x)}, with ¢; : R* — R and

{¥(2)}i, with o; : R" —~R™ be two sets of linearly
Note thatV; and ‘71 are the cost functions Correspondingindependent COﬂtInUOUS'y differentiable functions aadtor
to the control policyu; andu,, 1, respectively. Subtracting fields, respectively. In addition, we assume that0) = 0,
(10b) from (10a) gives V1<j<Nandy;(0)=0V1<j<gq.
Assumption 3.5There exists a smooth pseudo value func-
Wif(z,ui) — Wif(z,uip1) + L(z,u;) — L(z,uiy1) =0,  tion W;(x) such thatVW,(z) = W;(x).



Assumption 3.6Provided thatu; € U, and u;(z) € A)is an assignment, to each pot M, of a subspac®,,

span{yn (x), -+ ,¥q(x)}, then, of T, M (resp. a subspack, of T, M).
More explicitly, according to [21], an-dimensional distri-
Wi(z) € span{¢1(x), -+, on(2)}, bution D on the manifold)/ is a map which assigns to each
uip1(x) € span{ypy (), -+ g (w)}, p € M anr-dimensional subspace & such that for each
. . . p € M there exists a neighborhodd of p andr smooth
whereW;(x) andu,1(x) are obtained from (4a) and (5). vector fieldsf;, -~ . £, with the properties

Assumptions 3.5-3.6 are involved in the standard policy ) ,
iteration as well. Under Assumption 3.6, we can find three 1) f1(p),--- . f+(p) are linearly independentp € U/;
sets of Weightqwi,l,wi,%"' 7wi,N}a {Ci,laci,Qa"' 7Ci,q}y 2) D(p) :Spar{fl(p)v"' 7fr(p)}’ Vpéu .
and {¢i1.1,Cit1.2, - ,Cit1.4}, SUch that Let S be a real vector space. A multilinear functi@n:

Sk — R is called ak-tensor, and the set of al-tensors on

S is denotedC*(S). The set of all alternating-tensors on

uif) = Zci’j% (z) S is denoted as\*(S). A k-tensor field onM is a section

= of £*(M), i.e., a functionw assigning to every € M a
k-tensorw(p) € L (T,M).

Definition 4.2 ¢-form): If a k-tensor fieldw is a section
4 of A*(M), thenw is called a differential form of ordek or

— b a k-form on M.
w1 (@) = ;cﬁl’ﬂpj (@) The 0-form on a manifold) is a functionf : M — R.

) . o The differentialdf of a 0-form f is defined pointwisely as
Remark 3.7:When Assumption 3.6 is not satisfied, thesgne 1_form. for a vector fieldx,

weights can still be numerically obtained based on neural

network approximation methods, such as the off-line ap- df(p)(Xp) = X, (f).

proximation using Galerkin’s method [15]. In addition, forGiven f e AF(S) andg € AY(S), the wedge product is
uncertain nonlinear systems, these weights can be tramed Henotedf A g€ AF(S).

ing approximate-dynamic-programming-based online leamn pefinition 4.3 (Exterior derivative)Letw be ak-form on
ing methods [16], [17]. When approximation methods arg manifold M whose representation in a chdft,z) is

used, (2, is required to be a compact set to guarantee tr@ven byw = 3, wydz! for ascending multi-indices. The
boundedness of the approximation error. exterior derivative or differential operatat, is a linear map
IV. SOLVABILITY CONDITIONS taking thek-form w to the (k + 1)-form dw by

q

N
Wi(z) = Z w; ;$;(x)

Main characteristics of the generalized policy iteration dw = Zdw; Adal.
algorithm is the extra system of partial differential eqoias
given by (4b). What it tells us is that: the parameterization
of W, and u; are critical to secure the convergence md

I
Note that thew; are smooth functionsO¢forms) whose
ifferential dw; has already been defined as

the generalized algorithm. Otherwise, the resultant soiut " dwy i
(W*,u*) may not make sense because (4b) with = dwr = : wdx :
VW* does not admit a solution of the value functidh J=t

Hence, it is important to pick appropriate parameterizegtio Therefore, for anyk-form w,

of W; so that it is compatible with (4b). In this section, " Ow

we resort to exterior differential systems to obtain explic dw = Z L aad A dal.
solvability conditions of (4b). I j=1 Oz’

Definition 4.4 (Frobenius condition)A set of linearly in-

dependent 1-forms’, ..., o in the neighborhood of a point

To enhance the self-completeness of this paper, we giV€ & q5iq to satisfy the Frobenius condition if one of the
brief overview on elements of differential geometry ergdil following equivalent conditions holds

by the derivation of solvability conditions. Some definit
appearing in this section such as algebraic ideal, are ednitt 2) dai A Aot =0forl<i<s.

because their ab;ence W'." not compromise the readability Theorem 4.5 (Frobenius Theorem for codistribution):
and comprehension of this section. Interested readers e

referred to [18]—-[21] for details on differential geometry €t 7 be 1an algebra|_c |deal_ g_enerated by the mdepg_ndent
. . . ; 1-formsa-,. .., a® which satisfies the Frobenius condition.
Given an-dimensional manifold\/, the tangent space of . : . . P
. Then in a neighborhood of, there exist function&® with
M atp and is denoted b{,, M. The dual space df, M at < i< s such that
eachp € M is called the cotangent space to the manifolc} - =
M atp, and is denoted by M. T=1{a' ...,a®} ={drt,...,dr°}.
Definition 4.1 (Distributions and codistribitions).et M Remark 4.6:Frobenius Theorem for codistributions states
be a C° manifold. A distributionD (resp. a codistribution that the codistribution is integrable if the exterior dative

