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Abstract: In this paper, we study a tracking control problem for linear time-invariant systems
with model parametric uncertainties under input and states constraints. We apply the idea of
modular design introduced in Benosman [2014], to solve this problem in the model predictive
control (MPC) framework. We propose to design an MPC with input-to-state stability (ISS)
guarantee, and complement it with an extremum seeking (ES) algorithm to iteratively learn
the model uncertainties. The obtained MPC algorithms can be classified as iterative learning
control (ILC)-MPC.

1. INTRODUCTION

Model predictive control (MPC), e.g., Mayne et al. [2000],
is a model-based framework for optimal control of con-
strained multi-variable systems. MPC is based on the
repeated, receding horizon solution of a finite-time optimal
control problem formulated from the system dynamics,
constraints on system states, inputs, outputs, and a cost
function describing the control objective. However, the
performance of MPC based controllers inevitably depends
on the quality of the prediction model used in the optimal
control computation. In contrast, extremum seeking (ES)
control is a well known approach where the extremum of
a cost function associated with a given process perfor-
mance (under some conditions) is found without the need
for detailed modelling information, see, e.g., Ariyur and
Krstic [2003, 2002], Nesic [2009]. Several ES algorithms
(and associated stability analysis) have been proposed,
Krstic [2000], Tan et al. [2006], Nesic [2009], Ariyur and
Krstic [2003], Guay et al. [2013], and many applications
of ES have been reported Hudon et al. [2008], Zhang and
Ordóñez [2012], Benosman and Atinc [2013].

The idea that we want to theoretically analyze in this
paper, is that the performance of a model-based MPC
controller can be combined with the robustness of a model-
free ES learning algorithm for simultaneous identifica-
tion and control of linear time-invariant systems with
structural uncertainties. We refer the reader to Benosman
[2014], Benosman and Atinc [2013], Atinc and Benosman
[2013] where this idea of learning-based modular adaptive
control has been introduced in a more general setting of
nonlinear dynamics. We aim at proposing an alternative
approach to realize an iterative learning-based adaptive
MPC. We introduce an approach for an ES-based iterative
learning MPC that merges a model-based linear MPC
algorithm with a model-free ES algorithm to realize an
iterative learning MPC that adapts to structured model
uncertainties. Due to the iterative nature of the learning
model improvement, we first review some existing Iterative

learning control (ILC) MPC methods. Indeed, ILC method
introduced in Arimoto [1990] is a control technique which
focuses on improving tracking performance of processes
that repeatedly execute the same operation over time. It
is of particular importance in robotics and in chemical
process control of batch processes. We refer the reader to
e.g., Wang et al. [2009], and Ahn et al. [2007] for more
details on ILC and its applications. At the intersection
of learning based control and constrained control is the
ILC-MPC concept. For instance, ILC-MPC for chemical
batch processes are studied in Wang et al. [2008], Cueli
and Bordons [2008], and Shi et al. [2007]. As noted in
Cueli and Bordons [2008] one of the shortcomings of the
current literature is a rigorous justification of feasibility,
and Lyapunov-based stability analysis for ILC-MPC . For
example, in Wang et al. [2008] the goal is to reduce the
error between the reference and the output over multiple
trials while satisfying only input constraints. However, the
reference signals is arbitrary and the MPC scheme for
tracking such signals is not rigorously justified. Further-
more, the MPC problem does not have any stabilizing con-
ditions (terminal cost or terminal constraint set). In Cueli
and Bordons [2008], an ILC-MPC scheme for a general
class of nonlinear systems with disturbances is proposed.
The proof is presented only for MPC without constraints.
In Shi et al. [2007], the ILC update law is designed using
MPC. State constraints are not considered in Shi et al.
[2007]. In Lee et al. [1999] a batch MPC (BMPC) is pro-
posed, which integrates conventional MPC scheme with an
iterative learning scheme. A simplified static input-output
map is considered in the paper as opposed to a dynamical
system. Finally, the work of Aswani et al. [2013, 2012a,b],
studies similar control objectives as the one targeted in this
paper using a learning-based MPC approach. The main
differences are in the control/learning design methodology
and the proof techniques. In summary, we think that
there is a need for more rigorous theoretical justification
attempted in this paper. Furthermore, to the best of our
knowledge, the literature on ILC-MPC schemes do not



consider state constraints, do not treat robust feasibility
issues in the MPC tracking problem, rigorous justification
of reference tracking proofs for the MPC is not present
in the literature and stability proofs for the combination
of the ILC and MPC schemes are not established in a
systematic manner.

