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Abstract—In this paper, the secrecy performance of finite-
sized cooperative cyclic prefixed single carrier systems with
multiple eavesdroppers and unreliable wireless backhaul con-
nections across multiple transmitters is investigated. For non-
identical frequency selective fading channels between the relay
and destination nodes, secrecy performance metrics including the
secrecy outage probability, ergodic secrecy rate, and probability
of non-zero achievable secrecy rate are derived. Furthermore, the
existence of performance limits on the secrecy outage probability
and probability of non-zero achievable secrecy rate are verified
for various backhaul scenarios. These limits are found to be
exclusively determined by the backhaul reliability. For imperfect
backhaul connections, it is found that the diversity gain promised
by cooperative cyclic prefixed single carrier systems cannot be
achieved in the conventional asymptotic high signal-to-noise ratio
region. Link-level simulations are conducted to verify the derived
impact of backhaul reliability on the secrecy performance.

Index Terms—Wireless backhaul, single carrier transmission,
frequency selective fading, two-hop relaying protocol, eavesdrop-
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I. INTRODUCTION

C
OMPLEX technological innovations such as Internet-

connected smart cities and the Internet of Things, to-

gether with the unrelenting proliferation of tablets and smart-

phones, point to future wireless networks that will be highly

dense and heterogeneous [1]. The accompanying backhaul

connections between the control unit (CU) (for example, the

access point) and the backbone will also be dense [2]. Thus, a

large-scale wired backhaul deployment to support such future

networks would lead to excessive costs to maintain all the

connections. For this reason, wireless backhaul is emerging

as an attractive alternative to wired backhaul for future dense

heterogeneous networks [3]. While wireless backhaul can relax

the requirement for the availability of wired connections [4],

the associated information exchange is intrinsically unreliable

due to the stochastic nature of wireless channels.
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The reliability of wireless backhaul connections has been

recently investigated for coordinated multi-point (CoMP) co-

operation in [5]–[9]. In [5], the impact of unreliable backhauls

on the delay performance of a heterogeneous cellular network

was studied, whereas the average sum rate for cooperative

cloud radio access networks was analyzed in [6]. In [7],

a game-theoretic approach is employed to study the impact

of heterogeneous backhaul on the coherent downlink CoMP

cooperation assuming highly available and reliable wired and

wireless backhauls. For a finite backhaul capacity, uplink lim-

ited cooperation based on data sharing is proposed in [8]. From

a secrecy perspective, cooperative scheduling is proposed in

[9] to create intentional interference to eavesdroppers in the

cellular system where base stations are connected via finite-

capacity backhaul links.

Finite-capacity and unreliable backhauls have also been

considered in non-cellular networks with distributed relays.

In [10], the authors establish the rate-distortion region in

the context of source reconstruction, and in [11] the average

achievable rate of data transmission over a cooperative relay-

ing network was investigated. For two source nodes connected

by orthogonal limited-rate error free backhauls, the outer

bound on the capacity region for multicast relaying is derived

in [12]. In [13], the authors examine cooperative network

coding for relay-assisted two sources and two destinations

with an ideal backhaul connection between the source nodes.

For uplink joint processing, several schemes such as the dis-

tributed compression [14], distributed decoding by exchanging

decoded data bits [15], and decentralized decoding [16] are

proposed. In [17] and [18], a wireless backhaul is designed to

connect multiple wireless access points to a wired gateway.

To circumvent the frequency selective fading nature of

wireless channels, we consider cyclic prefixed single carrier

(CP-SC) transmission which has a practical deployment with

a simple transmitter structure that can avoid the high peak-to-

average power ratio exhibited by orthogonal frequency divi-

sion multiplexing (OFDM) [19]. Several advanced cooperative

relaying schemes [20]–[23] have been proposed for CP-SC

transmission. In frequency selective fading, it has been shown

that an overall diversity gain promised by the multi-user and

multi-path diversity gains can be achieved by cooperative CP-

SC transmission. The advantages of CP-SC transmission has

also been applied to cooperative spectrum sharing systems in

[24].

Due to the broadcast nature of wireless transmission, wire-
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less physical layer security is an important consideration to

ensure the confidentiality of information exchange from eaves-

droppers. Several approaches have been proposed to degrade

the signal-to-noise ratio (SNR) of the eavesdropper relative

to the legitimate receiver by employing multiple antennas at

the transmitter and/or the legitimate receiver [25]–[29]. The

use of CP-SC transmission for physical layer security has

been investigated recently in [30], which proposed a two-

stage relay and destination selection procedure. A relay node

is first chosen to minimize the amount of information that can

be inferred by the eavesdroppers, then a desired destination

is selected from the chosen relay node to maximize the

instantaneous received SNR.

While the above mentioned literature provides a foundation

for the study of CP-SC systems in different applications, the

effect of unreliable backhaul on the physical layer security of

CP-SC transmission remains unknown. As such, in contrast

to the open literature on physical layer security which assume

perfect backhaul connections [25]–[33], the main contributions

of this paper are summarized as follows.

Contributions:

• We evaluate the overall secrecy performance of a finite-

sized cooperative CP-SC system in terms of the number

of transmitters while accounting for the backhaul reli-

ability1 and multiple eavesdroppers that can infer useful

information from the main channels. We consider realistic

frequency selective fading links that have different fading

channel conditions.

