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Abstract—This paper presents a performance analysis of a
finite-sized cooperative wireless system, where a group of trans-
mitters with unreliable backhaul links serve a desired receiver
using non-coherent joint transmission. To facilitate analysis, an
analytical expression for the distribution of the spatially averaged
signal-to-interference-plus-noise ratio (SA-SINR) is derived in
terms of key system and channel parameters. Leveraging the de-
rived expression, the joint impact of node cooperation, backhaul
reliability, interference and communication range is investigated
in the considered finite-sized cooperative system. Furthermore,
based on the SA-SINR, closed form expressions for the average
bit error rate (ABER) and average spectral efficiency (ASE)
are derived. Further insights are established by analyzing the
asymptotic performance in the high transmission power regime.
From analytical derivations for the outage probability, ABER,
and ASE and link-level simulations, it is verified that these
asymptotic performance metrics are exclusively influenced by
unreliable backhauls, so that the conventional diversity gains are
not achievable.

Index Terms—Wireless backhaul link, backhaul reliability,
aggregate interference, safety zone, outage probability, average
bit error rate, average spectral efficiency, convergence rate,
Nakagami-m fading.

I. INTRODUCTION

BACKHAUL can be referred to as the data transporting

process in either direction between the control unit (CU)

and a cluster of transmitters to provide broadband commu-

nications to the core network [1], [2]. The backhaul link

is typically recognized as a high reliable link meeting the

requisite quality of service requirement of the terminals [1],

[2]. To achieve a higher data rate, extreme densification by

mixing a few large cells and many small cells is required [3].

Due to heterogeneous demand from small cells, deployment

of cost effective, reliable, and scalable backhaul becomes

a challenging problem [3]. Especially, conventional wired

backhaul deployment is not cost effective in the emerging

wireless network paradigm due to excessive capital investment.

As an alternative, wireless backhaul comes across as a cost

effective solution. However, due to increased likelihood of

non-line-of-sight (nLOS) connections and fading [4], wireless
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backhaul is unlikely to be as reliable as the wired backhaul

[5].

Taking into account limited network resources such as

bandwidth and capacity, several works have investigated the

effects of wireless backhaul on the system performance. For a

non-cellular network, where distributed relay nodes are con-

nected to the destination via finite-rate but unreliable backhaul

links, the authors in [6] establish the rate-distortion region in

the context of source reconstruction and the authors in [7]

investigate the average achievable rate of data transmission

over a cooperative relaying network. Also, for a finite backhaul

capacity, limited uplink cooperation based on data sharing is

proposed in [8]. For two source nodes connected by orthogonal

limited-rate error free backhauls, the outer bound on the

capacity region for the multicast relay work is derived in

[9]. Furthermore, in [10], the authors investigate cooperative

network coding for relay-assisted two sources and two destina-

tions networks with an ideal backhaul connection between the

source nodes. Several schemes such as distributed compression

[11], distributed decoding by exchanging decoded data bits

[12], and decentralized decoding [13] are proposed for uplink

joint processing. For a coordinated multi-point system, the

downlink with unreliable backhaul is considered in [14]. These

works have shown that unreliable backhaul severely affects the

performance gain promised by cooperative communications.

Today, almost every smart device and vehicular communi-

cation equipment contain a global positioning system (GPS)

receiver which is capable of determining the radios position to

an accuracy of a few centimeters. Additionally, the position in-

formation is continuously tracked by cellular service providers

and can also be shared with other users in the network.

Since now it is easy to gather position information for the

terminals within a network, the proposed system model utilizes

position information in controlling the interfering terminals.

To protect the receiver from serious interference caused by

multiple interferers nearby the receiver, a safety zone is formed

around the receiver, which is also proposed in the cognitive

radio network literature [15]–[17] to protect the primary user.

Inside this safety zone, interferes are not allowed to transmit

to other nodes. By maintaining a desired ergodic signal-to-

interference-plus-noise ratio (SINR) at the receiver, a higher

capacity can be achieved [18]. Comparing with existing works,

our main contributions are summarized as follows.

Contributions:

• There is a need to accurately evaluate the overall per-

formance of a finite-sized cooperative system in terms of

key design parameters such as the number of transmitters,
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number of interferers, and safety zone size over the

communication range. Thus, motivated by the works in

[15], [19], [20], [21], and [22], we provide an analytical

framework to aid the performance evaluation/design of

a finite-sized cooperative system, while accounting for

the backhaul reliability1 and interference. The employed

channel model is fairly general since this allows for

Nakagami-m fading links that may have different fading

parameters. For these key heterogeneous parameters, the

closed expression for the outage probability is derived.

• The average bit error rate (ABER) and average spectral

efficiency (ASE) are derived along with the outage prob-

ability. Moreover, we derive closed-form expressions for

them in the asymptotic regime. Based on our derivations,

insightful investigation shows the existence of two dis-

tinct outage probability and ABER floors that depends

on the backhaul reliability levels, number of transmitters,

and ratio of the transmit power of the transmitters to that

of the interferers. These analytical results are validated

using link-level simulations.

• It is verified that system configuration parameters, chan-

nel parameters, safety zone size, and the transmit power

ratio of the transmitters to the interferers determine

the convergence rate to these performance floors and

ceilings; that is, this convergence rate is proportional to

the conventional diversity gain. It is also verified that

the high-transmit power offset per 3-dB units [25] is

zero independent of all the considered parameters of the

proposed system.

Related works:

• The paper [7] assumes an unreliable backhaul link be-

tween the relays and the destination in a cooperative

relay network. With a nonergodic link failure, this paper

investigates the broadcast coding and distributed source

coding techniques including distributed compression.

• The paper [19] derives an analytical expression for

the outage probability of a finite-sized network under

Nakagami-m fading without considering node coopera-

tion. Comparing with this work, we analytically incorpo-

rate node cooperation and unreliable backhaul, which are

two key design features influencing the performance of

many wireless systems. Thus, our work can be viewed as

an extension of [19] since we analytically treat the joint

impact of node cooperation, backhaul reliability and co-

channel interference on the system performance. More-

over, unlike [19], we also provide asymptotic results that

verify the existence of performance limits, and identify

the impact of key parameters on asymptotic performance.

• The paper [20] derives the outage probability in

arbitrarily-shaped finite wireless networks. For a finite

number of nodes distributed at random inside a given

1The term backhaul reliability can be used to model operating conditions
that cause a radio link failure [7], [23] due to network congestion, delay,
lost radio interface synchronization, and hardware imperfection. Without
cooperation between transmitters, a backhaul reliability model is somewhat
similar to that of the slotted ALOHA medium access control (MAC) protocol,
in which a source only transmits with probability Ptx independently of other
nodes in a particular time slot, whereas defer its transmission with probability
1− Ptx [24].

finite region, this paper investigates the impact of the

fading channel and the shape of the region on the outage

probability. However, this paper implicitly assumes a

completely perfect backhaul without node cooperation.

• The paper [22] considers the backhaul link failure prob-

ability (LFP) in the formation of an equivalent system

channel matrix. The LFP is determined by the outage

probability of the backhaul link. Based on the equivalent

channel matrix, this paper mainly investigates the em-

pirical ergodic capacity without its asymptotic analysis.

However, this paper does not include interference in the

system model.