The main contribution of this work is to present a rigorous
proof of an ILC-MPC scheme using existing Lyapunov
function based stability analysis established in Limon et al.
[2010] and extremum seeking algorithms in Khong et al.
[2013b], to justify the ILC-MPC method in Benosman
et al. [2014], where an ES-based modular approach to
design ILC-MPC schemes for a class of constrained linear
systems is proposed.

The rest of the paper is organized as follows. Section
2 contains some useful notations and definitions. The
MPC control problem formulation is presented in Section
3. Section 4 is dedicated to a rigorous analysis of the
proposed ES-based ILC-MPC. Finally, simulation results
and concluding comments are presented in Section 5 and
Section 6, respectively.

2. NOTATION AND BASIC DEFINITIONS

Throughout this paper, R denotes the set of real numbers
and Z denotes the set of integers. State constraints and
input constraints are represented by X ⊂ Rn and U ⊂ Rm,
respectively. B refers to a closed unit ball in Rn. The
optimization horizon for MPC is denoted by N ∈ Z≥1.
The feasible region for the MPC optimization problem is
denoted by XN . A continuous function α : R≥0 → R≥0

with α(0) = 0 belongs to class K if it is increasing and
bounded. A function β belongs to class K∞ if it belongs
to class K and is unbounded. A function β(s, t) ∈ KL if
β(·, t) ∈ K and limt→∞ β(s, t) = 0. Given two sets A and
B, such that A ⊂ Rn, B ⊂ Rn, the Minkowski sum is
defined as A⊕B := {a + b|a ∈ A, b ∈ B}. The Pontryagin
set difference is defined as A 	 B := {x|x ⊕ B ∈ A}.
Given a matrix M ∈ Rm×n, the set MA ⊂ Rm, is defined
as MA , {Ma : a ∈ A}. A positive definite matrix
is denoted by P > 0. The standard Euclidean norm is
represented as |x| for x ∈ Rn, |x|P :=

√
xT Px for a positive

definite matrix P , |x|A := infy∈A |x − y| for a closed set
A ⊂ Rn and ‖A‖ represents an appropriate matrix norm
where A is a matrix. B represents the closed unit ball in
the Euclidean space. Also, a matrix M ∈ Rn×n is said to
be Schur iff all its eigenvalues are inside the unitary disk.

3. PROBLEM FORMULATION

We consider linear systems of the form

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)u(k), (1)

y(k) = Cx(k) + Du(k), (2)

where ∆A and ∆B represent the uncertainty in the system
model. We will assume that the uncertainties are bounded
as follows:
Assumption 1. The uncertainties ‖∆A‖ ≤ `A and ‖∆B‖ ≤
`B for some `A, `B > 0.

Next, we impose some assumptions on the reference signal
r.
Assumption 2. The reference signal r : [0, T ] → R is a
piecewise constant trajectory for some T > 0.

Due to the iterative control design methodology, the initial
condition x0 for the system is fixed over multiple trials
and at the end of each trial the state is reset to the initial
condition. The goal is design the sequence of control inputs
{u(k)}T−1

k=0 using MPC to track the reference trajectory r
while satisfying the state and input constraints, and the
update laws for parameter estimation of the uncertainties
∆A,∆B after each trial or iteration. We also implicitly
assume that the reference signal r is slowly varying and the
time T is sufficiently large to allow learning from previous
trials. Next, we will explain in detail the optimization
problem associated with the MPC based controller. The
results stated here are from Limon et al. [2010]. We exploit
the analysis results in Limon et al. [2010] to establish that
the closed-loop system has an ISS property with respect
to the parameter estimation error. We first observe that
since the reference trajectory r is a piecewise constant
trajectory, the problem of tracking the signal r is simplified
to the problem of tracking multiple constant and feasible
set points during successive time intervals in [0, T ] in the
presence of uncertainties.