• Based on the statistics of the end-to-end SNR (e-SNR) of

the main channel, we derive new closed-form expressions

for the secrecy outage probability, probability of non-

zero achievable secrecy rate, and ergodic secrecy rate.

Moreover, we derive their closed-form expressions in the

asymptotic regime that show the existence of an intrinsic

outage probability floor and a ceiling on the probability of

non-zero achievable secrecy rate. The asymptotic limits

are exclusively determined by the backhaul reliability

independent of transmitter cooperation and multipath

diversity gain.

• Based on the link-level simulations, it is found that

the convergence time to approach the asymptotic limits

are determined by the number of transmitters and the

multipath diversity gain of the main channel. Notably,

the existence of any unreliable backhaul connection will

result in a loss of diversity gain.

The main challenge of this work is to derive accurate closed-

form expressions for the CDF and PDF of the received SNRs

of a cooperative CP-SC system with multiple eavesdroppers.

To do so, we apply properties of the right circulant channel

matrix to note that the received SNRs are distributed ac-

cording to the chi-squared distribution with different degrees

of freedom (DoF) determined by the number of multipaths

in the channels. Our closed-form expressions clearly identify

1The term backhaul reliability can be used to model operating conditions
that cause a radio link failure [7], [11], [34] due to network congestion, delay,
and radio synchronization lost due to bad radio condition. In [35], the backhaul
link failure probability (LFP) is defined in terms of the outage probability of
the backhaul link.

separable contributions of the unreliable wireless backhaul and

the cooperative CP-SC which allows us to accurately analyze

the asymptotic secrecy performance for identical and non-

identical backhaul reliability.

Notation: CN
(
µ, σ2

)
denotes the complex Gaussian distri-

bution with the mean µ and the variance σ2; Fϕ(·) and fϕ(·)
respectively denote the cumulative distribution function (CDF)

and the probability density function (PDF) of the random

variable (RV) ϕ. A length of a vector a is denoted by L(a).
Organization: The rest of the paper is organized as follows.

In Section II, we first detail the system and channel model

of the proposed system. The e-SNR and its distributions are

derived in Section III. Performance analysis of the considered

a finite-sized cooperative system is presented in Section IV.

Simulation results are presented in Section V and conclusions

are drawn in Section VI.

II. SYSTEM AND CHANNEL MODEL
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Fig. 1. Block diagram of a finite-sized cooperative CP-SC system with
multiple eavesdroppers and multiple transmitters connected to the CU via
unreliable wireless backhauls. Reliability of the kth backhaul is denoted by
sk . The set of N eavesdropping channels and main relaying channels are
denoted by {jnk, gn,∀n, k} and {f ,hk, ∀k}, respectively.

Fig. 1 shows the block diagram of the considered system

consisting of a control unit (CU) providing unreliable wireless

backhaul to K transmitters (TX1, . . . , TXK) communicating

with a destination D via an intermediate relay R in the pres-

ence of N eavesdroppers (E1, . . . , EN ). A motivating example

for such a system model is in future dense heterogeneous

networks where the transmitters are small cell base stations

providing wireless coverage to an indoor destination user via

an intermediate outdoor relay station. The eavesdroppers are

nearby receivers attempting to access information sent to the

destination by listening to transmissions from the transmitters

and the relay. All the transmitters, eavesdroppers, relay node,
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and destination node are assumed to be equipped with a single

antenna. Similar to [28], we adopt transmit antenna selection

(TAS) across the K transmitters such that the transmitter with

the highest received SNR at the relay is selected to transmit.

Due to the stochastic nature of the channels, the best transmit

antenna for the relay is equivalent to a random transmit

antenna for the eavesdroppers. By increasing the diversity

gain of the main relaying channel with TAS, the secrecy

outage probability can be effectively reduced. To minimize

the signalling overhead, we consider selection combining (SC)

across the N eavesdroppers to select the maximum received

SNR across all the received signals from the transmitters

and the relay node. In this secrecy system, we employ the

following channel models.

• The CSI requirements are detailed as follows: The relay

needs CSI of the transmitters-to-relay links, the desti-

nation needs CSI of the relay-to-destination link, and

the eavesdroppers need CSI of both the transmitters-to-

eavesdroppers and the relay-to-eavesdroppers links [27],

[30], [31], [33].

• Channel gains are independent and identically distributed

(i.i.d.) complex Gaussian random variables with zero

means and unit variances.

• A channel from the kth transmitter to the relay node

is denoted by hk with L(hk) = Lh,k. A path loss

component over this channel is denoted by αh,k.

• A channel from the relay node to the destination is

denoted by f with L(f) = Lf . A path loss component

over this channel is denoted by αf .

• A channel from the kth transmitter to the nth eavesdrop-

pers is denoted by jnk with L(jnk) = Lj,n,k and αj,n,k

for a path loss component over this channel.

• A channel from the relay node to the nth eavesdroppers

is denoted by gn with L(gn) = Lg,n and αg,n for a path

loss component over this channel.

• The maximum number of multipaths

in the system is defined by Lmax =
max{{Lh,k, ∀k}, Lf , {Lj,n,k, ∀k, n}, {Lg,n, ∀n}}.