The rest of the paper is organized as follows. In Sec-

tion II, we first detail the system and channel model of the

proposed system. Derivation of the cumulative distribution

function (CDF) of the spatially averaged SINR (SA-SINR)

in heterogeneous system and channel parameters is provided

in Section III. Performance analysis of the considered system

in homogeneous system and channel parameters is presented

in Section IV. Simulation results are presented in Section V

and conclusions are drawn in Section VI.

Notation: Fϕ(·) and fϕ(·) respectively denote the CDF

and the probability density function (PDF) of the random

variable (RV) ϕ; E{·} denotes expectation. In addition,(
n1

n2

)△
= n1!
n2!(n1−n2)!

denotes the binomial coefficient. Additional

notation used in this paper is summarized in Table 1.

TABLE I
NOTATION USED IN THIS PAPER

Notation Description

K Number of transmitters

M Number of interferers

pk Reliability of the kth backhaul

hk Wireless channel from TXk to the receiver

mk ,nk Shape and scale of the gamma distribution,

|hk|
2 ∼ Ga(mk , nk)

αk Pathloss over the channel hk

dk,R Distance from the TXk to the receiver

gi Wireless channel from the ith interferer to the receiver

m̃i,ñi Shape and scale of the gamma distribution,

|gi|2 ∼ Ga(m̃i, ñi)
α̃i Pathloss over the channel gi

d̃i,R Distance from the ith interferer to the receiver

ǫ Pathloss exponent

P Transmit power at the transmitters

PI,i Transmit power at the ith interferer with PI,i = χI,iP

rmax Radius for the communication range

rmin Radius for the safety zone with rmin = χrrmax

II. SYSTEM AND CHANNEL MODEL

Fig. 1 shows the block diagram of the considered fixed-sized

centralized cooperative system, in which a CU connected to

the core network; K single antenna transmitters are connected

to the CU via unreliable backhaul links; one receiver (RX) is

connected with K transmitters {TX1, ...,TXK} via wireless

channels, {h1, . . . , hK}. We use the orthogonal frequency

division multiple access (OFDMA) as the transmission scheme

in the downlink, where a cluster of K transmitters send a

common message to the receiver over the same time-frequency

resource block. In the communication range of the receiver,
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A cluster of transmitters

A set of interferers

Fig. 1. Block diagram of the considered fixed-sized system with the safety
zone and multiple interferers inside of the communication range of the
receiver. The safety zone is defined by the radius of the circle, rmin.

which is specified by an outer radius rmax, M interferers are

assumed to coexist with these nodes. Furthermore, these inter-

ferers are uniformly distributed in this communication range.

For this system, we assume the following about the wireless

channel, backhaul reliability, and transmission scheme.

• A safety zone [15]–[19] with a radius rmin
△
=χrrmax

with 0 < χr < 1 is formed around the receiver, so

that there is no interference originating from within this

safety zone. In this system, we assume that all nodes

are equipped with a localization mechanism to estimate

their positions (for example, using GPS [17]), and their

positions are available to the nodes in the system 2. Based

on this available position information, a network protocol

determines a right safety zone before deploying the nodes

in a controlled environment.

• The backhaul reliability for transmitter TXk is given by

{pk, ∀k}, so that this transmitter successfully decodes the

source message sent over its dedicated backhaul link,

whereas it is erased with probability 1 − pk due to

2Since the differential GPS (dGPS) system can provide the position
estimation in centimeter-level accuracy by applying the double difference
between satellites and receivers of the carrier phase measurements [26], the
position estimation error is assumed to be negligible in the considered system.
The nLOS errors are critical in tracking mobile nodes. To address nLOS errors,
many works have been proposed. One approach is to use the time-of-arrival
(TOA) between the CU and mobile nodes [27], [28]. Comparing with the time
history of the range measurements, we first identify if the measurements come
from LOS or nLOS environment. If nNOS is identified at a particular node,
construct a LOS propagation model to remove nLOS errors [27]. Applying
this approach, the CU can track mobile nodes even in nLOS environment.

its unreliable backhaul. These erasures are assumed to

be independent across message and follow a Bernoulli

process Bernoulli(1− pk).
• Envelopes of a set of channels {hk, ∀k} between the kth

transmitter and the receiver undergo Nakagami-m fading.

For generality, each of the K channels are allowed to have

possibly different Nakagami-m m parameters.

• Envelopes of a set of channels {gi, ∀i} between the ith
interferer and the receiver undergo Nakagami-m fading.

As for {gi, ∀i}, different Nakagami-m m parameters are

considered taking into account different fading conditions

between the interferers and the receiver.

• Non-coherent joint OFDM transmission [29] is employed,

thereby obviating the need of channel information at the

transmitter and also relaxing the requirement of tight

synchronization between cooperating transmitters.

• The transmission symbol x is transmitted from the trans-

mitters. We assume that E{x} = 0 and E{|x|2} = 1.

The transmission power at the transmitters is given by

P .

• The transmission power and the channel from the ith
interferer to the receiver are, respectively, denoted by

PI,i and gi, with the path loss over this channel denoted

by α̃i. Also, we assume that the transmission symbols

from the interferers, {x̃i, ∀i}, have E{x̃i} = 0, ∀i,
E{|x̃i|2} = 1, ∀i, E{x̃ix̃∗j} = δ(i− j), ∀i, j with i 6= j,
and E{xx̃∗i } = 0, ∀i, where δ(·) denotes the Dirac delta

function.

Based on the above channel and transmission scheme, the

instantaneous SINR is defined by [29]

λ =

∑K
k=1

PαkIk|hk|
2

σ2
n∑M

i=1
PI,iα̃i|gi|2

σ2
n

+ 1

△
=

S

N + 1
(1)

where we assume the receiver noise to be zero-mean additive

white complex Gaussian with variance σ2
n. P and PI,i denote

transmit powers at the transmitters and at the ith interferer,

respectively. To model the backhaul reliability, we use an

indicator function as

Pr(Ik = 1) = pk and Pr(Ik = 0) = 1− pk. (2)

We also define the aggregate signal power S
△
=
∑K

k=1 Sk,

where Sk
△
=PαkIk|hk|

2

σ2
n

denotes the normalized instantaneous

received signal power from the kth transmitter. We also

define the aggregate interference power N
△
=
∑M

i=1Ni, with

Ni
△
=
PI,iα̃i|gi|

2

σ2
n

denoting the normalized interference power

from the ith interferer. The fading envelope of hk is Nakagami-

m distributed with the fading parameter mk. Similarly, the

fading envelope of gi is Nakagami-m distributed with the

fading parameter m̃i. The pathloss for the channel between

two nodes is exponentially decaying as αk = d−ǫk,R, where

dk,R ∈ [χrrmax, rmax] is the distance between the kth

transmitter and the receiver and ǫ is the path loss exponent.

Similarly, we assume α̃i = d̃−ǫi,R, where d̃i,R is the distance

between the ith interferer and the receiver. Based on (1), we

conduct performance analysis in the following sections.
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III. DERIVATION OF THE CDF OF THE SA-SINR IN

HETEROGENEOUS SYSTEM AND CHANNEL PARAMETERS

In this section, we will first investigate statistical properties

of the SA-SINR for the heterogeneous case.

