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Abstract

Spatial resolution of depth sensors is often significantly lower compared to that of conventional
optical cameras. Recent work has explored the idea of improving the resolution of depth
using higher resolution intensity as a side information. In this paper, we demonstrate that
further incorporating temporal information in videos can significantly improve the results. In
particular, we propose a novel approach that improves depth resolution, exploiting the space-
time redundancy in the depth and intensity using motion-adaptive low-rank regularization.
Experiments confirm that the proposed approach substantially improves the quality of the
estimated high-resolution depth. Our approach can be a first component in systems using
vision techniques that rely on high resolution depth information.
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ABSTRACT

Spatial resolution of depth sensors is often significantly lower
compared to that of conventional optical cameras. Recent work
has explored the idea of improving the resolution of depth using
higher resolution intensity as a side information. In this paper,
we demonstrate that further incorporating temporal information
in videos can significantly improve the results. In particular, we
propose a novel approach that improves depth resolution, ex-
ploiting the space-time redundancy in the depth and intensity
using motion-adaptive low-rank regularization. Experiments
confirm that the proposed approach substantially improves the
quality of the estimated high-resolution depth. Our approach
can be a first component in systems using vision techniques
that rely on high resolution depth information.

1. INTRODUCTION

A challenge in computer vision applications is obtaining high
resolution depth maps of observed scenes. A number of com-
mon tasks, such as object reconstruction, robotic navigation,
and automotive driver assistance can be significantly improved
by complementing intensity information from optical cameras
with high resolution depth maps. However, with current sensor
technology, direct acquisition of high-resolution depth maps is
very expensive, especially in outdoors environments.

The cost and limited availability of such sensors imposes
significant constraints on the capabilities of vision systems
and has dampened the adoption of methods that rely on high-
resolution depth maps. Thus, the literature has flourished with
methods that provide numerical alternatives to boost the spatial
resolution of the measured depth data.

One of the most popular and widely investigated class
of techniques for improving the spatial resolution of depth is
guided depth superresolution. These techniques jointly acquire
the scene using a low-resolution depth sensor and a high-
resolution optical camera. The information acquired from the
camera is subsequently used to superresolve the low-resolution
depth map. These techniques exploit the property that both
modalities share common features, such as edges and joint
texture changes. Thus, such features in the optical camera data
provide information and guidance that significantly enhances
the superresolved depth map.

To-date, most of these methods operate on a single snap-
shot of the optical image and the low-resolution depth map.

Fig. 1. Our motion adaptive method recovers a high-resolution depth
sequence from high-resolution intensity and low-resolution depth se-
quences by imposing rank constraints on the depth patches: (a) and (b)
t-y slices of the color and depth sequences, respectively, at a fixed x;
(c)—(e) x-y slices at t1 = 10; (f)—(h) x-y slices at to = 40; (c) and
(f) input color images; (d) and (g) input low-resolution and noisy depth
images; (e) and (h) estimated depth images.

However, most practical uses of such systems acquire a video
from the optical camera and a sequence of snapshots of the
depth map. The key insight in our paper is that information
about one particular frame is replicated, in some form, in
nearby frames. Thus, frames across time can be exploited to
superresolve the depth map and significantly improve such
methods. The challenge is finding this information in the pres-
ence of scene, camera, and object motion between frames.
Figure 1 provides an example, illustrating the similarity of
images and depth maps across frames.

A key challenge in incorporating time into depth estimation
is that depth images change significantly between frames. This
results in abrupt variations in pixel values along the temporal
dimension and may lead to significant degradation in the qual-
ity of the result. Thus, it is important to compensate for motion.
To that end, the method we propose exploits space-time simi-
larities in the data using motion adaptive regularization. Specif-



ically, we identify and group similar depth patches, which we
superresolve and regularize using a rank penalty.

Our method builds upon prior work on patch-based meth-
ods and low-rank regularization, successful in a variety of prac-
tical estimation problems. It further exploits the availability of
optical images which provide a very robust guide to identify
and group similar patches, even if the depth map has very low
resolution. Thus, the output of our iterative algorithms is robust
to operating conditions. This work provides three key contri-
butions: (a) a new problem formulation incorporating tempo-
ral information, (b) two new optimization strategies to compute
the resulting estimation problem, and (c) an experimental val-
idation demonstrating that integrating temporal information is
invaluable in the superresolution problem.

2. RELATED WORK

In the last decade, guided depth superresolution has received
significant attention. Early work showed the potential of the
approach by modeling the co-occurence of edges in depth and
intensity with Markov Random Fields (MRF) [1]. An alterna-
tive approach based on joint bilaterial filtering was proposed
in [2, 3], where intensity is used to set the weights of the filter.
This approach was further refined in [4], incorporating local
depth statistics, and in [5], using geodesic distances to deter-
mine the weights. This approach has also been extended to dy-
namic sequences, compensating for different data rates in the
depth and intensity sensors [6]. In addition, [7, 8] proposed a
guided image filtering approach, improving edge preservation.

