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Abstract

This paper proposes a proportional-integral extremum-seeking control
technique for a class of discrete-time nonlinear dynamical systems with
unknown dynamics. The technique is a generalization of existing time-
varying extremum-seeking control techniques that provides fast transient
performance of the closed-loop system to the optimum equilibrium of a
measured objective function. The main contribution of the proposed tech-
nique is the addition of a proportional action that can be used to minimize
the impact of a time-scale separation on the transient performance of the
extremum-seeking control system. The integral action fulfills the role of
standard ESC techniques to identify optimal equilibrium conditions. The
effectiveness of the proposed approach is demonstrated using a simulation
example.

1 Introduction

Extremum-seeking control (ESC) has grown to become the leading approach
to solve real-time optimization problems [16]. Following the seminal work of
Krstic and coworkers ([9], [8], [2], [1], [3], [18]), this strikingly general and
practically relevant control approach is equipped with an established and well
understood control theoretical framework. The main drawback of ESC is the
lack of transient performance guarantees. As highlighted in the proof of Krstic
and Wang [9], the stability analysis relies on two components: an averaging
analysis of the persistently perturbed ESC loop and a time-scale separation of
ESC closed-loop dynamics between the fast transients of the system dynamics
and the slow quasi steady-state extremum-seeking task. While the averaging
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analysis highlights the stability properties of ESC systems, the need for a slower
time-scale for the optimization dynamics invariantly leads to a slow performance
of the closed-loop ESC system. The objective of this study is to develop an ESC
technique that minimizes the impact of time-scale separation on the transient
performance of ESC systems for a class of discrete-time nonlinear dynamical
systems.

The vast majority of existing results on ESC have focussed on continuous-
time systems. Although discrete-time systems can be treated in an essentially
similar fashion, the application of gradient descent in a discrete-time setting re-
quires some care. A discrete-time version of the standard ESC loop was studied
in [2] and [3] where convergence results similar to continuous time systems are
obtained. A similar algorithm was also proposed in [7] for the tuning of PID con-
trollers in unknown dynamical systems using ESC. Discrete-time ESC subject
to stochastic perturbations is studied in [12]. A stochastic ESC approach for a
class of discrete-time nonlinear systems is proposed in [11]. The use of approxi-
mate parameterizations of the unknown cost function using quadratic functions
was recently proposed in [14]. An alternative ESC-like approach was proposed
in [17]. In this study, a trajectory based approach is used to analyze the prop-
erties of nonlinear optimization algorithms as dynamical systems. It is shown
that properties of the nonlinear-optimization algorithms are suitable to assess
the convergence of certain classes of ESC applied in a sampled-data approach.
This approach was recently studied in the context of global sampling methods
in [13] where trajectory based properties of nonlinear optimization methods are
used to establish robust convergence. The main objectives with the trajectory
based techniques is to analyze the properties of optimization algorithms assum-
ing that they can converge to the true optimum using only the measurement
of the objective function and possibly the constraints. In the context of ESC,
one must either imply that the nonlinear optimization techniques do not rely
on gradient information or, if they do, this gradient must be either measured or
estimated. Some techniques such as [19] and [20] make use of sporadic gradient
measurements in extremum seeking control. Other techniques [15] go as far
as requiring the existence of multiple (nearly) identical systems to enable the
estimation of gradient information.

This paper proposes the design of a fast ESC for discrete-time systems. The
approach is based on a proportional-integral ESC (PIESC) design technique ini-
tially proposed in [6]. The approach extends the time-varying discrete-time ESC
technique proposed in [5]. The PIESC technique proposed here is a combination
of an integral action which corresponds to the standard ESC control task used to
identify the steady-state optimum and a proportional control action designed to
ensure that the measured cost function can be optimized instantaneously. Un-
der suitable assumption on the dynamics of the system and the cost function,
this action can be shown to minimize the cost over short times while reaching
the optimum steady-state conditions. The use of the proportional action is one
aspect of the proposed approach that can be used to expand the range of appli-
cability of ESC. One can argue that a large class of problems could be solved
by first designing a robustly stabilizing feedback to the unknown system that is
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amenable to the application of standard ESC. However, the combination of stan-
dard ESC with a stabilizing feedback implies considerable a priori knowledge of
the process dynamics. Precise knowledge of the process dynamics violates the
main assumption of ESC that the mathematical formulation of the process is
unknown. Furthermore, this study establishes that the proposed ESC can be
used as a possible candidate for stabilization (and optimization) of nonlinear
discrete-time systems. The corresponding feedback solution can be argued as a
Jurdjevic-Quinn damping feedback for discrete-time nonlinear systems, as pro-
posed in [10]. Such state-feedback solutions have not been established in the
context of discrete-time ESC design.