Definition 1: For the Nakagami-m fading envelope for hk,

|hk|2 is distributed according to the gamma distribution [30],

which is denoted by |hk|2 ∼ Ga(mk, nk), where mk is

related to the fading severity and defines the shape of the

gamma distribution, whereas the scale factor, defined by nk =
E{|hk|

2}
mk

[30], specifies the average fading power [31]. The

operating frequency, antenna heights, polarizations, antenna

separation distance, and the relative position of the scatters

contribute in determining the fading severity [31]. Similarly,

we assume |gi|2 ∼ Ga(m̃i, ñi) with ñi = E{|gi|
2}

m̃i
. For

a positive integer value of mk (we assume this for ease of

analysis), the PDF and CDF of |hk|2 are, respectively, given

by

f|hk|2(x) =
1

Γ(mk)(nk)mk
xmk−1e

− x
nk and

F|hk|2(x) = 1− Γu(mk, x/nk)

Γ(mk)
(3)

where Γ(x)
△
=
∫∞

0 e−ttx−1dt, and Γu(m,x)
△
=
∫∞

x e−ttm−1dt
denotes the upper incomplete gamma function.

From the definition of the signal power S, we can see that

Sk is statistically distributed as the product of the Beroulli

random process for Ik and a random process which has the

gamma distribution with shape mk and scale ηk
△
=Pαknk

σ2
n

.

However, Ni is distributed as the gamma distribution with

shape m̃i and scale η̃i
△
=
PI,iα̃iñi

σ2
n

. Thus, the expression for

the SINR is different from the existing works such as [21],

[30], [32], [33] due to an incorporation of the Bernoulli

random process in the definition of the SINR. Note that, in the

sequel, we will use λ to represent the SINR. Due to different

locations of the transmitters and interferers, we assume that

ηk 6= ηj , ∀k, j with k 6= j, and η̃k 6= η̃j , ∀k, j with k 6= j.
Next, the CDF of the SA-SINR is derived in the following

theorem.

Theorem 1: For heterogeneous system and channel pa-

rameters and an independent Bernoulli random process that

models heterogeneous backhaul reliability, the CDF of the

SA-SINR is given by (4) at the top of the next page. In

(4), γl(mk, x)
△
=
∫ x
0
e−ttmk−1dt denotes the lower incomplete

gamma function, Q
△
=
∏K
k=1(1− pk), and 2F1(·, ·, ·, ·) denotes

the Gauss hypergeometric function [34, eq. (9.111)]. In addi-

tion, Ωi,j is defined by

Ωi,j
△
=

(−1)mi

(ηi)mi

∑

X(i,j)

K∏

k=1,k 6=i

(
mk + kk − 1

kk

)

(ηk)
kk

(1− ηk
ηi
)mk+kk

(ηli)
j△=ci,j(ηli)

j (5)

where X(i, j) denotes a set of K-tuples satisfying the follow-

ing condition

X(i, j)
△
={(k1, . . . , kK) :

K∑

k=1

kk = mk − j with ki = 0}.

Proof: See Appendix A.

Note that Theorem 1 completely characterizes the SA-SINR

of a finite-sized cooperative network. It is applicable to a

wide range of scenarios taking into account non-identical

Nakagami-m fading links, non-identical backhaul reliability,

and any number of cooperating/interfering transmitters. To

facilitate the derivation of the performance metrics, we assume

homogeneous system and channel parameters in the following

section.

IV. PERFORMANCE ANALYSIS IN HOMOGENEOUS SYSTEM

AND CHANNEL PARAMETERS

In this section, we will compute the outage probability

via the derived CDF of the instantaneous SINR. We assume

m = mk, ∀k, η = ηk, ∀k, α = αk, ∀k, I = Ik, ∀k, p = pk, ∀k
for the transmitter relevant parameters. Also, we assume

m̃ = m̃k, ∀k, η̃ = η̃k, ∀k, α̃ = α̃k, ∀k, PI = PI,k, ∀k and

χI = χI,k, ∀k for the parameters relevant to the interferers.

To further insight on the asymptotic behavior of the system,

we derive expressions for the asymptotic outage probability,

asymptotic ABER, and asymptotic ASE as well.

Definition 2: Based on the assumptions provided in Section

IV, the CDF of the signal power S is given by

FS(x) = Q+Q

K∑

l=1

(
K

l

)
(

p

1− p
)l

1

Γ(ml)
γl(ml,

x

η
)

= Q+Q

K∑

l=1

(
K

l

)
(

p

1− p
)l

(
1− e−

x
η

ml−1∑

m′=0

1

Γ(m′ + 1)

(x
η

)m′
)

(6)

where a finite series representation of the lower incomplete

gamma function [34, eq. (8.352.6)] is used. By using (A.5),

we can readily derive (6).

According to the properties of the gamma distribution,

the distribution of the interference power is given by N ∼
Ga(m̃M, η̃).

A. Outage Probability Analysis

To predict the quality of service of the proposed system

over Nakagami fading channels, we first investigate the outage

probability. It is defined as the probability that the SINR falls

below a given threshold θ, i.e.,

Oout(θ)
△
=Pr(λ ≤ θ) = Fλ(θ) (7)

which is the special case of Theorem 1.

Applying the similar procedure as used in Appendix A,

especially, using (6) instead of (A.5) in the computation

of (A.7), the outage probability is given in the following

corollary.

Corollary 1: The outage probability at a fixed SINR thresh-

old θ is given in (8) at the top of the next page.

Proof: According to the derivation of Theorem 1, this

corollary can be readily derived. This corollary shows the

effects of reliability of the backhauls on the outage probability.
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Fλ(x) = Q

(
1 +

K∑

k=1

K−k+1∑

l1

K−k+2∑

l2=l1+1

· · ·
K∑

lk=lk−1+1

( k∏

n=1

pln
(1− pln)

) k∑

i=1

mi∑

j=1

Ωi,j(−1)j

Γ(j)

(
1− e−x/ηli

j−1∑

p=0

( x
ηli

)p

p∑

q=0

q∑

j1,j2,··· ,jM
j1+···+jM=q

1

(p− q)!

M∏

t=1

1

jt!

Γ(jt + m̃t)

Γ(m̃t)(
PI,tñt

σ2
n

)m̃t

2
(
x
ηli

)−(jt+m̃t)
1

m̃t+2/ǫ (r
ǫm̃t+2
max )

ǫr2max[1− χ2
r]

[
2F1

(
m̃t +

2

ǫ
, jt + m̃t; m̃t +

2

ǫ
+ 1;−r

ǫ
maxη̃liσ

2
n

xPI,tñt

)
−

χǫm̃t+2
r 2F1

(
m̃t +

2

ǫ
, jt + m̃t; m̃t +

2

ǫ
+ 1;−χ

ǫ
rr
ǫ
maxη̃liσ

2
n

xPI,tñt

)])
)
. (4)

Oout(θ) = Q +Q

K∑

l=1

(
K

l

)
(

p

1 − p
)l − 2Q

ǫr2max[1− χ2
r]

K∑

l=1

(
K

l

)
(

p

1− p
)le−

θ
η

ml−1∑

m′=0

(θ
η

)m′
m′∑

n=0

(
m′

n

)
Γ(m̃M + n))(η̃)n

Γ(m̃M)Γ(m+ 1)(m̃M + 2/ǫ)

(PI
µ
θ
)−(m̃M+n)

(rmax)
ǫm̃M+2

[
2F1

(
m̃M +

2

ǫ
, m̃M + n; m̃M +

2

ǫ
+ 1;−r

ǫ
maxµP

θPI

)
−

χǫm̃M+2
r 2F1

(
m̃M +

2

ǫ
, m̃M + n; m̃M +

2

ǫ
+ 1;−χ

ǫ
rr
ǫ
maxµP

θPI

)]
, with µ

△
=
d−ǫn

ñ
. (8)

Corollary 2: When the interference power is proportional to

the transmit power P , an outage probability floor exists due

to interference.