• Perfect synchronization is assumed between the CU and

all the transmitters.

• Backhaul reliability for transmitter TXk is given by sk,

which is the probability that the transmitter successfully

decodes the source message sent over its dedicated back-

haul, whereas it is erased with probability 1 − sk due

to unreliable backhaul. These erasures are assumed to

be independent across messages and follow a Bernoulli

process Bernoulli(1−sk) [34], with Ik being an indicator

function to model reliability of the kth backhaul link such

that Pr(Ik = 1) = sk and Pr(Ik = 0) = 1− sk.

For cooperative CP-SC transmission, we also use the following

schemes:

• M -ary phase-shift keying (MPSK) modulation is applied

at the transmitters. The transmission symbol block x ∈
CB×1 is transmitted from the transmitters simultaneously

due to exact synchronization between them. The size

of the symbol block is denoted by B. We assume that

E[x] = 0 and E[‖x‖2] = IB .

• A two-hop decode-and-forward (DF) relaying protocol

[33], [36], [37] is employed at the relay node. All eaves-

droppers can infer transmissions from the transmitters and

the relay node in the first and second hops, respectively.

• Coexisting N eavesdroppers also employ CP-SC trans-

mission.

• To prevent inter-block symbol interference (IBSI), an

additional CP comprising of Pg symbols from x is

appended to the front of x with Pg ≥ Lmax.

After the removal of the CP-related signal, the received signal

at the relay node is given by

yR =
√

P̄αh,k∗H∗
Ik∗x+ zR (1)

where

k∗ = arg max
1≤k≤K

||hk|| (2)

is the index of the selected transmitter, P̄ denotes the max-

imum transmission power at the transmitters, and zR ∼
CN (0, σ2

nIB) is the additive noise vector. Due to CP-SC

transmission, H∗ is represented by the right circulant matrix

[24], [38]; that is, H∗ is specified by the corresponding

channel vector hk∗ with additional zeros to have the same

size as x [24]. Assuming perfect decoding at the relay node

[33], [36], the received signal at the destination is given by

yD =
√

PRαfFx+ zD (3)

where F is a right circulant matrix determined by the channel

vector f with additional zeros, and zD ∼ CN (0, σ2
nIB). The

transmission power at the relay node is denoted by PR.

In the eavesdroppers’ channel, the signal received from the

selected k∗ transmitter to the nth eavesdropper is given by

yE,n,1 =
√

P̄αj,n,k∗Ik∗Jnk∗x+ zE,n,1 (4)

where Jnk∗ is a right circulant matrix determined by jnk∗

with additional zeros, and zE,n,1 ∼ CN (0, σ2
nIB). The signal

received from the relay node to the nth eavesdropper, in the

second time slot is given by

yE,n,2 =
√

PRαg,nGnx+ zE,n,2 (5)

where Gn is a right circulant matrix determined by gn with

additional zeros, and zE,n,2 ∼ CN (0, σ2
nIB). Note that in the

representation of Eqs. (3), (4), and (5), the CP-related signal

parts are removed.

III. DERIVATION OF THE E-SNR

According to Eqs. (1)-(3), and using the properties of the

right circulant matrix [24], the normalized SNRs in the main

relaying channels are defined as follows:

λR
△
= max

k=1,...,K

( P̄αh,kIk‖hk‖2

σ2
n

)
△
=P̄ α̃h,k∗Ik∗‖hk∗‖2 and

λD
△
=

PRαf‖f‖2

σ2
n

△
=PRα̃f‖f‖

2 (6)

where α̃h,k
△
=αh,k/σ

2
n and α̃f

△
=αf/σ

2
n. For the DF relaying

protocol, the e-SNR of the system is given by [36]

λDF = min(λR, λD). (7)
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Similarly from (4)-(5), the normalized SNRs for a particular

eavesdropping channel is given by

λE,n,1 △
=

P̄αj,n,k∗Ik∗‖jnk∗‖2

σ2
n

△
=P̄ α̃j,n,k∗Ik∗‖jnk∗‖2 and

λE,n,2 △
=

PRαg,n‖gn‖2

σ2
n

△
=PRα̃g,n‖gn‖

2 (8)

where α̃j,n,k∗

△
=αj,n,k∗/σ2

n and α̃g,n
△
=αg,n/σ

2
n. Applying the

SC protocol, the achievable SNR out of a cluster of eaves-

dropping channels is given by

λE,max △
= max

n=1...N
(λE,n,1, λE,n,2). (9)

A. Statistical Properties of the SNRs of the System

Using the properties of the right circulant channel matrix,

we can see that λD and λE,n,2 are distributed according to

the chi-squared distribution with different DoF [24] mainly

determined by the number of multipaths. Since different fading

and pathloss between two nodes are more realistic in the

wireless system, non-identical frequency selective channels

are accounted in the following formulation. We denote the

distributions of λD and λE,n,2, respectively, as follows:

λD ∼ χ2(2Lf , PRα̃f ) and λ
E,n,2 ∼ χ2(2Lg,n, PRα̃g,n) (10)

where the DoFs are denoted by 2Lf and 2Lg,n, respectively.