The paper is organized as follows. A problem description of the ESC problem
along with the key assumptions is given in Section 2. The proposed proportional-
integral ESC controller is described in Section 3. The closed-loop stability of the
PI-ESC and the main theorem of this study is presented in Section 4. Simulation
examples are presented in Section 5 followed by brief conclusions and proposed
future work in Section 6.

2 Problem description

We consider a class of nonlinear systems of the form:

xk+1 = xk + f(xk) + g(xk)uk (1)

yk = h(xk) (2)

where xk ∈ Rn is the vector of state variables at time k, uk is the vector of
input variables at time k taking values in U ⊂ Rp and yk ∈ R is the objective
function at step k, to be minimized. It is assumed that f(xk) and g(xk) are
smooth vector valued functions and that h(xk) is a smooth function.

The objective is to steer the system to the equilibrium x∗ and u∗ that
achieves the minimum value of y(= h(x∗)). The equilibrium (or steady-state)
map is the n dimensional vector x = π(u) that solves the following equation:

f(π(u)) + g(π(u))u = 0.

The corresponding equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

At equilibrium, the problem is reduced to finding the minimizer u∗ of y = `(u∗).
In the following, we let D(u) represent a neighbourhood of the equilibrium
x = π(u).

The following additional assumption concerning the steady-state cost func-
tion `(u) is required.

Assumption 1 The nonlinear system is such that

∇xh(π(u))g(π(u))(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .
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Assumption 2 The cost h(x) is such that

1. ∂h(x∗)
∂x = 0

2. ∂2h(x)
∂x∂xT

> βI, ∀x ∈ Rn

where β is a strictly positive constant.

It is assumed that the cost function dynamics has relative degree one in D(u).
The cost function dynamics are expressed as follows. We let α(xk, ûk) = xk +
f(xk) + g(xk)ûk where ûk is used as an estimate of the unknown optimum
equilibrium p dimensional vector of input variables, u∗. The rate of change of
the cost function yk = h(xk+1) is given by:

h(xk+1)− h(xk) = h(xk + f(xk) + g(xk)uk)

− h(α(xk, ûk)) + h(α(xk, ûk))− h(xk).

The first two terms can be rewritten using the second order Taylor formula as:

h(xk + f(xk) + g(xk)uk)− h(α(xk, ûk)) =∇h(α(xk, ûk))g(xk)(uk − ûk)

+
1

2
(uk − ûk)>g(xk)>∇2h(ỹk)g(xk)(uk − ûk)

(4)

where ỹk = α(xk, ûk) + θg(xk)(uk− ûk) for θ ∈ (0, 1). We rewrite (4) as follows:

h(xk + f(xk) + g(xk)uk)− h(α(xk)) = Ψ1,k(xk, uk, ûk)(uk − ûk) (5)

where

Ψ1,k(xk, uk, ûk) = (∇h(α(xk, ûk))g(xk) +
1

2
(uk − ûk)>g(xk)>∇2h(ỹk)g(xk).

We also define the following

Ψ0,k(xk, ûk) = h(α(xk, ûk))− h(xk).

and write the cost dynamics as:

yk+1 − yk = Ψ0,k(xk, ûk) + Ψ1,k(xk, uk, ûk)(uk − ûk).

The last equation provides a parameterization of the discrete-time cost dynamics
that is amenable to the statement of assumptions concerning their stabilizability.
The term Ψ0,k identifies the drift termof the unknown dynamics while Ψ1,k

provides a representation of the control direction at step k.
By the relative order one assumption on h(x), the system’s dynamics can be

decomposed and written as:

ξk+1 = ξk + ψ(ξk, yk) (6)

yk+1 = yk + Ψ0,k(xk, ûk) + Ψ1,k(xk, uk, ûk)(uk − ûk) (7)
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where ξk ∈ Rn−1 and ψ(ξk, yk) is a smooth vector valued function. In the
process dynamics (6), the variables ξk represent the state variables of the zero
dynamics of the control system.

The following assumptions provide conditions for the stabilizability of the
discrete-time nonlinear systems. The first assumption defines the type of state
feedback controllers that are considered.

Assumption 3 There exists a function uk = αF (xk, ûk) that solves the iden-
tity:

αF (xk, ûk) = −kgΨ1,k(xk, αF (xk, ûk), ûk)T + ûk.

This assumption simply establishes that the feedback:

uk = −kgΨ1,k(xk, uk, ûk)T + ûk

is well defined.

Assumption 4 There exists a positive definite function W (ξ) that satisfies the
following inequalities:

β1‖xk − π(û)‖2 ≤W (ξ) + h(x) ≤ β2‖xk − π(û)‖2

with positive constants β1 and β2, and a positive constant k∗g such that:

W (ξk+1) + h(α(xk))−W (ξk)− h(xk)− k∗g‖Ψ1,k(xk, αF (xk, ûk), ûk)‖2

≤ −αe‖xk − π(ûk)‖2

with positive constant αe, ∀xk ∈ D(û) and ∀ûk ∈ U .