Proof: The existence of the outage probability floor

follows immediately from Corollary 1. Upon applying P
PI

= κ
into (8), we obtain (9) at the top of the next page. In (9), B(·, ·)
denotes the beta function [34, eq. (8.384.1)]. Note that only

a dominating term is extracted from (8) in the derivation of

(9). For a particular scenario, where the interference power

is proportional to the transmit power, this corollary shows

that interference specified by system configuration parameters,

channel fading parameters, and backhaul link reliability jointly

determine the outage probability floor.

Corollary 3: For a fixed interference power PI , the asymp-

totic outage probability as the transmit power P → ∞ is given

by

O∞
2,out(θ) = Q. (10)

Proof: See Appendix B.

This corollary shows the existence of another outage proba-

bility floor, which is mainly determined by reliability of the

backhaul links. As opposed to Corollary 2, this outage prob-

ability floor is independent of interference. From Corollaries

2 and 3, we can see the following asymptotic behavior of the

system in terms of the outage probability:

• As K increases, a lower outage probability can be

obtained. Also, the outage probability converges to

O∞
2,out(θ) at a faster rater as m increases.

• As either M or m̃ increases, outage happens more

frequently due to a greater interference when the interfer-

ence power is proportional to the transmit power. When

the interference power is fixed, a slower rate is obtained

converging to O∞
2,out(θ) due to a greater interference from

the interferers.

• The size of the communication range of the receiver also

affects O∞
1,out(θ) and the rate converging to O∞

2,out(θ). As

either rmax or χr increases, a lower outage probability

and a faster rate converging to O∞
2,out(θ) can be achieved

due to reduced interference.

• Due to existence of two distinct outage floors, an asymp-

totic diversity gain [35] cannot be achieved.

B. Average Bit Error Rate Analysis

In this subsection, we derive the ABER for Binary Phase-

Shift Keying (BPSK) modulation based on the distribution of

λ, which can be implied from (8). The ABER is given as [36]

Sb =
1

2
√
π

∫ ∞

0

x−1/2Fλ(x)e
−xdx. (11)

Now applying Fλ(x) into (11), yields the following

Sb =
Q

2
+
Q

2

K∑

l=1

(
K

l

)
(

p

1− p
)l − S̃b (12)

where

S̃b
△
=

Q√
πǫr2max[1− χ2

r ]

K∑

l=1

(
K

l

)
(

p

1− p
)l

ml−1∑

m′=0

m′∑

n=0

(
m′

n

)( 1
η

)m′

(1 + 1
η )

−1(η̃)n
(
PI

µP

)−(m′−1/2)

Γ(m̃M)Γ(m′ + 1)
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O∞
1,out(θ) = 1− 2Q

ǫr2max[1− χ2
r]

K∑

l=1

(
K

l

)
(

p

1− p
)l
ml−1∑

m′=0

(
κµ
)(m̃M)

θ−m̃M (rmax)
ǫm̃M+2

(m̃M +m′)B(m̃M,m′ + 1)(m̃M + 2/ǫ)
[
2F1

(
m̃M +

2

ǫ
, m̃M +m′; m̃M +

2

ǫ
+ 1;−r

ǫ
maxκµ

θ

)
−

χǫm̃M+2
r 2F1

(
m̃M +

2

ǫ
, m̃M +m′; m̃M +

2

ǫ
+ 1;−χ

ǫ
rr
ǫ
maxκµ

θ

)
]
. (9)

r−ǫ(Ca)
max

[
G2,2

3,2

( a1, a2, a3

b1, b2

∣∣∣ PI

rǫmaxµP (1 +
1
η )

)
−

χ−ǫ(Ca)
r G2,2

3,2

( a1, a2, a3

b1, b2

∣∣∣ PI

χǫrr
ǫ
maxµP (1 +

1
η )

)]
(13)

with a1
△
=1 − m̃M − n + m′ − 1/2, a2

△
=0, a3

△
=2/ǫ − n +

m̃ + 1/2, b1
△
=2/ǫ − n +m′ − 1/2, and b2

△
=m′ − 1/2. Also,

Ca
△
=n− m̃− 2/ǫ+1/2 and Gm,np,q

( a1, · · · , ap
b1, · · · , bq

∣∣∣ ·
)

denotes

the MeijerG function [34, eq. (9.301)]. A derivation of (12) is

provided in Appendix C.

Corollary 4: The asymptotic diversity gain cannot be

achieved in the considered system.

Proof: As z → 0,

Gm,np,q

( a1, · · · , an, an+1, · · · , ap
b1, · · · , bm, bm+1, · · · , bq

∣∣∣z
)

∝ zβ , where

β = min(b1, . . . , bm) [37, Section 5.4.1]. Thus, as P → ∞,

we have the corresponding asymptotic expression for S̃b
provided in (14) at the top of the next page.

Note that (14) verifies that the asymptotic ABER is inde-

pendent of P .

Corollary 5: Depending on whether the interference power

is proportional to the transmit power or not, two distinct

asymptotic ABER floors exist.

Proof: As in the derivation of Corollary 2, we can easily

find S∞
1,b when the interference power is proportional to the

transmit power, and S∞
2,b when the interference power is fixed.

Especially, since F∞
2,λ(x) = Q as P → ∞, we can see S∞

2,b =
Q
2 .

Note that from Corollary 5, we can see a similar asymptotic

ABER behavior as that of the asymptotic outage probability.

Since two distinct ABER floors dominate the asymptotic

ABER in the high transmit power region, a diversity gain

is, in general, not achievable with unreliable backhaul links

and/or with interferers within the communication range of the

receiver. However, in the medium transmit power region, a

different rate converging to these floors can be obtained. In

general, the ABER improves with the number of transmitters

due to an increased signal power at the receiver. Moreover, the

ABER reduces as the communication range of the receiver is

increased for a fixed number of interferers. This is because the

aggregate interference power at the receiver is reduced due to

higher path loss.

C. Average Spectral Efficiency Analysis

In this subsection, we investigate the ASE of the proposed

network system. With the available CDF, Fλ(x), the ASE is

defined as [36]

R =
1

log(2)

∫ ∞

0

1− Fλ(x)

1 + x
dx. (15)

Although we have the expression for Fλ(x), it is infeasible to

find an exact ASE. Thus, an upper bound on the ASE will be

derived to see the performance behavior of the system.

Theorem 2: An upper bound on the ASE of the proposed

system is given by (16) at the top of the next page. In (16),

we have defined Cb
△
=n− m̃− 2/ǫ.

Proof: See Appendix D.

From Theorem 2, the following corollary can be immediately

derived.

Corollary 6: The high-transmit power slope and the power

offset per 3-dB units are, respectively, given by

S∞ = log2

(2Θ(1− p)K−1Kpαn

ǫΓ(m̃M)

)
and

L∞ = 0 (17)

where Θ is a constant in approximating the MeijerG function.

Equation (17) shows that the power offset is not affected by

the channel and system configuration parameters.