Their corresponding power normalizing constants are denoted

by PRα̃f and PRα̃g,n.

The CDF and PDF of the random variable λ ∼ χ2(2La, Ca)
are, respectively, given by

fλ(x) =
1

Γ(La)(Ca)La
xLa−1e−x/Ca and

Fλ(x) = 1− e−x/Ca

La−1∑

l=0

1

l!

( x

Ca

)l

. (11)

According to the theory of order statistics, the random

variable λR is the largest of K products of Bernoulli random

variables and chi-squared random variables. We provide the

following proposition for the CDF and PDF of the SNR λR.

Proposition 1: The CDF of the SNR λR is given by

FλR (x) = 1 +
K∑

k=1

(−1)kΥ
k∏

t=1

( sqt
ℓt!(P̄ α̃h,qt)

ℓt

)

e−βxxl̄ (12)

where we define β
△
=

k∑

t=1

1

P̄ α̃h,qt

, l̄
△
=

k∑

t=1

ℓt, and

Υ
△
=

K−k+1∑

q1=1

· · ·
K∑

qk=qk−1+1

Lh,q1
−1

∑

ℓ1=0

· · ·

Lh,qk
−1

∑

ℓk=0

. (13)

Proof: See Appendix A.

Note that this proposition is of particular interest since it is

applicable to a wide range of scenarios with non-identical

frequency selective fading channels, non-identical backhaul

reliability, and any degrees of transmitter cooperation.

Based on Proposition 1, the distribution of the e-SNR of the

main relaying channel is derived in the following theorem.

Theorem 1: For non-identical frequency selective fading, the

distribution of the e-SNR of the main relaying channel in the

considered finite-sized cooperative CP-SC system connected

via unreliable backhauls is given by (14) at the top of the next

page.

Proof: See Appendix B.

Note that the derived closed-form expression is different from

related results in [39] and [40] due to the fact that we have

taken into account transmitter cooperation connected to the CU

via dedicated backhauls with non-identical backhaul reliability

and fairly general channel fading conditions in the distribution

of the main relaying channel.

Proposition 2: The CDF and PDF of the received SNR by

the eavesdropping channel with non-identical frequency fading

is derived as

FλE,max(x) =1 + Φe−β̃xxl̃ and

fλE,max(x) =Φ
[

l̃xl̃−1e−β̃x − β̃xl̃e−β̃x
]

(15)

where we define β̃
△
=

n∑

t=1

1

P̃qt

, l̃
△
=

n∑

t=1

rt, and

Φ
△
=

2N∑

n=1

(−1)n
2N−n+1∑

q1=1

· · ·
2N∑

qn=qn−1+1

L3,q1
−1

∑

r1=0

· · ·

L3,qn−1
∑

rn=0

n∏

t=1

( s̃qt
rt!(P̃qt)

rt

)

(16)

with

s̃n =

{

sk∗ for n = 1, . . . , N

1 for n = N + 1, . . . , 2N
, (17)

P̃n =

{

P̄ α̃j,n,k∗ for n = 1, . . . , N

PRα̃g,n for n = N + 1, . . . , 2N
, (18)

and

L3,n =

{

Lj,n,k∗ for n = 1, . . . , N

Lg,n for n = N + 1, . . . , 2N
. (19)

Proof: See Appendix C.

IV. PERFORMANCE ANALYSIS

In this section, based on the above closed-form statisti-

cal expressions, we compute the secrecy outage probability,

probability of non-zero achievable secrecy rate, and ergodic

secrecy capacity in non-identical frequency selective fading.

Note that since k∗ obtained by the transmitter selection

protocol described by Eq. (2) is random over a particular set

of transmitters, the evaluation of the performance metrics is

only feasible by considering identical backhaul reliability and

identical fading channels for the K transmitter links but non-

identical frequency selective fading channels for the relay-to-

destination and relay-to-eavesdropper links. This assumption

is generalized to non-identical backhaul reliability and non-

identical frequency selective fading channels across all the

links when we analyze the asymptotic limits of the secrecy

performance in the high SNR region.
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FλDF(x) = 1− (1− FλR(x))(1 − FλD(x))

= 1−
K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l
e
−x

(

β+ 1
PRα̃f

)

xl̄+l

= 1− F̃λDF(x). (14)

A. Identical Backhaul Reliability

From Eqs. (14) and (15), we present the following secrecy

performance analysis for cooperative CP-SC with identical

backhaul reliability.

1) Secrecy Outage Probability: The secrecy outage occurs

when a cluster of eavesdroppers can infer data transmission,

so that perfect secrecy is compromised [29]. At a given secure

rate R, the secrecy outage probability is given by [29]

Pout = Pr(Cs < R)

=

∫ ∞

0

FλDF(22R(1 + x)− 1)fλE,max(x)dx (20)

where an instantaneous secrecy rate is denoted by Cs. The

instantaneous capacity of the main relaying channel is given

by log2(1 + λDF), whereas an instantaneous capacity of the

channels between the relay node and a cluster of eavesdroppers

is given by log2(1 + λE,max). According to these two instan-

taneous capacities, the instantaneous secrecy rate is defined as

[27]–[30]

Cs =
1

2

[

log2(1 + λDF)− log2(1 + λE,max)
]+

(21)

where [x]+ denotes max{0, x}. Now using (14) and (15), a

closed-form expression for (20) is provided in the following

theorem.