Since the value of ∆A and ∆B are not known a priori,
the MPC uses a model of the plant based on the current
estimate ∆̂A and ∆̂B.

We will now formulate the MPC problem with a given
estimate of the uncertainty for a particular iteration of
the learning process. We will rewrite the system dynamics
as

x(k + 1) = f(x, u) + g(x, u, ∆) = F (x, u, ∆), (3)
where f(x, u) = Ax + Bu and g(x, u, ∆) = ∆Ax + ∆Bu.
Assumption 3. The state constraint set X ⊂ Rn and
control constraint set U ⊂ Rm are compact, convex
polyhedral sets.

The MPC model is generated using an estimate ∆̂A, ∆̂B
and is expressed as

x(k + 1) = f(x, u) + g(x, u, ∆̂) = F (x, u, ∆̂). (4)

We can now rewrite the actual model as

x(k + 1) = f(x, u) + g(x, u, ∆̂) + (∆A− ∆̂A)x + (∆B − ∆̂B)u.(5)

This system can now be compared to the model in Limon
et al. [2010]. So we have

x(k + 1) = F (x(k), u(k), ∆̂) + w(k), (6)
where

w(k) = (∆A− ∆̂A)x(k) + (∆B − ∆̂B)u(k), (7)
and x(k) ∈ X , u(k) ∈ U . The following assumption will be
justified in the next section.
Assumption 4. The estimates of the uncertain parameters
are bounded with ‖∆̂A‖ ≤ `A and ‖∆̂B‖ ≤ `B for all
iterations of the extremum seeking algorithm.

We now impose certain conditions on the disturbance w(k)
and system matrices in accordance with [Limon et al.,
2010, Assumption 1].

Assumption 5. The pair (A+∆̂A,B +∆̂B) is controllable
for every realization of ∆̂A and ∆̂B.

We will denote the actual model using (x, u) and the MPC
model through (x̄, ū). Hence we have



x(k + 1) = F (x, u, ∆̂) + w,

x̄(k + 1) = F (x̄, ū, ∆̂).

between the states of the true model and MPC model by
e(k) = x(k) − x̄(k). We want the error to be bounded
during tracking. The error dynamics is then given by

e(k + 1) = (A + ∆̂A + (B + ∆̂B)K)e(k) + w(k), (8)
where u = ū + Ke and the matrix K is such that AK :=
(A + ∆̂A + (B + ∆̂B)K) is Schur.

We first recall the definition of a robust positive invariant
set (RPI), e.g., Limon et al. [2010].
Definition 1. A set ΦK is called an RPI set for the
uncertain dynamics (8), if AKΦk ⊕W ⊆ ΦK .

So, we let ΦK be an RPI set associated with the error
dynamics (8), i.e., AKΦK ⊕W ⊆ ΦK .

Now we follow Limon et al. [2010] and tighten the con-
straints for the MPC model so that we achieve robust
constraint satisfaction for the actual model with uncer-
tainties. Let X1 = X 	 ΦK and U1 = U 	 KΦK . The
following result is from Alvarado et al. [2007b].
Proposition 1. Let ΦK be RPI for the error dynamics. If
e(0) ∈ ΦK , then x(k) ∈ x̄(k) ⊕ ΦK for all k ≥ 0 and
w(k) ∈ W. If in addition, x̄(k) ∈ X1 and ū(k) ∈ U1 then
with the control law u = ū + Ke, x(k) ∈ X and u(k) ∈ U
for all k ≥ 0.