Assumption 4 states that W + h is non-increasing along the vector field f(x) +
g(x)u over some neighbourhood of the steady-state manifold x = π(u) at a fixed
value of the input ûk.

3 Proportional-Integral Perturbation Discrete-
time ESC

In this section, we present the proposed ESC controller.
Recall that the cost function dynamics can be parameterized as follows:

yk+1 = yk + θ0,k + θT1,k(uk − ûk)

where the time-varying parameters θ0,k and θ1,k are identified with θ0,k = Ψ0,k

and θ1,k = ΨT
1,k.
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Since the parameters θ0,k and θ1,k are unknown, they must be estimated. Let

θ̂0,k and θ̂1,k denote the estimates of θ0,k and θ1,k, respectively. The proposed
proportional-integral extremum-seeking controller is given by:

uk = −kg θ̂1,k + ûk + dk (8)

ûk+1 = ûk −
1

τI
θ̂1,k.

where kg and τI are positive constants to be assigned. The term dk is a dither
signal used to provide a sufficiently signal in closed-loop. The dither signal is
bounded and such that ‖dk‖ ≤ D where D is a known positive constant.

In practice, this algorithm can be assigned in the velocity form as follows:

uk+1 = uk − kg(θ̂1,k+1 − θ̂1,k)− 1

τI
θ̂1,k + dk.

In what follows, the analysis will be performed for the controller (8).

3.1 Time-varying parameter estimation approach

This section describes a scheme that allows the accurate estimation of the pa-
rameters θ0,k and θ1,k. Note that the estimation of θ0,k is necessary to ensure
that the estimates of θ1,k are not biased.

Consider the following state predictor

ŷk+1 = ŷk + θ̂0,k + θ̂T1,k(uk − ûk) +Kkek − ωTk+1(θ̂k − θ̂k+1) (9)

where θ̂k = [θ̂0,k, θ̂
T
1,k]T is the vector of parameter estimates at time step k given

by any update law, Kk is a correction factor at time step k, ek = yk − ŷk is
the state estimation error at time step k. We let φk = [1, (uk − ûk)T ]T . The
variable ωk is the following output filter at time step k

wk+1 = wk + φk −Kkwk, (10)

with ω0 = 0. In what follows, we denote the parameter estimation error as
θ̃k = θk − θ̂k.

Using the state predictor defined in (9) and the output filter defined in (10),
the prediction error ek = yk − ŷk is given by

ek+1 = ek + φkθ̃k+1 −Kkek + ωTk+1(θ̂k − θ̂k+1) + ωTk+1(θk+1 − θk)

e0 = y0 − ŷ0. (11)

An auxiliary variable ηk is introduced which is defined as ηk = ek − ωTk θ̃k. Its
dynamics are described as follows

ηk+1 = ηk −Kηk + ωTk+1(θk+1 − θk) = ηk −Kηk + ϑk

η0 = e0. (12)
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Since ϑk is unknown, it is necessary to use an estimate, η̂, of η . The estimate
is generated by the recursion:

η̂k+1 = η̂k −Kkη̂k. (13)

The resulting dynamics of the η estimation error are:

η̃k+1 = η̃k −Kkη̃k + ωTk+1(θk+1 − θk) (14)

The proposed parameter estimation routine is an extension of recursive least
squares such as presented in [4] for the estimation of time-varying parameters.
Let the identifier matrix Σk be defined as

Σk+1 = αΣk + ωkω
T
k + σI, Σ0 = αI � 0 (15)

with an inverse generated by the recursion

Σ−1
k+1 =(αΣk + σI)−1 − (αΣk + σI)−1ωkQkω

T
k (αΣk + σI)−1 (16)

where Qk = (1 + 1
αω

T
k (αΣk + σI)−1ωk)−1. Using equations (9), (10), and (13),

it follows from standard arguments ([4]) that the preferred parameter update
law is given by:

θ̂k+1 = θ̂k + (αΣk + σI)−1ωkQk(ek − η̂k) (17)

To ensure that the parameter estimates remain within the constraint set Θk,
we propose to use a projection operator of the form:

¯̂
θk+1 = Proj{θ̂k + (αΣk + σI)−1ωkQk(ek − η̂k),Θk} (18)

The operator Proj represents an orthogonal projection onto the surface of the
uncertainty set applied to the parameter estimate.The parameter uncertainty
set is defined by the ball function B(θ̂c, zθ̂c), where θ̂c and zθ̂c are the parameter
estimate and set radius found at the latest set update.