Proof: We again use the asymptotic expression for the

MeijerG function, so that

Rup = log2

(
1 +

∫ ∞

0

(1− Fλ(x))dx
)

= log2

(
1 +

2ΘQKη

ǫΓ(m̃M)
(

p

1− p
)
)
. (18)

Now replacing definitions on terms in (18), (18) is given

by Rup = log2(1 + 2Θ(1−p)K−1KpPαn
ǫΓ(m̃M)σ2

n
), which is in turn

given by Rup ≈ log2(
2Θ(1−p)K−1KpPαn

ǫΓ(m̃M)σ2
n

). Thus, S∞ =

lim Rup

log2(P/σ
2
n) = log2

(
2Θ(1−p)K−1Kpαn

ǫΓ(m̃M)

)
and L∞ =

lim
(
log2(P/σ

2
n)− Rup

S∞

)
= 0.

Corollary 7: When the interference power is proportional to

the transmit power, the ASE ceiling exists due to interference,

which is provided by (19) at the top of the next page. Note

that (19) shows that as in line with Corollary 2, the system

configuration parameters, channel fading parameters, and the

backhaul reliability jointly determine the asymptotic ASE

ceiling. Note that to derive a more tight ASE ceiling, we have

used a different approximation which is described in Appendix
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S̃b ∝
Q√

πǫrmax)2[1− χ2
r ]
K
( p

1− p

) (1 + 1
η )

−1
(
PI

µP

)1/2
(rmax)

2−ǫ/2

Γ(m̃M)[
G2,2

3,2

( 1/2− m̃M, 0, 2/ǫ+ 1/2

2/ǫ− 1/2,−1/2

∣∣∣ PI

rǫmaxµP (1 +
1
η )

)
−

χ2−ǫ/2
r G2,2

3,2

( 1/2− m̃M, 0, 2/ǫ+ 1/2

2/ǫ− 1/2,−1/2

∣∣∣ PI

χǫrr
ǫ
maxµP (1 +

1
η )

)]

= − Q√
πǫ
K
( p

1− p

) (1 + 1
η )

−1/2

Γ(m̃M)
≈ − Q√

πǫ

Kp

Γ(m̃M)(1− p)
. (14)

Rup = log2

(
1 +

∫ ∞

0

(1− Fλ(x))dx
)

= log2

(
1 +

2Q

ǫr2max[1− χ2
r]

K∑

l=1

(
K

l

)
(

p

1− p
)l
ml−1∑

m′=0

m′∑

n=0

(
m′

n

)( 1
η

)m′−1
(η̃)n

(
PI

µP

)−(m′)

Γ(m̃M)Γ(m′ + 1)

r−ǫ(Cb)
max

[
G2,2

3,2

( ã1, ã2, ã3

b̃1, b̃2

∣∣∣ ηPI
rǫmaxµP

)
− χ−ǫ(Cb)

r G2,2
3,2

( ã1, ã2, ã3

b̃1, b̃2

∣∣∣ ηPI
χǫrr

ǫ
maxµP

)])
. (16)

R∞
1 =

2Q

log(2)ǫr2max[1− χ2
r]

K∑

l=1

(
K

l

)
(

p

1 − p
)l
ml−1∑

m′=0

1

Γ(m̃M +m′ + 1)B(m̃M,m′ + 1)

(
κµ
)(m̃M)

rǫm̃M+2
max

[
G3,2

3,3

( 1, m̃M, m̃M + 2/ǫ+ 1

m̃M + 2/ǫ, m̃M +m′, m̃M

∣∣∣ 1

rǫmaxκµ

)
−

χǫm̃M+2
r G3,2

3,3

( 1, m̃M, m̃M + 2/ǫ+ 1

m̃M + 2/ǫ, m̃M +m′, m̃M

∣∣∣ 1

χǫrr
ǫ
maxκµ

)]
. (19)

E. When the interference power is fixed, the ASE is seen to

be proportional to the transmission power P as in (18).

V. SIMULATION RESULTS

In the simulations, we use BPSK modulation. We assume

ǫ = 4 for all the channels in the considered system. The

following various simulation scenarios are considered to verify

the performance of the proposed network system. We use the

normalized rmin and PI,i, ∀i with respect to rmax and P ; that

is, rmin = χrrmax and PI,i = χI,iP with 0 < χr < 1 and

0 < χI,i < 1, ∀i.
• E0 : K = 3 with mk = {1, 2, 3},

pk = {0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 1, χr = 0.1.

• E1 : K = 3 with mk = {2, 3, 4},

pk = {0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 1, χr = 0.1.

• E2 : K = 3 with mk = {2, 3, 4},

pk = {0.99, 0.98, 0.97}, m̃i = {2, 3, 4}, χI,i = 0.01, ∀i,
rmax = 1, χr = 0.1.

• E3 : K = 3 with mk = {2, 3, 4},

pk = {0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.1, ∀i,
rmax = 1, χr = 0.1.

• E4 : K = 3 with mk = {2, 3, 4},

pk = {0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 1, χr = 0.3.

• E5 : K = 3 with mk = {2, 3, 4},

pk = {0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 3, χr = 0.1.

• E6 : K = 4 with mk = {2, 3, 4, 2},

pk = {0.99, 0.98, 0.97, 0.96}, m̃i = {1, 2, 1},

χI,i = 0.01, ∀i, rmax = 3, χr = 0.1.

• E7 : K = 3 with m = 2, p = 0.99, m̃ = 2, χI = 0.1,

rmax = 1, χr = 0.3.

• E8 : K = 3 with m = 3, p = 0.99, m̃ = 2, χI = 0.1,

rmax = 1, χr = 0.3.

• E9 : K = 3 with m = 3, p = 0.99, m̃ = 3, χI = 0.1,

rmax = 1, χr = 0.3.

• E10 : K = 3 with m = 3, p = 0.99, m̃ = 2, χI = 0.1,

rmax = 3, χr = 0.1.

• E11 : K = 3 with m = 2, p = 0.5, m̃ = 2, χI = 0.1,

rmax = 1, χr = 0.3.

• E12 : K = 2 with m = 2, p = 0.5, m̃ = 2, χI = 0.1,

rmax = 1, χr = 0.3.

• E13 : K = 3 with m = 2, p = 0.99, m̃ = 2, χI = 0.1,

rmax = 1, χr = 0.01.
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• F1 : K = 3 with mk = {2, 3, 4}, pk =
{0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 1, χr = 0.

• F2 : K = 3 with mk = {2, 3, 4}, pk =
{0.99, 0.98, 0.97}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 3, χr = 0.

• F3 : K = 4 with mk = {2, 3, 4, 2}, pk =
{0.99, 0.98, 0.97, 0.96}, m̃i = {1, 2, 1}, χI,i = 0.01, ∀i,
rmax = 3, χr = 0.

Scenarios E1-E6 are used for heterogeneous system param-

eters, whereas E7-E13 are used for homogeneous system

parameters. Scenarios F1-F3 are same as E4-E6 without safety

zone.

In the following figures, the curves obtained by actual link

simulations are denoted by Ex, whereas analytically derived

curves are denoted by An. Asymptotically obtained curves are

denoted by As.

A. Outage Probability Analysis
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An : M = 1,E0

An : M = 2,E0

An : M = 3,E0

An : M = 1,E1

An : M = 1,E2

An : M = 3,E3

Ex : M = 1,E0

Ex : M = 3,E0

Fig. 2. Outage probability for various simulation scenarios.

In Figs. 2 and 3, we use heterogeneous system parameters.