As in Alvarado et al. [2007b] and Limon et al. [2010],
we will characterize the set of nominal steady states and
inputs so that we can relate them later to the tracking
problem. Let zs = (x̄s, ūs) be the steady state for the
MPC model. Then,[

A + ∆̂A− I B + ∆̂B
C D

] [
x̄s
ūs

]
=

[
0
ȳs

]
. (9)

From the controllability assumption on the system matri-
ces, the admissible steady states can be characterized by
a single parameter θ̄ as

z̄s = Mθ θ̄, (10)

ȳs = Nθ θ̄, (11)
for some θ̄ and matrices Mθ and Nθ = [C D]Mθ. We
let Xs, Us denote the set of admissible steady states that
are contained in X1,U1 and satisfy (9). Ys denotes the
set of admissible output steady states. Now we will define
an invariant set for tracking which will be utilized as a
terminal constraint for the optimization problem.
Definition 2. [Limon et al., 2010, Definition 2] An invari-
ant set for tracking for the MPC model is the set of initial
conditions, steady states and inputs (characterized by θ̄)
that can be stabilized by the control law ū = K̄x̄ + Lθ̄
with L := [−K̄ I]Mθ while (x̄(k), ū(k)) ∈ X1 × U1 for all
k ≥ 0.

We choose the matrix K̄ such that AK̄ := (A + ∆̂A +
(B + ∆̂B)K̄) is Schur. We refer the reader to Alvarado
et al. [2007b] and Limon et al. [2010] for more details
on computing the invariant set for tracking. We will refer
to the invariant set for tracking as ΩK̄ . We say a point
(x̄(0), θ̄) ∈ ΩK̄ if with the control law u = K̄(x̄ − x̄s) +
ūs = K̄x̄ + Lθ̄, the solutions of the MPC model from x̄(0)
satisfy x̄(k) ∈ Projx(ΩK̄) for all k ≥ 0. As stated in Limon
et al. [2010] the set can be taken to be a polyhedral.

3.1 MPC problem formulation

We are ready now to define the MPC optimization problem
that will be solved at every instant to determine the
control law for the actual plant dynamics. For a given
target set-point yt and initial condition x, the optimization
problem PN (x, yt) is defined as,

min
x̄(0),θ̄,ū

VN (x, yt, x̄(0), θ̄, ū)

s.t x̄(0) ∈ x⊕ (−ΦK)

x̄(k + 1) = (A + ∆̂A)x̄(k) + (B + ∆̂B)ū(k)
x̄s = Mθ θ̄

ȳs = Nθ θ̄

(x̄(k), ū(k)) ∈ X1 × U1, k ∈ Z≤N−1

(x̄(N), θ̄) ∈ ΩK̄ ,

where the cost function is defined as follows

VN (x, yt, x̄(0), θ̄, ū) =
N−1∑
k=0

|x̄(k)− x̄s|2Q̃

+|ū(k)− ūs|2R + |x̄(N)− x̄s|2P + |ȳs − yt|2T . (12)
Such cost function is frequently used in MPC literature
for tracking except for the additional term in the end
which penalizes the difference between the artificial stead
state and the actual target value. We refer the reader to
Alvarado et al. [2007a], Alvarado et al. [2007b] and Limon
et al. [2010] for more details.
Assumption 6. The following conditions are satisfied by
the optimization problem

(1) The matrices Q̃ > 0, R > 0, T > 0.
(2) (A+∆̂A+(B +∆̂B)K) is Schur matrix, ΦK is a RPI

set for the error dynamics, and X1,U1 are non-empty.
(3) The matrix K̄ is such that A + ∆̂A + (B + ∆̂B)K̄ is

Schur and P > 0 satisfies:

P − (A + ∆̂A + (B + ∆̂B)K̄)T P

(A + ∆̂A + (B + ∆̂B)K̄) = Q̃ + K̄T RK̄.

(4) The set ΩK̄ is an invariant set for tracking subject to
the tightened constraints X1,U1.