Following [4], the projection operator is designed such that

• θ̂k+1 ∈ Θ0

• ¯̃
θTk+1Σk+1

¯̃
θk+1 ≤ θ̃Tk+1Σk+1θ̃k+1

One possible algorithm for the projection algorithm is as follows. Define the
upper bound for ‖θ‖ (= L1). Let R =Chol(Σk+1) denote the Cholesky factor
of Σk+1. Then we perform the following:

Algorithm 1 If ‖θ̂k+1‖ ≥ L1 then

• Let δ = L1θ̂k+1

‖θ̂k+1‖
,

• Let zρ =
√
δTΣk+1δ,
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• With ρ = Rθ̂k+1 define ρ̄ =
ρzρ
‖ρ‖ ,

• Let
¯̂
θk+1 = R−1ρ̄.

Otherwise,

• Let
¯̂
θk+1 = θ̂k+1.

It is assumed that the trajectories of the system are such that the following
condition is met.

Assumption 5 [4] There exists constants βT > 0 and T > 0 such that

1

T

k+T−1∑

i=k

ωiω
T
i > βT I, ∀k > T. (19)

This requirement is a standard persistency of excitation condition that can
be found in most references on adaptive control and adaptive estimation. The
reader is referred to [4] for more details.

3.2 Summary of the approach

The key elements of the approach can be summarized schematically in Figure 1.
The technique combines a time-varying estimation algorithm with gains K and
α and the PI-ESC algorithm with proportional gain kg and integral constant
τI .

Parameter Estimator

yk ✓̂kek uk

pre-
condition

ŷk

-
predict 
output

!k

parameter 
update PI controller 

Control Law

xk+1 = xk + f(xk) + g(xk)uk

yk = h(xk)

Figure 1: Schematic representation of the PI-ESC approach.

A detailed schematic description of the closed-loop PI-ESC system is pro-
vided in Figure 2.

The tuning of the constant and the performance of the closed-loop system
are addressed in the next section.
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yk
✓̂k

Mk
ek

Rk

ŷk = ŷk�1 + Kek�1 + �T
k�1✓̂k�1 + !T

k�1(✓̂k � ✓̂k�1)predict output:

correct parameter
estimate:

update covariance:

ûk uk✓̂1,k z�1

1 � z�1

�1

⌧I

�kg

⌘̂k

-

-

uk � ûkpre-
condition

!k

!k

ŷk

-
predict 
output

z�1

1 � z�1

pre-condition:


0 0
0 I

�

!k

z�1

1 � (1 � Kk)z�1

z�1

1 � ↵z�1

Mk =
(↵⌃k + �I)�1!k

1 + !T
k (↵⌃k + ↵I)�1!k

Rk = !k!
T
k + �I

�k = [1, (uk � ûk)T ]T

⌃k

Figure 2: Schematic representation of the PI-ESC approach.

4 Closed-loop stability of PI-ESC

In this section, we present the main result of this study. It is stated in the form
of the following theorem.

Theorem 1 Consider the nonlinear discrete-time system (1) with cost function
(2), the extremum seeking controller (8) and parameter estimation scheme (9),
(10), (13), (15) and (18). Let Assumptions 1-5 be fulfilled. Then there exists
positive constants α, K, kg and τI such that for every τI ≥ τ∗I , the states xk
and input uk of the closed-loop system enter a neighbourhood of the unknown
optimum (x∗, u∗).

Proof: Let ũk = uk − u∗ and consider the Lyapunov function:

Wk = θ̃Tk Σkθ̃k.

Consider the following:

Wk+1 −Wk =
¯̃
θTk+1Σk+1

¯̃
θk+1 − θ̃Tk Σkθ̃k

≤ θ̃Tk+1Σk+1θ̃k+1 − θ̃Tk Σkθ̃k. (20)

where the final inequality arises as a result of the properties of the projection
algorithm.

The parameter estimation error dynamics is given by:

θ̃k+1 = θ̃k + (θk+1 − θk)− (αΣk + σI)−1ωkQk(ek − η̂k).

= θ̃k + (θk+1 − θk)− (αΣk + σI)−1ωkQkω
T
k θ̃k

− (αΣk + σI)−1ωkQkη̃k
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Note that by construction one can write the parameter estimation error dynam-
ics as follows:

θ̃k+1 = (θk+1 − θk) + Σ−1
k+1(αΣk + σI)θ̃k − (αΣk + σI)−1ωkQkη̃k

In the following, we define vk = (θk+1 − θk) − (αΣk + σI)−1ωkQkη̃k. Upon
substitution of the dynamics of θ̃k, one obtains:

θ̃k+1 =Σ−1
k+1(αΣk + σI)

[
Σ−1
k (αΣk−1 + σI)θ̃k−1 + vk−1

]
+ vk (21)

One obtains the following by induction:

θ̃k+1 =

k∏

i=0

[
Σ−1
k−i+1(αΣk−i + σI)

]
θ̃0 +

k∑

i=0

i∏

j=0

[
Σ−1
k−j+1(αΣk−j + σI)

]
vk−i

where we apply the convention
∏0
j=0

[
Σ−1
k−j+1(αΣk−j + σI)

]
= 1.