Theorem 2: The secrecy outage probability of a finite-

sized cooperative CP-SC system with an identical backhaul

reliability but non-identical frequency selective fading is given

by (22) at the top the next page. In (22), we define JR
△
=22R.

Proof: With the help of (14) and (15), (22) can be readily

derived.

Note that this theorem provides an analytical framework to

aid the outage probability evaluation/design of a finite-sized

cooperative CP-SC system in terms of key design parameters

such as transmitter cooperation, number of eavesdroppers,

frequency selectivity, and backhaul reliability.

2) The Probability of Non-Zero Achievable Secrecy Rate:

The probability of non-zero achievable secrecy rate is given

by [27], [30]

Pr(Cs > 0) =

∫ ∞

0

F̃λDF(x)fλE,max(x)dx (23)

which is evaluated as (24) at the top of the next page. Note

that F̃λDF(x) in (23) is easily extracted from (14).

3) Ergodic Secrecy Rate: The ergodic secrecy rate is given

by [27]

C̄s =
1

2 log(2)

∫ ∞

0

FλE,max(x)

1 + x
(F̃λDF(x))dx. (25)

Note that (25) can be obtained by averaging an instantaneous

secrecy capacity over SNRs λDF and λE,max. Upon applying

the expressions for FλE,max(x) and F̃λDF(x) into (25), we

can derive the corresponding closed-form expression in the

following theorem.

Theorem 3: The ergodic secrecy rate of a finite-sized coop-

erative CP-SC system connected to the CU via unreliable back-

hauls and non-identical frequency selective fading channels at

the relay and eavesdroppers is given by (26) at the middle

of the next page. In (26), Ψ(a, b; z) = 1
Γ(a)

∫∞

0
e−ztta−1(1 +

t)b−a−1dt denotes the confluent hypergeometric function [41,

eq. (9.211/4)].

Proof: Since a proof of this theorem can be readily

derived via [30], a detailed proof is not provided.

To obtain further insights, we derive asymptotic secrecy outage

probability, probability of non-zero achievable secrecy rate,

and secrecy ergodic rate when the backhauls are completely

perfect in their connections.

4) Asymptotic Performance of the System with Completely

Perfect Backhauls: Asymptotic secrecy outage probability,

probability of non-zero achievable secrecy rate, and secrecy

ergodic rate with completely perfect backhauls are given by

the following theorem.

Theorem 4: For non-identical frequency selective fad-

ing channels and completely perfect backhaul connections,

asymptotic secrecy outage probability, probability of non-zero

achievable secrecy rate, and ergodic secrecy rate are given by

(27), (28), and (29), respectively. In (27), (28), and (29), we

define

β̃
△
=

n∑

t=1

1

P̃qt

, l̃
△
=

n∑

t=1

rt,

and

Ξ
△
=

2N∑

n=1

(−1)n
2N−n+1∑

q1=1

· · ·
2N∑

qn=qn−1+1

L3,q1
−1

∑

r1=0

· · ·

L3,qn−1
∑

rn=0

n∏

t=1

( 1

rt!(P̃qt)
rt

)

. (30)

Proof: See Appendix D.

From this theorem, the secrecy diversity gain can be seen as:

Gd = min
( K∑

k=1

Lh,k, Lf

)

. (31)

Thus, only the multipath diversity gain can be achievable by

the employed SC protocol; that is, transmitter cooperation has

no effect on the diversity gain. In addition, this multipath gain



6

Pout =1−
K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l

l̄+l∑

v=0

(
l̄+ l

v

)

(JR − 1)l̄+l−vJv
Re

−(JR−1)
(

β+ 1
PRα̃f

)

Φ
[

l̃Γ(v + l̃)

(

β̃ + JRβ +
JR
PRα̃f

)−v−l̃

− β̃Γ(v + l̃ + 1)

(

β̃ + JRβ +
JR
PRα̃f

)−v−l̃−1 ]

. (22)

Pr(Cs > 0) =

K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l

Φ
[

l̃Γ(l̄ + l + l̃)

(

β̃ + β +
1

PRα̃f

)−l̄−l−l̃

− β̃Γ(l̄ + l + l̃ + 1)

(

β̃ + β +
1

PRα̃f

)−l̄−l−l̃−1 ]

. (24)

C̄s =
1

2 log(2)

K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

)Lf−1
∑

l=0

1

l!(PRα̃f )l

[

Γ(l̄ + l + 1)Ψ

(

l̄+ l + 1, l̄ + l+ 1;β +
1

PRα̃f

)

−ΦΓ(l̄+ l + l̃ + 1)Ψ

(

l̄+ l + l̃ + 1, l̄+ l + l̃ + 1; β̃ + β +
1

PRα̃f

)]

. (26)

P as
out =







Ξ
∑L̃h,k

u=0 (L̃h,k
u )(JR−1)L̃h,k−uJu

R

(P̄ α̃h,k)
L̃h,k

∏

K
k=1

(Lh,k)!