As noted in Limon et al. [2010], the feasible set XN does
not vary with the set points yt and the optimization
problem is a Quadratic programming (QP) problem. The
optimal values are given by x̄∗s, ū

∗(0), x̄∗. The MPC control
law writes then as: u = κN (x) = K(x − x̄∗) + ū∗(0). The
MPC law κN implicitly depends on the current estimate
of the uncertainty ∆̂. Also it follows from the results in
Bemporad et al. [2002] that the control law for the MPC
problem is continuous 1 .

4. DIRECT EXTREMUM SEEKING-BASED
ITERATIVE LEARNING MPC

4.1 DIRECT-based iterative learning MPC

In this section we will explain the assumptions regarding
the learning cost function 2 used for identifying the true
parameters of the uncertain system via nonlinear program-
ming based method called DIRECT which uses a sampling
1 The authors would like to thank Dr. S. Di Cairano for pointing
out to us the paper Bemporad et al. [2002].
2 Not to be confused with the MPC cost function.



based methodology to achieve extremum seeking. Due to
space constraints we refer the reader to Jones et al. [1993]
for details on the DIRECT algorithm. Let ∆ be a vector
that contains the entries in ∆A and ∆B. Similarly the
estimate will be denoted by ∆̂. Then ∆, ∆̂ ∈ Rn(n+m).

Since we do not impose the presence of attractors for
the closed-loop system as in Popovic et al. [2006] or
Khong et al. [2013a], the cost function that we utilize
Q : Rn(n+m) → R≥0 depends on x0. For iterative learning
methods, the same initial condition x0 is used to learn the
uncertain parameters and hence we refer to Q(x0, ∆̂) as
only Q(∆̂) since x0 is fixed.
Assumption 7. The learning cost function Q : Rn(n+m) →
R≥0 is

(1) Lipshitz in the compact set of uncertain parameters
(2) The true parameter ∆ is such that Q(∆) < Q(∆̂) for

all ∆̂ 6= ∆.

One example of a learning cost functions is identification-
type cost function, where the error between outputs mea-
surements from the system are compared to the MPC
model outputs. Another example of a learning cost func-
tion, can be a performance-type cost function, where a
measured output of the system is directly compared to a
desired reference trajectory. Later in Section 5, we will test
the former learning cost function.

We then use the DIRECT optimization algorithm in-
troduced in Jones et al. [1993] for finding the global
minimum of a Lipschitz function without knowledge of
the Lipschitz constant. The algorithm is implemented in
MATLAB using Finkel [2003]. We will utilize a modified
termination criterion introduced in Khong et al. [2013a]
for the DIRECT algorithm to make it more suitable for
extremum seeking applications. As we will mention in the
next section, the DIRECT algorithm has nice convergence
properties which will be used to establish our main results.
The combined algorithm for the ILC-MPC scheme using
the DIRECT algorithm is stated below. We note that the
index ‘t′ for the estimates refers to the trail number and
the index ‘k′ is used to keep track of the solutions for a
particular trial. The estimate is also fixed for the entire
duration of a trial.

Algorithm 1 Extremum Seeking ILC-MPC

Require: r : [0, T ] → R, x0, Q, ∆̂0
1: Set t = 0
2: Initial trial point of DIRECT: ∆̂0

3: Form MPC model with ∆̂0
4: while t ∈ Z≥0 do
5: Set x(0) = x0
6: k = 0
7: for k ∈ [0, T ] do
8: Compute MPC law at x(k), update x(k + 1)
9: k = k + 1

10: Compute Q(∆̂t) from {x(k), u(k)}T
k=0

11: Find ∆̂t+1 using DIRECT with {∆̂0, ...∆̂t}
12: Update MPC model and PN using ∆̂t+1
13: t = t + 1

4.2 Main results: Proof of the MPC ISS and the learning
convergence

We will now present the main results of this paper,
namely the stability analysis of the proposed ESILC-MPC

algorithm 1, using the existing results for MPC tracking
and DIRECT algorithm established in Limon et al. [2010]
and Khong et al. [2013b], respectively.