θ̃k+1 =Σ−1
k+1

k∏

i=1

[
(αΣk−i + σI)Σ−1

k−i
]

(αΣ0 + σI)θ̃0 +

k∑

i=0

i∏

j=0

[
Σ−1
k−j+1(αΣk−j + σI)

]
vk−i

=Σ−1
k+1

k−1∏

i=1

[
(αI + σΣ−1

k−i)
]

(αΣ0 + σI)θ̃0 +

k∑

i=0

i∏

j=0

[
Σ−1
k−j+1(αΣk−j + σI)

]
vk−i

The matrix Σk+1 can be bounded as follows. The recursion for Σk can be
rewritten as:

Σk+1 = αk+1Σ0 +

k∑

i=0

αk−iωiω
T
i +

k∑

i=0

αk−iσI.

Then one can write:

Σk+1 ≤ αk+1Σ0 +

k∑

i=0

αk−i




T∑

j=1

ωi+jω
T
i+j + σI




≤ αk+1Σ0 +

k∑

i=0

αk−iT (β + σ)I ≤ αk+1Σ0 +
1− αk+1

1− α T (β + σ)I

10



Similarly, one can provide a lower bound for Σk+1. Consider the quantity:

TΣk+1 = Tαk+1Σ0 + T

k∑

i=0

αk−iωiω
T
i + T

k∑

i=0

αk−iσI

≥ Tαk+1Σ0 +

k∑

i=T

αk−iωiω
T
i +

k−1∑

i=T−1

αk−iωiω
T
i +

. . .+

k−T∑

i=0

αk−iωiω
T
i + T

k∑

i=0

αk−iσI

= Tαk+1Σ0 +

k−T∑

i=0

αk−i−Tωi+Tω
T
i+T

+

k−T∑

i=0

αk−i−T−1ωi+T−1ω
T
i+T−1+

. . .+

k−T∑

i=0

αk−iωiω
T
i + T

k∑

i=0

αk−iσI

= Tαk+1Σ0 +

k−T∑

i=0

αk−i
T−1∑

j=0

α−jωi+jω
T
i+j + T

k∑

i=0

αk−iσI

≥ Tαk+1Σ0 +

k−T∑

i=0

αk−i
T−1∑

j=0

ωi+jω
T
i+j + T

k∑

i=0

αk−iσI

≥ Tαk+1Σ0 +

k−N∑

i=0

αk−iTβT I + T

k∑

i=0

αk−iσI

≥ Tαk+1Σ0 +
αT − αk+1

1− α TβT I + TσI

= Tαk+1Σ0 +
αT (1− αk−T+1

1− α TβT + TσI

≥ Tαk+1Σ0 +
αT

1− αTβT I + TσI ≥ αT

1− αTβT I + TσI.

Assuming that Σ0 = α0I, one gets the following bounds:

αT

1− αβT I + σI ≤ Σk+1 ≤ α0I +
1

1− αT (β + σ)I.

or,

1− α
α0(1− α) + T (β + σ)

≤ Σ−1
k+1 ≤

1− α
βTαT + σ(1− α)

I. (22)
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By the dynamics of η̃k, it is easy to show that:

η̃k+1 =

k∑

i=1

(1−K)k−i+1η̃0 +

k∑

i=1

(1−K)k−iωTi (θi+1 − θi)

The term vk can be written as:

vk =(θk+1 − θk)− (αΣk + σI)−1ωkQkη̃k

=(θk+1 − θk)− (αΣk + σI)−1ωkQk

(
k−1∑

i=1

(1−K)k−i+1η̃0 +

k−1∑

i=1

(1−K)k−iωTi (θi+1 − θi)
)

As a result, one obtains the upper bound:

‖η̃k+1‖ =

k∑

i=1

(1−K)k−i+1‖η̃0‖

+

k∑

i=1

(1−K)k−i‖ωi‖‖(θi+1 − θi)‖

≤
k∑

i=1

(1−K)k−i+1‖η̃0‖

+

k∑

i=1

(1−K)k−i
√
β‖θi+1 − θi‖

The parameter estimation error is such that:

‖θ̃k+1‖ ≤
k∏

i=0

(
α‖Σ−1

k+1−i‖‖Σk−i‖+ σ‖Σ−1
k+1−i‖

)
‖θ̃0‖

+

k∑

i=1

i∏

j=0

(
α‖Σ−1

k−j+1‖‖Σk−j‖+ σ‖Σ−1
k−j+1‖

)
‖vi‖

≤
k∏

i=0

(
α

(
(α0 + σ)(1− α) + T (β + σ)

βTαT + σ(1− α)

))
‖θ̃0‖

+

k∑

i=1

i∏

j=0

(
α

(
(α0 + σ)(1− α) + T (β + σ)

βTαT + σ(1− α)

))
‖vi‖.