(
l̃Γ(u+l̃)

β̃u+l̃
− β̃Γ(u+l̃+1)

β̃u+l̃+1

)

when Lf > L̃h,k,

Ξ
∑Lf

v=0 (
Lf
v )(JR−1)Lf−vJv

R

(PRα̃f )
Lf (Lf )!

(
l̃Γ(v+l̃)

β̃v+l̃
− β̃Γ(v+l̃+1)

β̃v+l̃+1

)

when Lf < L̃h,k,

Ξ
∑L̃h,k

u=0 (L̃h,k
u )(JR−1)L̃h,k−uJu

R

(P̄ α̃h,k)
L̃h,k

∏

K
k=1

(Lh,k)!

(
l̃Γ(u+l̃)

β̃u+l̃
− β̃Γ(u+l̃+1)

β̃u+l̃+1

)

+
Ξ
∑Lf

v=0 (
Lf
v )(JR−1)Lf−vJv

R

(PRα̃f )
Lf (Lf )!

(
l̃Γ(v+l̃)

β̃v+l̃
− β̃Γ(v+l̃+1)

β̃v+l̃+1

)

when Lf = L̃h,k.

(27)

Pras(Cs > 0) =







1− Ξ

(P̄ α̃h,k)
L̃h,k

∏

K
k=1

(Lh,k)!

(

l̃Γ(L̃h,k+l̃)

β̃L̃h,k+l̃
− β̃Γ(L̃h,k+l̃+1)

β̃L̃h,k+l̃+1

)

when Lf > L̃h,k,

1− Ξ

(PRα̃f )
Lf (Lf )!

(

l̃Γ(Lf+l̃)

β̃Lf+l̃
− β̃Γ(Lf+l̃+1)

β̃Lf+l̃+1

)

when Lf < L̃h,k,

1− Ξ

(P̄ α̃h,k)
L̃h,k

∏

K
k=1

(Lh,k)!

(

l̃Γ(L̃h,k+l̃)

β̃L̃h,k+l̃
−

β̃Γ(L̃h,k+l̃+1)

β̃L̃h,k+l̃+1

)

− Ξ

(PRα̃f )
Lf (Lf )!

(

l̃Γ(Lf+l̃)

β̃Lf+l̃
−

β̃Γ(Lf+l̃+1)

β̃Lf+l̃+1

)

when Lf = L̃h,k.

(28)

C̄as
s =

1

2 log(2)

K∑

k=1

Υ(−1)k
k∏

t=1

(
1

ℓt!(P̄ α̃h,qt)
ℓt

)Lf−1
∑

l=0

1

l!(PRα̃f )l

(

β +
1

PRα̃f

)−(l̄+l)

Γ(l̄ + l + 1)

[ψ(l̄ + l)− ψ(l̄ + l+ 1)] +
1

2 log(2)
ΞΓ(l̃ + 1)Ψ(l̃+ 1, l̃ + 1; β̃). (29)
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also affects the convergence speed of the non-zero achievable

secrecy rate to Pr(Cs > 0) = 1 [30]. In the following,

we relax the identical backhaul reliability condition in the

asymptotic performance analysis to investigate an exclusive

effect of backhaul reliability on the secrecy performance.

B. Asymptotic Secrecy Performance Analysis for Non-

identical Backhaul Reliability and Frequency Selective Fading

Channel

At a fixed received SNR of the eavesdropping channels,

the existence of limits on the secrecy outage probability and

probability of non-zero achievable secrecy rate is inevitable

with unreliable backhauls, which is given by the following

theorem.

Theorem 5: For frequency selective fading channels and

at a fixed received SNR of the eavesdropping links, an

asymptotic secrecy outage probability limit and an asymptotic

limit on the probability of non-zero achievable secrecy rate

are, respectively, given by

P as,L
out =

K∏

k=1

(1− sk) and (32)

Pras,L(Cs > 0) = 1−
K∏

k=1

(1− sk). (33)

In addition, the asymptotic ergodic secrecy rate is given

by (34) at the top of the next page.

Proof: See Appendix E.

Note that from this theorem we can see that only a set of back-

haul reliability levels, {sk}, exclusively determines asymptotic

limits on the secrecy outage probability and probability of non-

zero achievable secrecy rate. As a special case, for an identical

backhaul reliability s, asymptotic performance limits are given

by P as,L
out = (1−s)K and Pras,L(Cs > 0) = 1− (1−s)K. As

sk → 1,∀k, we can see P as,L
out → 0 and Pras,L(Cs > 0) → 1,

which corresponds to the conventional system with transmitter

cooperation and completely perfect backhauls in their connec-

tions. This theorem shows that a lower secrecy outage occurs

as the backhaul reliability increases, and Pr(Cs > 0) = 1 is

not achievable when the backhaul connections are not com-

pletely perfect in transporting data. In contrast with existing

results for perfect backhauls in [24] and [30], we see that

the asymptotic diversity gain promised by cooperative CP-SC

transmission is not attainable in frequency selective fading

channels with imperfect backhauls. However, from the link

simulations, we find that a faster convergence speed arriving

at these limits can be obtained in proportional to the achievable

diversity gain by the CP-SC transmission. Note that compared

with the secrecy outage probability and probability of non-zero

achievable secrecy rate, there is no limit on the asymptotic

secrecy ergodic rate in (34) due to the presence of sk∗ in Φ
as defined in (16).