First, we define the value function
V ∗N (x, yt) = min

x̄(0),θ,ū
VN (x, yt, x̄(0), θ, ū)

for a fixed target yt. Also, we let θ̃ := arg minθ̄ |Nθ θ̄ −
yt|, (x̃s, ũs) = Mθ θ̃ and ỹs = Cx̃s + Dũs. If the target
steady state yt is not admissible, the MPC tracking scheme
drives the output to converge to the point ỹs which is a
steady state output that is admissible and also minimizes
the error with the target steady state. The proof of the
following result follows from [Limon et al., 2010, Theorem
1] and classically uses V ∗N (x, yt) as a Lyapunov function
for the closed-loop system.
Proposition 2. Let yt be given. For all x(0) ∈ XN , the
MPC problem is recursively feasible. The state x(k) con-
verges to x̃s ⊕ ΦK and the output y(k) converges to ỹs ⊕
(C + DK)ΦK .

The next result states the convergence properties of the
modified DIRECT algorithm, which we will used in es-
tablishing the main result. This result is stated as [Khong
et al., 2013b, Assumption 7] and it follows from the anal-
ysis of the modified DIRECT algorithm in Khong et al.
[2013a].

Proposition 3. For any sequence of updates ∆̂t, t = 1, 2, ...
from the modified DIRECT algorithm and ε > 0, there
exists a Ñ > 0 such that |∆− ∆̂t| ≤ ε for t ≥ Ñ .
Remark 1. Note that the results in Khong et al. [2013a]
also include a robustness aspect of the DIRECT algorithm.
This can be used to account for measurement noises and
computational error associated with the learning cost Q.

We now state the main result of the section that combines
the ISS MPC formulation and the extremum seeking
algorithm.
Theorem 1. Under Assumptions 1-7, given an initial con-
dition x0, let the output target target yt be such that yt is
constant over [0, T ∗] for some T ∗ ∈ Z>0 sufficiently large.
Then, for every ε > 0, there exists N1, N2 ∈ Z>0 such that
|y(k)− ỹs| <= ε for k ∈ [N1, T

∗] after N2 iterations of the
ILC-MPC scheme.

Proof. It can observed that the size of ΦK grows with the
size ofW and ΦK = {0} for the case without disturbances.
Also, since the worst case disturbance depends directly on
the estimation error, without loss of generality we have
that ΦK ⊆ γ(|∆ − ∆̂|)B for some γ ∈ K. It follows from
Proposition 2 that limk→∞ |x(k)|x̃s⊕ΦK

= 0. Then,

lim
k→∞

|x(k)− x̃s| ≤ max
x∈ΦK

|x|

≤ γ(|∆− ∆̂|).
We observe that the above set of equations state that
the closed-loop system with the MPC controller has the
asymptotic gain property and it is upper bounded by
the size of the parameter estimation error. Note that
the estimate ∆̂ is constant for a particular iteration of
the process. Also, for the case of no uncertainties we
have 0−stability (Lyapunov stability for the case of zero
uncertainty). This can be proven by using the cost function
V ∗N (x, yt) as the Lyapunov function, such that V ∗N (x(k +
1), yt) ≤ V ∗N (x(k), yt) and λmin(Q̃)|x− x̃s|2 ≤ V ∗N (x, yt) ≤
λmax(P )|x − x̃s|2, see Limón et al. [2008]. Furthermore,



here the stability and asymptotic gain property can be
interpreted with respect to the compact set A := {x̃s}.
Since the MPC control law is continuous, the closed-loop
system for a particular iteration of the ILC-MPC scheme is
also continuous with respect to the state. Then, from [Cai
and Teel, 2009, Theorem 3.1] we can conclude that the
closed-loop system is ISS with respect to the parameter
estimation error and hence satisfies,

|x(k)− x̃s| ≤ β(|x(0)− x̃s|, k) + γ̂(|∆− ∆̂|),
where β ∈ KL and γ̂ ∈ K. Now, let ε1 > 0 be small enough
such that γ̂(ε1) ≤ ε/2. From Proposition 3, it follows that
there exists a Ñ2 > 0 such that |∆− ∆̂t| ≤ ε1 for t ≥ Ñ2,
where t is the iteration number of the ILC-MPC scheme.
Also, there exists Ñ1 > 0 such that β(|x(0)− x̃s|, k) ≤ ε/2
for k ≥ Ñ1. Then, we have that for k ∈ [Ñ1, T