By smoothness of Ψ0,k and Ψ1,k, there exists positive constants LΨ1
, LΨ1

and LΨ1
such that:

‖θi+1 − θi‖ ≤ ‖Ψ0,i+1 −Ψ0,i‖+ ‖Ψ1,i+1 −Ψ1,i‖
≤ LΨ1

‖xk+1 − xk‖+ LΨ2
‖ûk+1 − ûk‖+ LΨ3

‖(uk+1 − ûk+1)− (uk − ûk)‖

12



∀xk ∈ D(u) and ∀u ∈ U . Upon substitution of xk+1 ûk+1 and uk+1, one obtains:

‖θi+1 − θi‖ ≤ LΨ1‖f(xk) + g(xk)(−kg θ̂1,k + ûk + dk)‖

+
LΨ2

τI
‖θ̂1,k‖+ kgLΨ3‖θ̂k+1 − θ̂k‖.

By smoothness of f(x) and g(x), it follows that there exists positive constants
LF and LG such that

‖f(xk)− f(π(ûk))‖ ≤ LF ‖xk − π(ûk)‖, ‖g(xk)− g(π(ûk))‖ ≤ LG‖xk − π(ûk)‖.

As a result, one obtains the following inequality:

‖θi+1 − θi‖ ≤ LΨ1
LF ‖xk − π(ûk)‖+ kgLΨ1

LG‖xk − π(ûk)‖‖θ̂1,k‖+ LΨ1
LG‖xk − π(ûk)‖‖dk‖

+ kgLΨ1
‖g(π(ûk))‖‖θ̂1,k‖+ LΨ1

‖g(π(ûk))‖‖dk‖+
LΨ2

τI
‖θ̂1,k‖+ kgLΨ3

‖θ̂k+1 − θ̂k‖

Using the bounds ‖dk‖ ≤ D and ‖θ̂k‖ ≤ L1, the following inequality results:

‖θi+1 − θi‖ ≤ (LΨ1
LF + kgLΨ1

LG +DLΨ1
LG)‖xk − π(ûk)‖

+ kgLΨ1GL1 +DLΨ1G+
L1LΨ2

τI
+ 2kgLΨ3L1

or, finally,

‖θi+1 − θi‖ ≤ b1(kg, D)‖xk − π(ûk)‖+ b0(kg,
1

τI
, D).

Without loss of generality, we also assume that ‖η̃0‖ = 0.
Let us assume that there exists a positive constant β such that:

1

T

∑

j=1

ωk+jω
t
k+j ≤ βI,

for all k > 0. (By definition, the boundedness of ωk is guaranteed if uk and ûk
are in U .).

Then one can write:

‖θ̃k+1‖ ≤
1− α
βT

αk−T+1α0‖θ̃0‖+ Υ(T, α,K)b1(kg, D)‖xk − π(ûk)‖+ Υ(T, α,K)b0(kg,
1

τI
, D)

= c1 + c2‖xk − π(ûk)‖

where

Υ(T, α,K) =
1− αk+1

βTαT
α0 +

1− αk+1

βTαT (1− α)
Tβ +

(1− α)(1− αk+1(1−K)k+1)

(1−K)(βTαT )2
α0β

+
1− αk+1(1−K)k+1

(1−K)(βTαT )2
Tβ2.

13



We thus see that the parameter estimation error will tend to a neighbourhood
of the origin. The size of this neighbourhood depends primarily on the constant
T associated with the persistency of excitation condition.

As above, we pose the following Lyapunov function candidate:

V = W + h+
1

2
ũT ũ.

The recursion of V yields:

Vk+1 − Vk = Wk+1 −Wk + Ψ0,k + Ψ1,k(uk − ûk)

+
1

2
ũTk+1ũk+1 −

1

2
ũ>k ũk.

Substitution of the ESC yields:

Vk+1 − Vk = Wk+1 −Wk + Ψ0,k − kgΨ1,kθ̂1,k + Ψ1,kdk

+
1

2

(
ũk +

1

τI
θ̂1,k

)T (
ũk +

1

τI
θ̂1,k

)
− 1

2
ũ>k ũk.