V. SIMULATION RESULTS

In the following link simulations, we apply quadrature

phase-shift keying (QPSK) modulation to the data symbols.

The curves obtained via link-level simulations are denoted

by Ex whereas analytically derived curves are denoted by

An. For notational purpose, limits on asymptotic secrecy

performance metrics under unreliable backhauls are denoted

by P as,L
out and P as,L

r (Cs > 0), whereas analytic secrecy

performance metrics under completely perfect backhauls are

denoted by P∞
out, P

∞
r (Cs > 0), and C̄∞

s . The block size is

B = 64, P̄ = 1, and PR = χRP̄ with 0 < χR < 1. We

consider the following scenarios to highlight the impacts of

key design parameters of a finite-sized CP-SC system on the

secrecy performance.

• S1: sk = 0.99, Lh,k = {2, 3}, Lf = 2, Lj,n,k = {1, 2},

Lg,n = {2, 3}, χR = 0.1.

• S2: sk = 0.80, Lh,k = {1, 3}, Lf = 2, Lj,n,k = {1, 2},

Lg,n = {2, 3}, χR = 0.1.

• S3: sk = 0.90, Lh,k = {1, 3, 1}, Lj,n,k = {1, 2, 1},

Lg,n = {2, 3, 2}, χR = 0.1.

• S4: sk = 0.90, Lh,k = {3, 5, 3}, χR = 0.1.

• S5: sk = {0.9, 0.95, 0.97}, Lh,k = {1, 3, 3}, Lf = 2,

Lj,n,k = {1, 2, 1}, Lg,n = {2, 3, 2}, χR = 0.1.

• S6: sk = {0.8, 0.85, 0.87}, Lh,k = {1, 3, 3}, Lf = 2,

Lj,n,k = {1, 2, 1}, Lg,n = {2, 3, 2}, χR = 0.1.

• S7: K = 3, Lh,k = {1, 3, 3}, Lj,n,k = {1, 2, 1}, Lg,n =
{2, 3, 2}, χR = 0.1.

A. Identical Backhaul Reliability but Non-Identical Frequency

Selective Fading Channel

5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

P̄ /σ2
n [dB]

P
ou
t

 

 

Ex : K = 1,S1
An : K = 1,S1
An : K = 2,S1
P∞
out : K = 1,S1

P∞
out : K = 2,S1

An : K = 1,S2
P∞
out : K = 1,S2

P as,L
out : K = 1,S1

P as,L
out : K = 2,S1

P as,L
out : K = 1,S2

Fig. 2. Secrecy outage probability for various scenarios for N = 2 at a fixed
value of PRαg,n.

We first verify the accuracy of the analytically derived

secrecy outage probability in scenario S1. We can see good

agreement between the analytical curves and the link-level

simulations. For scenarios S1, and S2, Fig. 2 shows the secrecy

outage probability in terms of transmitter cooperation and

backhaul reliability. We can see that increasing the transmitter

cooperation results in less frequent secrecy outages due to

a higher received signal power at the destination. For non-

identical frequency selective fading, we can also evaluate the
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C̄as,L
s =

1

2 log(2)

K∑

k=1

Υ(−1)k
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l

(

β +
1

PRα̃f

)−(l̄+l)

Γ(l̄ + l + 1)

[ψ(l̄ + l)− ψ(l̄ + l + 1)] +
1

2 log(2)

(

1−
K∏

k=1

(1− sk)

)

ΦΓ(l̃ + 1)Ψ(l̃+ 1, l̃ + 1; β̃). (34)

secrecy outage probability limits as α̃h,k → ∞ and α̃f → ∞.

For scenario S1, they are, respectively, given by P as,L
out = 0.01

and P as,L
out = 0.0001 for K = 1 and K = 2, which are

exclusively determined by backhaul reliability sk = 0.99 inde-

pendent of other parameters. For a lower backhaul reliability,

sk = 0.8, we observe the existence of a higher limit on the

secrecy outage probability, P as,L
out = 0.2. We can verify that

under completely perfect backhaul connections, the outage

diversity gain is Gd = min
(
∑K

k=1 Lh,k, Lf

)

by measuring

the slope on a log − log plot. For example, for scenario S1,

the diversity gain is Gd = 2 for K = 1 and K = 2, since Lf

dominates min
(
∑K

k=1 Lh,k, Lf

)

. Since min
(

Lh,1, Lf

)

= 1

for scenario S2, only Gd = 1 can be achieved by the system.

Interestingly, we observe that the secrecy outage probability

under unreliable backhauls approaches the asymptotic limit

with perfect backhaul connections when σ2
n is large, whereas

the secrecy outage probability approaches the asymptotic limit

with imperfect backhaul when σ2
n is small. As such, we can

classify the operating region into two sub-regions based on

the magnitude of σ2
n. In the imperfect backhaul sub-region,

the multipath diversity gain is not achievable, whereas in the

perfect backhaul sub-region, the multipath diversity gain is

achievable. The boundary between the two sub-regions de-

pends on the multipath diversity gain and backhaul reliability.