A. Elements of Differential Geometry

1) do' is a linear combination of!, ..., a®.



of every one-form taking values in the codistribution lies i Considering the properties of the wedge product [18]

the algebraic ideal generated by the codistribution. THis i .
i in hiah di - - 0, k=y;
not easy to verify fok-forms in high dimensional manifolds. dzy Adz; = _
As shown later, Theorem 4.5 is useful to substantiate the 70, k#J,
sufficiency of solvability conditions. anddzy, A dz; = —da; A dzg, we have
Example 1: [19] We verify Frobenius conditions for the "
unicycle system aW, = Z 3 OWiEy) O(WiE;) dz; Adag. (13)
i = cos(f)uy dz; Ozy, ’ '
j=1k=j+1
y = sin(6)us (11) . - . o~
b Combining conditions (12) with the expressiond¥; given
= e by (13), we havellV; = 0, or equivalently the 1-formiV;
With a  distribution  consisting of g¢' = satisfies the first condition in Definition 4.4. According to
[cos(#),sin(6),0]T,¢g> = [0,0,1]T, we have the Theorem 4.5, there exists a O-for¥f) such thatdV; = W;,
codistributionZ = {w}, where which infers the existence of solutions to (4b). The proof of

. sufficiency is therefore concluded.
w = sin(f)dx — cos(9)dy + 0df. Necessity: Assume that (4b) has a solution denoted
The exterior derivative ofv is by V;. From (4b), the 1-form of; is written asW We
o . further compute 1-form of;, and have (13). According
dw = cos(6)d0 A dz + sin(9)d6 A dy to Theorem 4.7d(dV;) = d(dW;) = 0, which implies
and therefore conditions (12). Thus necessity is established. [ |
We next look into a special case where the solution of

_ 2 s 2
dw Aw = —cos™(P)df A dz A dy +sin™(0)d6 A dy A dz (4a) satisfies Assumptions 3.5-3.6. That is: the funclin

= —dz AdyAdf #0. is linearly parameterized as follows

The second condition in Definition 4.4 does not hold, and
thusw is not integrable. Wi(z) = wiy(x) = w' ®(),

Next we recite another theorem exploited to establish the
necessity of solvability condition_s. wherew = [wr, - ,wy]T is a vector of constants and
exterior derivative is the unique linear operator interesting in practice, because the specific parametieniza

d: QM) — QFL(M) have been pervasively adopted in literature. We have
for k > 0, that satisfies for every form, d(dw) = 0. Wi(z) = 6(;/\/1- = ng—q),
X X

B. Solvability Conditions and w can be determined on the basis of (4a). We derive

In this section, Theorems 4.5 and 4.7 are applied to deriw®lvability conditions on basis functiodg);, 1 <1 < N}.
solvability conditions of (4b). From Assumption 3.5, we With VV," = W;(z)E, we have

know W; is a O-form, and its 1-forn¥; is denoted by 991 1
96 ErE N 2

T _..T _ T . . .

W; = Z 8 VV, =w el =Y : . :

We have the following solvablhty conditions.

Proposition 4.8:Given Assumption 3.5, (4b) is solvable ) . .
if and only if the following conditions hold According to Frobenius Theorem 4.5, (4b) is solvable when

the co-distributiorl’(z) is integrable. A sufficient condition
OWiEy) _ a(WiEj)’ 1<j<mj+1<k<n. (12) forthe integrability ofl'(x) is that each row vector df(z)

I'(z)

Oz Oy, . . is a 1-form of a smooth functiow,, for 1 < k < N, i.e.,
Proof: SufficiencyDenotingE = [E4,--- , E,] with 5 5
E), € R™, we rewrite the LHS of (4b) as follows dwp = [9:E, - 92:F,]. (14)
WiE =W;[Ey,--- , E,] Then we have the solution of the value functigngiven by
:[WiEla"' aWiEn]:/W\iERn- Vi:wTQ’ Q:[wlv"'awN]T' (15)
The row vector W; also takes the expressio; = We have Proposition 4.8 for the special case.

S 7, W;Eydxy,. With Definition 4.3, we compute the ex- Proposition 4.9:Given Assumptions 3.5-3.6, (4b) has a
terior der|vat|vedW solution in the form of (15) if for everyy;, 1 <1 < N, the

. following conditions hold
(W,Ek)
aw; = ZZ S qa A day,. 022 Ey)  O(2LE;)

i R 823- = o ,1<j<nj+1<k<n. (16)




Remark 4.10:For nonlinear descriptor systems with aset of basis functions, we attained sufficient conditions on
constantE, conditions (12) boil down to the basis functions to enable the generalized policy itarat
oW, oW, _ . algorithm. Future work includes exploration of conditions
o Ey = 8—$kEj 1<j<mj+1<k<n. (17) on the extra PDE system to ensure the uniqueness of the
! solution. This paper presented results which are merelg goo
Similarly, with E constant, conditions (16) are simplified intofq, analysis, i.e., given a set of basis functions, one caifyve
92, 9% , _ whether the basis functions satisfy the derived solvabilit
020z, Ev = gpaz, B 1 sismj+l<k<n (18)  conditions. The synthesis of basis functions, which answer
Both” Propositions 4.8-4.9 imposes conditions on parantow to choose basis functions, remains open. Also, this
eterizations of W;. This is useful for incorporating the paper does not pay attention to the optimality of the sotutio
verification of solvability conditions (12) or (16) into the that the generalized policy iteration algorithm converges
generalized policy iteration algorithm. Algorithm 1 illuates to. Performance and optimality analysis could be another
detailed steps for the generalized policy iteration altponi  interesting topic to study in the future.
with solvability check steps, wher& and P are sufficiently REFERENCES
large positive constants.
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