Replacing θ̂1,k = ΨT
1,k − θ̃1,k gives:

Vk+1 − Vk =Wk+1 −Wk + Ψ0,k − k∗gΨ1,kΨT
1,k − (kg − k∗g)Ψ1,kΨT

1,k

+ kgΨ1,kθ̃1,k + Ψ1,kdk +
1

τI
ũ>k (ΨT

1,k − θ̃1,k)

+
1

2τ2
I

(ΨT
1,k − θ̃1,k)>(ΨT

1,k − θ̃1,k)

Let k̃g = kg − k∗g . By Assumptions 1 and 4, one obtains:

Vk+1 − Vk ≤ −αe‖x− π(ûk)‖2 −
(
k̃g −

1

2τ2
I

)
‖Ψ1,k‖2

+

∣∣∣∣
(
kg −

1

τ2
I

)∣∣∣∣ ‖Ψ1,k‖‖θ̃1,k‖+ ‖Ψ1,k‖‖dk‖

− αu
τI
‖ũk‖2 +

LH
τI
‖x− π(ûk)‖‖ũk‖+

1

τI
‖ũk‖‖θ̃1,k‖

+
1

2τ2
I

‖θ̃1,k‖2

where LH is the Lipschitz constant associated with

‖Ψ1,k −∇h(ûk)g(π(ûk))‖ ≤ LH‖x− π(ûk)‖.

14



Substituting for the upper bound of ‖θ̃k‖, one obtains

Vk+1 − Vk ≤ −αe‖x− π(ûk)‖2 −
(
k̃g −

1

2τ2
I

)
‖Ψ1,k‖2

+

∣∣∣∣
(
kg −

1

τ2
I

)∣∣∣∣ c1‖Ψ1,k‖+D‖Ψ1,k‖

+

∣∣∣∣
(
kg −

1

τ2
I

)∣∣∣∣ c2‖Ψ1,k‖‖x− π(ûk)‖ − αu
τI
‖ũk‖2

+
c1LH
τI
‖x− π(ûk)‖+

c2LH
τI
‖x− π(ûk)‖2

+
c1
τI
‖ũk‖+

(
LH
τI

+
c2
τI

)
‖ũk‖‖x− π(ûk)‖+

c21
τ2
I

+
c22
τ2
I

‖x− π(ûk)‖2

Rearranging and letting kg = 1
τ2
I

, one obtains:

Vk+1 − Vk ≤ −
[
‖x− π(ûk)‖ ‖ũk‖ ‖Ψ1,k‖

]

×




αe − c2LH
τI
− c22

τ2
I
− c2+LH

2τI
0

− c2+LH
2τI

αu
τI

0

0 0
(

1
2τ2
I

)
− k∗g




×



‖x− π(ûk)‖
‖ũk‖
‖Ψ1,k‖




+
c1LH
τI
‖x− π(ûk)‖+

c1
τI
‖ũk‖+D‖Ψ1,k‖+

c21
τ2
I

It is easy to see that there exists a τ∗I such that ∀τI > τ∗I , with kg = 1
τ2
I

and

k∗g <
1

2τ2
I

, the last inequality can be written as:

Vk+1 − Vk ≤− λ1‖x− π(ûk)‖2 − λ1‖ũk‖2 − λ1‖Ψ1,k‖2 +
c1LH
τI
‖x− π(ûk)‖

+
c1
τI
‖ũk‖+D‖Ψ1,k‖+

c21
τ2
I

for a positive constant λ1 > 0 taken as the minimum eigenvalue of the matrix:



αe − c2LH
τI
− c22

τ2
I
− c2+LH

2τI
0

− c2+LH
2τI

αu
τI

0

0 0
(

1
2τ2
I

)
− k∗g


 .

By Assumption 4, one can then write the following:

Vk+1 − Vk ≤ −
λ1

β2
(Wk + hk)− λ1‖ũk‖2 − λ1‖Ψ1,k‖2 +

c1LH√
β1τI

Wk +
c1
τI
‖ũk‖+D‖Ψ1,k‖+

c22
τ2
I

≤ −λ2Vk − λ1‖Ψ1,k‖2 + β3

√
Vk +D‖Ψ1,k‖+

c22
τ2
I
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where

λ2 = min

[
λ1

β2
, λ1

]

and

β3 = max

[
c1LH
τI

1√
β1
,
√

2
c1
τI

]
.

Thus we see that the closed-loop signals ‖Ψ1,k‖, ‖ũk‖ and ‖x − π(ûk)‖ of
the proposed ESC signals enter a neighbourhood of the origin whose magnitude

depends on the magnitude of ‖dk‖. This neighbourhood will be of order O
(
c21
τ2
I

)

and O
(
D
λ1

)
.

As Vk enters a neighbourhood of the origin, it follows that the closed-loop
signals enter a neighbourhood of the optimum steady-state conditions (x∗, u∗).
This completes the proof.