We assume that the interference power is proportional to the

transmit power. From Fig. 2, we investigate the effects of the

system configurations and channels.

• The effect of the number of interferers: More interference

increases the outage probability. For example, (M =
1,E0) vs. (M = 2,E0).

• The effect of Nakagagami-m m parameter of the signal

channel: A greater value of m leads to a lower outage

probability since fluctuation of the signal power reduced

with a greater value of m. For example, (M = 1,E0) vs.

(M = 1,E1).
• The effect of Nakagagami-m m̃ parameter of the interfer-

ing channel: A greater value of m̃ leads to a higher outage

probability due to a greater interference. For example,

(M = 1,E1) vs. (M = 1,E2).
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An : E4

An : E5
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Ex : E4

An : F1

An : F2

An : F3

Fig. 3. Outage probability for various simulation scenarios with M = 3.

• The effect of the interfering power: As χI increases, more

frequent outages happen. For example, (M = 1,E2) vs.

(M = 1,E3).
• The effect of the safety zone on the outage probability

is significant over the system without forming the safety

zone.

For the scenario E0, we also verified our derived closed form

expression for the outage probability for M = 1 and M = 3.

We can see the accuracy of the derived outage probability. We

can also see that when the interference power is proportional to

the transmit power, the outage probability floor always exists.

Interference is responsible for this floor. From Fig. 3, we can

see the effects of the communication range and safety zone

size on the outage probability. As either χr or rmax increases,

it can be seen that a lower outage happens due to reduced

interference at the receiver. For example, (M = 3,E4) vs.

(M = 3,E5) and (M = 3,E5) vs. (M = 3,E6).

In Figs. 4 and 5, we assume that the interference power is

fixed in identical Nakagami-m fading. From these two figures,

we can see the following facts:

• In the scenarios such as E7, E8, and E9, the out-

age probability approaches the outage probability floor,

O∞
2,out = (1 − p)K , independent of M , m, m̃, χI , and

(rmax, χr) as Corollary 3 verified. Only backhaul link

reliability is responsible for the outage probability floor.

• A rate converging to this outage probability floor depends

on M , m, m̃, χI , and (rmax, χr). As m, rmax, or χr
increases, a faster convergence rate can be obtained,

whereas as M , m̃, or χI increases, a slower convergence

rate can be obtained.

Thus, from Figs. 2-5, we can show the existence of two

independent outage probability floors in the considered system,

and their dominance in the high transmit power region.
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Fig. 4. Outage probability for various simulation scenarios.
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M = 1, m= 2, m̃ = 2, rmax = 1, χr = 0.1, χI = 0.1

M = 1, m= 2, m̃ = 2, rmax = 1, χr = 0.3, χI = 0.1
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O∞
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Fig. 5. Outage probability for various simulation scenarios with fixed K = 3
and p = 0.99.

B. Average Bit Error Rate Analysis

In Fig. 6, we compare the ABER for various scenarios

with fixed values of K = 3, rmax = 1, and χr = 0.1. We

assume that the interference power is fixed for this figure. For

two different backhaul link reliabilities, we can see that as P
increases, Sb approaches S∞

2,b = (1− p)K/2, which is mainly

determined by the reliability of the backhaul links. As m
increases or χI decreases, ABER converges to S∞

2,b at a faster

rate, whereas a slower convergence to S∞
2,b can be observed

when either M or m̃ increases due to greater interference.

We also include a curve showing asymptotic ABER behavior.

As P increases, differences between the exact ABER and the

asymptotic ABER become negligible.
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Fig. 6. Average bit error rate for various simulation scenarios with fixed
K = 3, rmax = 1, and χr = 0.1.
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Fig. 7. Analysis of the rate converging to the average bit error rate floor for
various scenarios with fixed M = 1, χI = 0.01, and (rmax = 1, χr = 0.1).

In Fig. 7, we compare converging rate via log10(ABER) for

various scenarios at a particular value of Q = 1.25×10−4. We

can see that as either m or K increases, a faster convergence

to S∞
2,b can be observed when the interference power is fixed.

However, when the interference power is proportional to the

transmit power, all the considered scenarios result in ABER

floors S∞
1,b in the range of (−0.2, 1.2) dBs of P . However, as

either m or K increases, it is seen that a lower ABER floor

can be obtained.

C. Average Spectral Efficiency Analysis

Fig. 8 shows the ASE for various scenarios. We can observe

the following facts:
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Fig. 8. Average spectral efficiency for various values of M and the
interference power proportional to the transmit power.

• When the interference power is proportional to the trans-

mit power, the exact ASE approaches the ASE ceiling

R∞
1 as P increases. Depending on parameters, different

ceilings can be obtained as verified by Corollary 7.

• For the same scenario, a greater number of interferers

results in a lower ASE due to more interference.

• If we compare scenarios E7 and E10, it can be seen that

a higher ASE can be achieved as m increases.

• If we compare scenarios E7 and E13, it can be seen that a

larger safety zone results in a higher ASE due to reduced

interference in the communication range of the receiver.
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Fig. 9. S∞ at a fixed interference power and M = 1.

In Fig. 9, we show the high-transmit power slope, S∞ for

scenarios, E11, E12, and E13 with M = 1. We can see that

these scenarios have the same S∞ independent of K , p, and

m.

VI. CONCLUSIONS

In this paper, a joint impact of aggregate interference from

coexisting multiple interferers in the communication range

within which the safety zone is formed around the receiver,

reliability of the backhaul links, and the size of the communi-

cation range has been investigated for the proposed finite-sized

cooperative system which connected to the CU via unreliable

wireless backhaul links. After deriving the distribution of the

spatially averaged SINR at the target receiver in heterogeneous

system and channel parameters, we have derived closed-form

expressions for the outage probability. To gain further insights

into the impact of the backhaul reliability, several system

and channel parameters on the performance, an asymptotic

analysis has been conducted in the outage probability, ABER,

and ASE for homogeneous system and channel parameters.

It has been seen that since two intrinsic floors in the outage

probability and ABER are dominating in the high transmit

power region, a conventional diversity gain is not achievable.

Aggregate interference and unreliable backhaul are responsible

for these floors. On the other hand, a different rate converging

to these floors can be obtained in proportional to the system

and channel parameters. Based on the asymptotic ASE, we

have shown existence of the ASE ceiling, and verified a zero

power offset.

APPENDIX A: DERIVATION OF THEOREM 1

Based on the definition of S, we have

S =

K∑

k=1

Sk =

K∑

k=1

Ikψk (A.1)

where ψk
△
=Pkαk|hk|

2

σ2
n

∼ Ga(mk, ηk). From the Bernoulli

process, the PDF of the RV Ikψk is given by

fIkψk
(x) = (1− pk)δ(x) + pkfψk

(x) (A.2)

where δ(·) denotes the Dirac delta function. After computing

the moment generating function (MGF) of the RV Ikψk, and

the partial fraction, we have the following MGF for the RV S

M(S) = Q

(
1 +

K∑

k=1

K−k+1∑

l1=1

K−k+2∑

l2=l1+1

· · ·
K∑

lk=lk−1+1

( k∏

n=1

pln
(1− pln)

) k∑

i=1

mi∑

j=1

ci,j

(s+ 1
ηli

)j

)
. (A.3)

Now applying the inverse MGF, the PDF of the RV S is

obtained as follows:

fS(x) = Q
(
δ(x) +

K∑

k=1

K−k+1∑

l1=1

K−k+2∑

l2=l1+1

· · ·
K∑

lk=lk−1+1

( k∏

n=1

pln
(1− pln)

) k∑

i=1

mi∑

j=1

ci,j(−1)j

Γ(j)
xj−1e

− x
ηli

)
. (A.4)



11

From (A.4), the CDF can be readily obtained as

FS(x) = Q
(
1 +

K∑

k=1

K−k+1∑

l1=1

K−k+2∑

l2=l1+1

· · ·
K∑

lk=lk−1+1

( k∏

n=1

pln
(1− pln)

) k∑

i=1

mi∑

j=1

Ωi,j(−1)j

Γ(j)
γl(j,

x

ηli
)
)
.