∗] and for
t ≥ Ñ2,

|x(k)− x̃s| ≤ ε/2 + ε/2 ≤ ε.

A similar analysis for the output establishes that for any
ε > 0, there exists N1, N2 > 0 such that such that for
k ∈ [N1, T

∗] and for t ≥ N2

|y(k)− ỹs| ≤ ε.

Remark 2. We note that a result similar to Theorem 1 can
be easily applied to the case of piecewise constant signals
r : [0, T ] → R provided the signal r varies sufficiently
slowly to better facilitate tracking using the ILC-MPC
algorithm.

5. NUMERICAL EXAMPLE

We consider the following simple system dynamics

x1(k + 1) = x1(k) + (−1 + 3/(k1 + 1))x2(k) + u(k)

x2(k + 1) =−k2x2(k) + u(k)

y(k) = x1(k).

Together with the state constraints |xi| ≤ 50 for i ∈ {1, 2}
and the input constraint |u| ≤ 10. We assume that the
nominal values for the parameters are k1 = −0.3 and
k2 = 1. Furthermore, we assume that the uncertainties
are bounded by −0.9 ≤ k1 ≤ 0 and 0 ≤ k2 ≤ 4. The
robust invariant sets for tracking are determined using
the algorithms in Borrelli et al. [2012]. Next, we define
an identification-type cost function: For a given initial
condition x0, and a piecewise constant reference trajectory
of length T sufficiently large, the learning cost function Q
is defined as

Q(∆̂) := α
T∑

k=1

|x(k)− x̃(k)|2,

where α > 0 is a scaling factor, x(k) is the trajectory
of the actual system (assuming the availability of the full
states measurements), and x̃(k) is the trajectory of the
MPC model with the same inputs. In this example we can
observe from the plot of Q in Figure 1 that the unique
minimum occurs at the true value of the parameters.
Figure 3 shows the identification of the uncertainties
obtained by the DIRECT algorithm. Finally, we see in
Figure 2, that the ILC-MPC scheme successfully achieves
tracking of the piecewise constant reference trajectory.

−1

−0.5

0

0.5

0
1

2
3

4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Parameter 1Parameter 2

Pa
ra

m
et

er
 Q

Cost	function	 vs.	identification	 parameters	

Fig. 1. ESILC-MPC scheme - Cost function Q(∆) as
function of the uncertain parameters

0 2 4 6 8 10 12 14 16 18

−0.2

−0.1

0

0.1

0.2

Time

O
ut
pu
t

0 2 4 6 8 10 12 14 16 18
−0.1

−0.05

0

0.05

0.1

Time

In
pu
t

Reference	 (dashed	line)
Actual	(continuous	 line)
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6. CONCLUSION

In this paper, we have reported some results about ex-
tremum seeking (ES)-based ILC-MPC algorithms. We
have argued that it is possible to merge together a model-
based linear MPC algorithm with a model-free ES algo-
rithm to iteratively learn structural model uncertainties
and thus improve the overall performance of the MPC
controller. We have presented the analysis of this modular
design technique for ESILC-MPC where we addressed fea-
sibility, learning and tracking performance. Future work
can include extending this method to a wider class of
nonlinear systems, tracking a more richer class of signals,
employing different non-smooth optimization techniques
for the extremum seeking algorithm, and comparing this



type of ESILC-MPC to other adaptive MPC methods in
terms of performances and convergence speed, etc.
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