Remark 1 The proof provides some nominal tuning guidelines for kg and τI .
If one fixes τI , the analysis suggests to pick kg = 1/τ2

I . However, it is clear that
there is much more freedom to pick kg. To demonstrate, assume that one can
pick τI large enough such that:

lim
τI→∞

(Vk+1 − Vk) ≤−
[
‖x− π(ûk)‖ ‖Ψ1,k‖

]
×
[

αe −kgc22

−kgc22 kg

] [
‖x− π(ûk)‖
‖Ψ1,k‖

]
+ (kgc1 +D)‖Ψ1,k‖

Consequently, we see that there exists a k̄g such that for every kg < k̄g the
inequality can be written as:

lim
τI→∞

(Vk+1 − Vk) ≤− λ3‖x− π(ûk)‖ − λ3‖Ψ1,k‖2

+ (k̄gc1 +D)‖Ψ1,k‖

The closed-loop signals will asymptotically enter a neighbourhood of the origin
given by:

Ωkg =

{
x ∈ D(û) û ∈ U

∣∣∣∣ ‖Ψ1,k‖ ≤
(k̄gc1 +D)

λ3

}

Thus, one can establish a maximum gain k̄g that retains closed-loop stability
in the absence of integral action. Moreover, closed-loop stability can also be
achieved even if the nonlinear system is only Lyapunov stable (αe = 0) for a fixed
ûk. This is a clear advantage of the proposed ESC over classical perturbation
based discrete-time ESC techniques that require local asymptotic stability of the
nonlinear system. The problem of feedback stabilization of nonlinear discrete-
time systems using ESC will be considered in future work.
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5 Simulation

In this section, we consider the application of the PIESC approach to nonlinear
discrete-time control systems. The performance of the proposed approach is
compared to the standard perturbation based ESC algorithm proposed in [7].
This algorithm is given by:

ξk+1 = −h`ξk + yk

ûk+1 = ûk − γα cos(ωk)(yk − (1 + h`)ξk+1)

uk = ûk + α cos(ω(k + 1)).

5.1 Example 1

We first consider the application of the PI-ESC approach to the following non-
linear discrete-time system:

xk+1 =0.99xk + (uk − 0.1)(1 +
1

2
sin(xk))

yk =1 + 0.2(xk − 1)2

We first note that the nonlinear system has a pole very close to the unit circle.
The optimum occurs at x∗ = 1, u∗ = 0.1069. The PIESC is used with a
gain of kg = 10 and integral time constant τI = 100. The dither signal is
dk = 0.05 sin(k). The estimation gates are set to K = 0.001, α = 0.001 and
σ = 0.001. The simulation results are shown in Figure 3. The figure shows the
cost function, yk, the input, uk, and the integration variable ûk. The PIESC
very effectively converges to the optimum equilibrium conditions. The tuning
parameters for the perturbation ESC are h` = 0.1, γ = 3/α, α = 0.1, ω = 2.
The corresponding ESC performance is shown as the dashed line in Figure 3.
As expected, the proposed PIESC provides a drastically faster convergence to
the optimum conditions. Furthermore, the impact of the slow nearly unstable
dynamics are compensated by the presence of the proportional action.

Next, we consider the following unstable nonlinear system:

xk+1 =1.01xk + (uk − 0.1)(1 +
1

2
sin(xk))

yk =1 + 0.2(xk − 1)2

The optimum occurs at x∗ = 1, u∗ = 0.09457. The PIESC is used with a
gain of kg = 0.2 and integral time constant τI = 1000. The dither signal is
dk = 0.5 sin(15k). The estimation gains are set to K = 0.001, α = 0.001
and σ = 0.001. Figure 4 shows the simulation results. The PIESC simulta-
neously stabilizes the nonlinear system and identifies the optimum equilibrium
conditions. The standard perturbation based ESC technique cannot successfully
optimize this system.

To verify the robustness of the proposed approach, random zero mean mea-
surement noise is added to the cost measurement. The noise measurement is
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given by:
yk = 1 + 0.2(xk − 1)2 + 0.03νk

where νk is a zero mean, unit variance Gaussian random variable. The results
are shown in Figure 5. Six simulations are performed. All simulation show good
transient performance to the unknown optimum.

5.2 Example 2

The task is to stabilize the nonlinear discrete-time control system studied in [10]
given by:

x1,k+1 = x2
3,k + u1,k

x2,k+1 = x2,k + u2,k

x3,k+1 = 2x3,k(u1,k + x1,kx2,ku2,k)

with cost function yk = 1
2 (x2

1,k + x2
2,k + x2

3,k).

The optimum occurs at x∗ = [0, 0, 0]T , u∗ = [0, 0]T . The PIESC is used
with a gain of kg = 0.5 and integral time constant τI = 50. The dither signal
is dk = [0.2 sin(450k), 0.2 sin(400k)]T . The estimation gates are set to K =
0.001, α = 0.01 and σ = 0.01. Figure 6 shows the output function along with
the two inputs. The corresponding state trajectories are shown in Figure 7.
The PIESC simultaneously stabilizes the nonlinear system and identifies the
optimum equilibrium conditions.

6 Conclusion

This paper proposes a proportional-integral extremum-seeking control technique
for a class of discrete-time nonlinear dynamical systems with unknown dynam-
ics. The main contribution of this technique is the minimization of the impact
of time-scale separation on the transient performance of the extremum-seeking
control system in discrete-time.
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