(A.5)

Let us assume a set of interfering channel parameters as

Φ = {XG = {gi, ∀i}, Xα̃ = {α̃i, ∀i}}, where XG and Xα̃,

respectively, denote the set of interfering channels and the

set of positions of the interferers. The conditional CDF of

S, conditioned on Φ is given by

Pr
( S

N + 1
< θ
)
= Pr

(
S < (N + 1)θ

)

= EΦ{FS((N + 1)θ|Φ)}. (A.6)

To compute (A.6), we first compute the following expression

for FS((N + 1)θ|Φ) provided in (A.7) at the top of the

next page. In (A.7), we have used series representations

for the incomplete gamma function [34, eq. (8.352.6)] and

the binomial theorem. To simplify our notation, we define

∑̃[
·
]△
=

K∑

k=1

K−k+1∑

l1

K−k+2∑

l2=l1+1

· · ·
K∑

lk=lk−1+1

( k∏

n=1

pln
(1− pln)

)[
·
]
.

Now using the definition of the interferer’s total power N , we

can have the following expression via the multinomial theorem

N q = (
M∑

i=1

Ni)
q =

q∑

j1,j2,··· ,jM
j1+···+jM=q

q!

j1!j2! . . . jM !

M∏

t=1

(Nt)
jt . (A.8)

To computeEΦ{FS((N+1)θ)}, we use EΦ{FS((N+1)θ)} =
EXα̃

{EXG
{FS((N + 1)θ)|Xα̃}︸ ︷︷ ︸

J4

}, where the inner expression

J4 is computed in (A.9) at the top of the next page. In (A.9),

we have assumed that Nt is independent from others. Now

having applied the PDF of Nt, which is given by

fNt
(x|αi) =

1

Γ(m̃k)(η̃k)m̃k
xm̃k−1e

− x
η̃k (A.10)

yields

J4 = Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j
(
1− e−θ/ηli

j−1∑

p=0

( θ
ηli

)p

p∑

q=0

q∑

j1,j2,··· ,jM
j1+···+jM=q

1

(p− q)!

M∏

t=1

1

jt!

Γ(jt + m̃t)

Γ(m̃t)(η̃t)m̃t

( θ

ηli
+

1

η̃t

)−(jt+m̃t)))
. (A.11)

Upon replacing η̃t with η̃t =
PI,tñtd̃

−ǫ
t,R

σ2
n

, (A.11) is evaluated

as

J4 = Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j
(
1− e−θ/ηli

j−1∑

p=0

( θ
ηli

)p

p∑

q=0

q∑

j1,j2,··· ,jM
j1+···+jM=q

1

(p− q)!

M∏

t=1

1

jt!

Γ(jt + m̃t)(D̃t,R)
m̃t

Γ(m̃t)(
PI,tñt

σ2
n

)m̃t

( θ

ηli
+

D̃t,R

PI,tñt

σ2
n

)−(jt+m̃t)))
(A.12)

where D̃t,R
△
=d̃ǫt,R. The PDF of D̃t,R derived from the PDF

of d̃t,R, which is uniformly distributed within the annulus

specified by inner radius, χrrmax, and outer radius, rmax, is

given by

fD̃t,R
(x) =

2x2/ǫ−1

ǫr2max[1− χ2
r]
, for χrrmax ≤ x ≤ rmax. (A.13)

Now using (A.13), we are ready to compute EΦ{FS((N +
1)θ)}, which is given by

EΦ{FS((N + 1)θ)} = EXα̃
{J4}. (A.14)

Having applied (A.13) into (A.14), we have

EΦ{FS((N + 1)θ)} =

Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j
(
1− e−θ/ηli

j−1∑

p=0

( θ
ηli

)p

p∑

q=0

q∑

j1,j2,··· ,jM
j1+···+jM=q

1

(p− q)!

M∏

t=1

1

jt!

Γ(jt + m̃t)

Γ(m̃t)(
PI,tñt

σ2
n

)m̃t

∫ rǫmax

χǫ
rr

ǫ
max

(x)m̃t

( θ

ηli
+

x
PI,tñt

σ2
n

)−(jt+m̃t)

fD̃t,R
(x)dx

︸ ︷︷ ︸
J5

))
(A.15)

from which after some manipulations J5 is computed as

follows:

J5 =
2
(
θ
ηli

)−(jt+m̃t) (rǫm̃t+2
max )
m̃t+2/ǫ

ǫr2max[1− χ2
r]

[

2F1

(
m̃t +

2

ǫ
, jt + m̃t; m̃t +

2

ǫ
+ 1;−r

ǫ
maxη̃liσ

2
n

θPI,tñt

)
−

(χǫm̃t+2
r )

2F1

(
m̃t +

2

ǫ
, jt + m̃t; m̃t +

2

ǫ
+ 1;−χ

ǫ
rr
ǫ
maxη̃liσ

2
n

θPI,tñt

)]

(A.16)

where we have used [38, eq. (2.2.6.15)]. Replacing J5 in

(A.15) with (A.16), we can have (4).

APPENDIX B: DERIVATION OF COROLLARY 3

For the derivation, let us use the distribution provided in

(9). That is,

O∞
2,out(θ) ≈ Q+Q

K∑

l=1

(
K

l

)
(

p

1 − p
)l−

2Q

ǫr2max[1− χ2
r]

K∑

l=1

(
K

l

)
(

p

1− p
)l

ml−1∑

m′=0

1

(m̃M +m′)B(m̃M,m′ + 1)(m̃M + 2/ǫ)

(µP
PI

)(m̃M)
θ−m̃Mrǫm̃M+2

max

[
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FS((N + 1)θ|Φ) = Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j

Γ(j)
γ(j, (N + 1)θ/ηli)

)

= Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j

Γ(j)
Γ(j)

(
1− e−(N+1)θ/ηli

j−1∑

p=0

1

p!

( (N + 1)θ

ηli

)p))

= Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j
(
1− e−(N+1)θ/ηli

j−1∑

p=0

1

p!

( θ
ηli

)p
(N + 1)p

))

= Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j
(
1− e−(N+1)θ/ηli

j−1∑

p=0

1

p!

( θ
ηli

)p p∑

q=0

(
p

q

)
(N)q

))
. (A.7)

J4 = Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j

(
1− e−θ/ηli

j−1∑

p=0

1

p!

( θ
ηli

)p p∑

q=0

(
p

q

) q∑

j1,j2,··· ,jM
j1+···+jM=q

q!

j1!j2! . . . jM !

M∏

t=1

∫ ∞

0

e−θx/ηli (x)jtfNt
(x|αi)dx

))

= Q
(
1 +

∑̃ k∑

i=1

mi∑

j=1

Ωi,j(−1)j

(
1− e−θ/ηli

j−1∑

p=0

( θ
ηli

)p p∑

q=0

q∑

j1,j2,··· ,jM
j1+···+jM=q

1

(p− q)!