More recently, sparsity-promoting regularization—inspired
by developments in compressive sensing [9, 10]—has provided
more dramatic improvements in the quality of depth super-
resolution. For example [11] demonstrated improvements by
combining dictionary learning and sparse coding algorithms.
Instead, [12] relies on weighted total generalized variation
(TGV) regularization for imposing a piecewise polynomial
structure on depth. Sparsity regularization has also been com-
bined with the conventional MRF approach in [13]. More
recently, [14] uses the MRF model to jointly segment the ob-
jects and recover a higher quality depth. Similar tools are used
in [15], performing depth superresolution by taking several
snapshots of a static scene from slightly displaced viewpoints
and merging the measurements using sparsity of the weighted
gradient of the depth.

Many natural images contain repetitions of similar patterns
and textures. Current state-the-art image denoising methods
such as nonlocal means (NLM) [16] and block matching and
3D filtering (BM3D) [17] take advantage of this redundancy
by processing the image as a structured collection of patches.
The original formulation of NLM was extended in [18] to more
general inverse problems, introducing specific NLM regular-
izers. Similarly, [19] propsed a variational approach for gen-
eral BM3D-based image reconstruction that inspired the cur-
rent work. In the context of guided depth superresolution, NLM
was used in [20, 21] to reduce noise in the estimated depth.
In [22], block-matching is combined with low-rank constraints
to enhance the resolution of a single depth image.

Our paper extends prior work by introducing a new vari-
ational formulation that imposes low-rank constraints in the
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Fig. 2. Tllustration of the block matching within a space-time search
area. The area in the current frame ¢ is centered at the reference patch.
Search is also conducted in the same window position in multiple tem-
porally adjacent frames. Similar patches are grouped together to con-
struct a block By = Bp¢.

regularization. Furthermore, it incorporates motion adaptivity,
with substantial improvement in the depth estimation quality.

3. PROPOSED APPROACH

3.1. Problem Formulation

The depth sensing system collects a set of measurements
denoted {¢t}ze[1...T]- Each measurement is considered as
a downsampled version of a higher resolution depth map
¢: € RY using a subsampling operator H;. Our end goal
is to recover this high-resolution depth map ¢; for all ¢.

In the remainder of this work, we use N to denote the
number of pixels in each frame, 7" to denote the number of
temporal frames, and M to denote the total number of depth
measurements. Furthermore, @ € R™ denotes the vector of
all the measurements, ¢ € R™7 the complete sequence of
high-resolution depth maps, and H € R™*NT' the complete
subsampling operator. We also have available the sequence of
high-resolution intensity images from the optical camera, de-
noted x € RV7.

Using the above, a forward model for the depth recovery
problem is given by

Y =Ho + e, 1)

where e € RM denotes the measurement noise. Thus, our
objective becomes to recover high-resolution depth given the
measured data ) and x, and the sampling operator H.

As typical in such problems, we formulate the depth esti-
mation task as an optimization problem

P
$—argmin{;||1/)H¢|§2 +ZR(BP¢)} , (@
HERNT

p=1

where 3 ||1p — Hep||7, enforces data fidelity. The regularization

25:1 R(Bp¢) imposes prior knowledge about the depth map.

The regularization term is applied on sets of patches from
the image. Specifically, we define an operator B,, for each set
of patches p € [1,..., P], where P is the number of such sets
constructed. The operator extracts L patches of size B pixels
from the depth image frames in ¢. As illustrated in Fig. 2,
each block 3, = B¢ € RP*L is obtained by first selecting a
reference patch and then finding L — 1 similar patches within
the current frame as well as the adjacent temporal frames.



To determine similarity and to group similar patches to-
gether we use the intensity image as a guide. To reduce the
computational complexity of the search, we restrict it to a
space-time window of fixed size around the reference patch.
We perform the same block matching procedure for the whole
space-time image by moving the reference patch and by con-
sidering overlapping patches in each frame. Thus, each pixel
in the signal ¢ may contribute to multiple blocks.

3.2. Rank regularization

Each block, represented as a matrix, contains multiple similar
patches, i.e., similar columns. Thus, the matrix should have
low rank, making rank a natural regularizer for the problem.
By seeking a low-rank solution to (2), we exploit the similarity
of blocks to guide superresolution while enforcing consistency
with the observed data. However, the resulting low-rank opti-
mization problem non-convex and intractable.