M∏

t=1

1

jt!

∫ ∞

0

e−θx/ηli (x)jtfNt
(x|αi)dx

))
. (A.9)

2F1

(
m̃M +

2

ǫ
, m̃M +m′; m̃M +

2

ǫ
+ 1;−r

ǫ
maxµP

θPI

)
−

χǫm̃M+2
r

2F1

(
m̃M +

2

ǫ
, m̃M +m′; m̃M +

2

ǫ
+ 1;−χ

ǫ
rr
ǫ
maxµP

θPI

)
]
. (B.1)

Since as P → ∞, we have |z| > 1 in the representation of

2F1(a, b; c;−z) in our problem, with the constraint a− b /∈ Z,

we use the following equivalent form for 2F1(a, b; c;−z) [39,

eq. (7.2.1.6)]:

2F1(a, b; c;−z) =
Γ(b − a)Γ(c)z−a

Γ(b)Γ(c− a)
2F1(a, 1 + a− c; 1 + a− b; 1/z)+

Γ(a− b)Γ(c)z−b

Γ(a)Γ(c− b)
2F1(b, 1 + b − c; 1 + b− a; 1/z) (B.2)

where 2F1(a, b; c;−z) =

∞∑

k=0

(a)k(b)k
Γ(k + 1)(c)k

(−z)k [39, eq.

(7.2.1.1)] with (a)k denoting the Pochhammer symbol defined

by (a)k
△
=a(a−1) · · · (a−k+1). Now applying the correspond-

ing variables, we can approximate (B.2) as:

2F1(a, b; c;−z) ≈
Γ(b− a)Γ(c)z−a

Γ(b)Γ(c− a)
+

Γ(a− b)Γ(c)z−b

Γ(a)Γ(c− b)
(B.3)

since 2F1(a, 1 + a − c; 1 + a − b; 1/z) =∑∞
k=0

(a)k(1+a−c)k
Γ(k+1)(1+a−b)k

(z)−k ≈ 1 and 2F1(b, 1 + b −

c; 1 + b − a; 1/z) =
∑∞
k=0

(b)k(1+b−c)k
Γ(k+1)(1+b−a)k

(z)−k ≈ 1 as

|z| ≫ 1. We can further approximate (B.3) as:

2F1(a, b; c;−z) ≈
Γ(b− a)Γ(c)z−a

Γ(b)Γ(c− a)
+

Γ(a− b)Γ(c)z−b

Γ(a)Γ(c− b)

≈ Γ(a− b)Γ(c)z−b

Γ(a)Γ(c− b)
(B.4)

for |z| ≫ 1 and a > b. Using (B.4), we can have

ml−1∑

m′=0

θ−m̃M (rmax)
ǫb1

2F1

(
b1, b2; b1 + 1;− rǫmaxµ

θPI

)

b1B(m̃M,m′ + 1)b2

(µP
PI

)(m̃M)

≈ Γ(2ǫ )Γ(b1 + 1)

(m̃M)B(m̃M,m′ + 1)(b1)Γ(b1)Γ(
2
ǫ + 1)

(rǫmaxµP

θPI

)−m̃M

θ−m̃M (rmax)
ǫb1
(µP
PI

)(m̃M)
(B.5)

where b1
△
=m̃M+ 2

ǫ , b2
△
=m̃M+m′. After some manipulations,

(B.5) is evaluated as follows:

ml−1∑

m′=0

θ−m̃M (rmax)
ǫb1

2F1

(
b1, b2; b1 + 1;− rǫmaxµ

θPI

)

b1B(m̃M,m′ + 1)b2

( µ
PI

)(m̃M)

≈ ǫr2max

2
. (B.6)

Similarly, we can have

ml−1∑

m′=0

θ−m̃Mχǫb1r rǫb1max2F1

(
b1, b2; b1 + 1;−χǫ

rr
ǫ
maxµ
θPI

)

(m̃M +m′)B(m̃M,m′ + 1)(m̃M + 2/ǫ)

(µP
PI

)(m̃M)
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≈ ǫχ2
rr

2
max

2
. (B.7)

Collecting Eqs. (B.6) and (B.7), we can verify that

Q∞
2,out(θ) ≈ Q as P → ∞.

APPENDIX C: DERIVATION OF (12)

To compute the ABER, we first derive Fλ(x) from Oout(x)

as in (C.1) at the top of the next page. In (C.1), c1
△
= PI

rǫmaxµP
and

c2
△
= PI

χǫ
rr

ǫ
maxµP

. Now substituting (C.1) into (11), we have (C.2)

at the top of the next page. In (C.2), c3
△
=m̃M +n−m′+1/2.

To compute K1, we use the following equivalent expression

using the MeijerG function

x−c32F1

(
m̃M +

2

ǫ
, m̃M + n; m̃M +

2

ǫ
+ 1;− 1

c1x

)
=

(c1)
c3(m̃M + 2/ǫ)

Γ(m̃M + n)

G2,1
2,2

( 1− c3, m̃M + 2/ǫ+ 1− c3

m̃M + 2/ǫ− c3, m̃M + n− c3

∣∣∣c1x
)
. (C.3)

We also use the following equivalent form for

e−x(1+
1
η
) = G1,0

0,1

( ·
0

∣∣∣(1 + 1

η
)x
)
. (C.4)

Then, we can have for K1 as

K1 =
(1 + 1

η )
−1cc31 (m̃M + 2/ǫ)

Γ(m̃M + n)

G2,2
3,2

( 1− c3, 0, m̃M + 2/ǫ+ 1− c3

m̃M + 2/ǫ− c3, m̃M + n− c3

∣∣∣ c1

(1 + 1
η )

)
(C.5)

where we have used [39, eq. (2.241.2)]. Similarly, K2 can be

obtained as

K2 =
(1 + 1

η )
−1cc32 (m̃M + 2/ǫ)

Γ(m̃M + n)

G2,2
3,2

( 1− c3, 0, m̃M + 2/ǫ+ 1− c3

m̃M + 2/ǫ− c3, m̃M + n− c3

∣∣∣ c2

(1 + 1
η )

)
. (C.6)

Having applied (C.5) and (C.6) into (C.2) and some manipu-

lations, we can readily obtain (12).

APPENDIX D: DERIVATION OF THEOREM 2

We first compute F̃λ(x)
△
=1 − Fλ(x) from (C.1), which is

given by (D.1) at the bottom of the next page. Note that in the

derivation of (D.1), we used the similar derivations employed

in the derivation of the ABER. After using again [39, eq.

(2.241.2)], Jensen’s inequality, and several properties of the

MeijerG function, we can readily derive (16).

APPENDIX E: DERIVATION OF (16)

We use an approximated distribution (E.1) at the bottom of

the next page for the SINR, which can be extracted from (9).

We then use the definition of the ASE as follows:

R∞
1 =

1

log(2)

∫ ∞

0

F̃∞
1,λ(x)

1 + x
dx. (E.2)

To compute (E.2), we also convert the following function in

terms of the MeijerG function

x−m̃M

1 + x
= G1,1

1,1

( −m̃M
−m̃M

∣∣∣x
)

(E.3)

and again use (C.3). After applying again [39, eq. (2.241.2)]

and some manipulations, (19) can be derived.
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