The most popular approach convexification by replacing
the rank with the nuclear norm [23]. Recent work has shown
that nonconvex regularizers consistently outperform the nuclear
norm by providing stronger denoising capability without losing
important signal compoenents [24-26]. In this paper, we use
the nonconvex generalization in [24]

min(B,L)

R(B) =AGrw(B) £ XD gaulon(B),  (3)

Here, the scalar function gy, is designed to satisfy
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Although g, is nonconvex and has no closed form for-
mula, its proximal operator does admit a closed form expres-
sion. Thus, the regularizer (3) is a computationally tractable
alternative to the rank penalty. While the regularizer is not
convex, it can still be efficiently optimized due to closed form
of its proximal operator. Note that due to nonconvexity of the
regularizer, it is difficult to theoretically guarantee global con-
vergence. However, we have empirically observed that our al-
gorithms converge reliably over a broad spectrum of examples
presented in Section 4.

3.3. Iterative optimization

To solve the optimization problem (2) under the rank regu-
larizer (3), we first simplify notation by defining an operator
B 2 (By,...,Bp)andavector 3 £ Bop = (B4,...,0p).

The minimization is performed using an augmented-
Lagrangian (AL) method [27]. Specifically, we seek the critical

points of the following AL
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where p > 0 is the quadratic parameter and s is the dual vari-
able that imposes the constraint 3 = B¢. Traditionally, an AL
scheme solves (2) by alternating between a—typically com-
putationally intensive—joint minimization step and an update
step. To reduce complexity, we separate this step into a suc-
cession of simpler steps using the well-established by now al-
ternating direction method of multipliers (ADMM) [28]. The
steps are as follows

¢" « argmin {[,(dl,ﬂk*l7 Skil)} (7a)

¢€RNT

ﬁke arg min {L(qﬁk,ﬁ,skﬂ)} (7b)

BERPXBXL
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Step (7a) is a simple quadratic problem, while (7b) can be com-
puted using the proximal operator in [24].

3.4. Simplified algorithm

The algorithm above can be significantly simplified by decou-
pling the enforcement of the data-fidelity from the enforcement
of the rank-based regularization. The simplified algorithm re-
duces computational complexity while making estimation more
uniform across the whole space-time depth image. In particu-
lar, due to inhomogeneous distribution of pixel references gen-
erated by matching across the image, using a penalty with a
single regularization parameter highly penalizes pixels with a
large number of references [29] . The resulting nonuniform
regularization makes the algorithm potentially oversensitive to
the choice of the parameter .
Instead, we rely on the simplified algorithm

,6’; < argmin {%Hﬁp - de)k_lHQF + R(ﬂp)} (8a)
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where d~)k 2 R'BTB* and A > 0is the regularization and
p > 0 is the quadratic parameters. Again, (8a) is computed
using the proximal operator, and (8b) reduces to a linear step.

There are substantial similarities between algorithms (7)
and (8). The main differences are that we eliminated the dual
variable s and simplified the quadratic subproblem.

4. EXPERIMENS

To verify our development, we report results on extensive sim-
ulations using our guided depth superresolution algorithms. In
particular, we compare results of both the ADMM approach



Flower Lawn Road
2% 3% 4x 5% 2% 3% 4x 5% 2% 3% 4x 5%
Linear 25.62 22.81 21.07 20.15 28.32 25.89 24.32 23.05 25.44 22.78 21.16 20.18
TV-2D 26.52 23.17 21.30 20.32 29.97 26.56 24.70 23.31 26.30 23.21 21.44 20.38
WTGV-2D 26.73 23.54 21.68 20.66 30.16 26.87 24.94 23.66 26.44 23.20 21.38 20.57
WTV-3D 26.84 23.56 21.69 20.72 30.45 27.00 25.09 23.68 26.54 23.49 21.69 20.73
GDS-2D 27.76 23.91 21.78 20.58 31.27 27.58 25.36 23.88 27.39 23.89 21.87 20.70
DS-3D 28.00 23.82 21.79 20.64 31.37 27.34 25.23 23.69 27.30 23.92 21.75 20.56
ADMM-3D | 29.76 25.07 22.58 21.26 33.06 28.62 26.07 24.39 | 28.58 25.18 22.74 21.39
GDS-3D 30.04 25.34 22.79 21.42 | 32.54 28.51 26.02 24.36 | 29.10 25.52 22.96 21.66

Table 1. Quantitative comparison on three video sequences with added noise of 30 dB. The quality of final depth is evaluated in terms of SNR for

four different downsizing factors of 2, 3, 4, and 5. The best result for each scenario is highlighted.

Ground truth

Input depth

Intensity

Linear: 22.78 dB DS-3D: 23.92 dB GDS-3D: 25.52 dB

Fig. 4. Visual evaluation on Road video sequence. Estimation of depth from its 3x downsized version at 30 dB input SNR. Row 1 shows the
data at time instance ¢ = 9. Row 2 shows the data at the time instance ¢ = 47. Row 3 shows the ¢-y profile of the data at x = 64. Highlights
indicate some of the areas where depth estimated by GDS-3D recovers details missing in the depth estimate of DS-3D that does not use intensity

information.

(denoted ADMM-3D) and its simplified variant (denoted GDS-
3D) against six alternative methods.

As a reference method, we consider standard linear inter-
polation (Linear). In addition, we consider methods relying
in some form of total variation (TV) regularization, one of
the most widely used regularizers for depth [30]. Specifically,
we consider depth interpolation using TV-regularized least
squares on a frame-by-frame basis (TV-2D). We also consider
the weighted-TV formulation proposed in [12] (WTGV-2D),
also operating on a frame-by-frame basis. This formulation
uses a weighted anisotropic total generalized variation, where
weighting is computed using the guiding intensity image, thus
promoting edge co-occurrence in both modalities. Finally, we
consider a weighted-TV formulation which includes time, i.e.,
multiple frames (WTV-3D), with weights computed using the
guiding intensity image, as before.

We also compare these methods to two variations of our

algorithm. To illustrate the potential gains of our method due
to temporal information, we run our simplified algorithm on a
frame-by-frame basis (GDS-2D), i.e., using no temporal infor-
mation. Similarly, to illustrate the gains due to intensity in-
formation, we also run the simplified algorithm by perform-
ing block matching on the low-resolution depth as opposed to
intensity (DS-3D). This conceptually corresponds to denoising
the initial depth using our motion adaptive low-rank prior.

For faster convergence, we initialized all iterative algo-
rithms with the solution of linear interpolation. Regularization
parameters were optimized by selecting for the best signal-to-
noise ratio (SNR) performance from a restricted set. Methods
TV-2D, WTV-3D, GDS-2D, DS-3D, ADMM-3D, and GDS-
3D were allowed ¢, = 100 iterations, stopping early if the
relative change of the solution in two successive iterations
was lower than 10~*. WTGV-2D was tuned as suggested in
the code provided by the authors; in particular, we run the
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standard techniques, the proposed method preserves temporal
edges in the solution and effectively mitigates noise in practical
configurations.

While our formulation has higher computational complex-
ity than standard approaches that process each frame individu-
ally, it allows us to incorporate a very effective regularization
for stabilizing the inverse problem associated with superresolu-
tion. The algorithms we describe enable efficient computation
and straightforward implementation by reducing the problem
to a succession of straightforward operations. Our experimen-
tal results demonstrate the considerable benefits of incorporat-
ing time and motion adaptivity into inverse-problems for depth
estimation.

Fig. 3. Quantitative evaluation on Road video sequence. Estimation
of depth from its 3x downsized version at 30 dB input SNR. We plot
the reconstruction SNR against the video frame number. The plot illus-
trates potential gains that can be obtained by fusing intensity and depth
information in a motion-adaptive way.

algorithm for a maximum of 1000 iterations with the stopping
tolerance of 0.1. In all experiments, the patch size was set to
5 x b pixels, the space-time window size to 11 x 11 x 3 pixels,
and the number of similar patches was fixed to 10. Parameters
v and p were hand selected to 0.02 and 1, respectively.

We performed quantitative comparison using the data-set
in [31], consisting of three video sequences Flower, Lawn, and
Road, containing both intensity and depth information on the
scenes. We considered images of size 128 x 128 with 50 time
frames. The ground truth depth was downsized by factors of
2, 3, 4, and 5, and was corrupted by additive Gaussian noise
corresponding to SNR of 30 dB. Table 1 reports the SNR of
superresolved depth for all the algorithms and downsizing fac-
tors. Figure 3 illustrate the evolution of SNR against the frame
number for Road, at downsizing factor of 3. The effectiveness
of our approach can also be appreciated visually in Fig. 4.

The examples and simulations results, validate our claim:
the quality of estimated depth can be considerably boosted by
properly incorporating temporal information into the recon-
struction procedure. Comparison of GDS-2D against GDS-3D
highlights the importance of additional temporal information.
The approach we propose is implicitly motion adaptive and
can thus preserve temporal edges substantially better than al-
ternative approaches such as WTV-3D. Moreover, comparison
between DS-3D and GDS-3D highlights that the usage of inten-
sity significantly improves the performance of the algorithm.
Note also the slight improvement in SNR of GDS-3D over
ADMM-3D. This is consistent with the arguments in [29] that
suggest to decouple data-fidelity from the enforcement of prior
constraints when using block-matching-based methods.

5. CONCLUSION

We presented a novel motion-adaptive approach for guided
superresolution of depth maps. Our method identifies and
groups similar patches from several frames, which are then
supperresolved using a rank regularizer. Using this approach,
we can produce high-resolution depth sequences from sig-
nificantly down-sized low-resolution ones. Compared to the
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