5 10 15 20 25 30

10
−2

10
−1

10
0

P̄ /σ2
n [dB]

P
ou
t

 

 
An : Lf = 2, L = 3
P∞
out : Lf = 2, L = 3

An : Lf = 2, L = 2
P∞
out : Lf = 2, L = 2

An : Lf = 4, L = 2
P∞
out : Lf = 4, L = 2

P as,L
out

Fig. 3. Secrecy outage probability for various scenarios for K = 2 at a fixed
value of PRαg,n.

In Fig. 3, for a fixed transmitter cooperation (K = 2) and

scenario S3, we investigate the effects of Lf and N on the

secrecy outage probability. For the same value of Lf , a larger

N results in a higher secrecy outage probability due to more

severe eavesdropping. From the asymptotic curves, we note

that a different value of N has no effect on the slope of the

curves since the diversity gain is independent of N . We can

also observe that if we increase Lf , then a lower secrecy

outage probability is obtained. However, as σn decreases,

multipath diversity effect decreases due to detrimental effect

from unreliable backhauls.

5 10 15 20 25 30
0.6

0.65
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0.75

0.8

0.85

0.9

0.95

1

P̄ /σ2
n [dB]

P
r
(C

s
>

0
)

 

 

An : K = 1, Lf = 2, N = 3
An : K = 2, Lf = 2, N = 3
An : K = 3, Lf = 2, N = 3
Ex : K = 1, Lf = 2, N = 3
An : K = 1, Lf = 4, N = 2
P∞
r (Cs > 0) : K = 1, Lf = 2, N = 3

P as,L
r (Cs > 0) : K = 1, Lf = 2, N = 3

P as,L
r (Cs > 0) : K = 2, Lf = 2, N = 3

Fig. 4. Probability of non-zero achievable secrecy rate for various scenarios
at a fixed value of PRαg,n.

In Fig. 4, we illustrate the probability of non-zero achievable

secrecy rate for scenario S3. We can see the joint effect of the

number of eavesdroppers, number of transmitters, frequency

selectivity over the channels between the transmitters and the

relay, and backhaul reliability. In Fig. 5, we investigate the

effects of frequency selectivity on the convergence time of

the probability of non-zero achievable secrecy rate at fixed

N = 3 and sk = 0.9 for scenario S4. From Figs. 4 and 5, we

can observe the following facts:

• The probability of non-zero achievable secrecy rate in-

creases with increasing number of transmitters due to the

increased power at the destination.

• The probability of non-zero achievable secrecy rate de-

creases with increasing number of eavesdroppers. How-

ever, as σ2
n decreases (or α̃h,k and α̃g,n increases),

difference between them becomes unnoticeable and in-

dependent of the parameters except backhaul reliability

and transmitter cooperation.

• If backhauls are not perfect in transporting data, Pr(Cs >
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K = 2 , Lj,n,k = {1 , 2 , 1}, Lg,n = {2 , 3 , 2}, Lf = 4

K = 3 , Lj,n,k = {1 , 2 , 1}, Lg,n = {2 , 3 , 2}, Lf = 4

K = 2 , Lj,n,k = {1 , 2 , 1}, Lg,n = {2 , 3 , 2}, Lf = 5

K = 3 , Lj,n,k = {1 , 2 , 1}, Lg,n = {2 , 3 , 2}, Lf = 5

K = 2 , Lj,n,k = {3 , 4 , 3}, Lg,n = {4 , 5 , 4}, Lf = 5

K = 3 , Lj,n,k = {3 , 4 , 3}, Lg,n = {4 , 5 , 4}, Lf = 5

Fig. 5. Convergence time analysis of the probability of non-zero achievable

secrecy rate arriving at 99% of asymptotic limits P
as,L
out

for various scenarios
at a fixed PRαg,n. In this figure, ⋆, �, and � denote boundary points starting

Pout ≥ 0.99P
as,L
out

.

0) = 1 is not achievable. Asymptotically, it approaches

the secrecy limit on the probability of non-zero achievable

secrecy rate. This limit is mainly determined by backhaul

reliability. For instance, for scenarios S3 and S4, we

have Pras,L(Cs > 0) = 1 − (1 − sk)
K for transmitter

cooperation K and backhaul reliability sk.

• As min(
∑K

k=1 Lh,k, Lf) increases, a faster convergence

time is obtained in arriving at the 99% of the asymptotic

limit on the non-zero achievable secrecy rate. For exam-

ple, min(
∑2

k=1 Lh,k, Lf = 5) has a slower convergence

time than min(
∑2

k=1 Lh,k, Lf = 4). Also, as transmitter

cooperation increases, a slower convergence time can be

observed. Thus, the conventional diversity gains promised

by CP-SC transmission is shown to affect the convergence

time for arriving at the performance limits.

In Fig. 6, we first verify the accuracy of the derived ergodic

secrecy rate for a particular scenario S3. In addition, this

figure shows the ergodic secrecy rate for various values of

backhaul reliability comparing with that of the system having

completely perfect backhaul connections. As σ2
n decreases, a

bigger gap can be observed since backhaul reliability influ-

ences the performance. We also observe that the gap between

the curves decreases as backhaul reliability increases. That is,

a more reliable backhaul results in a higher ergodic secrecy

rate.

B. Non-Identical Backhaul Reliability

Fig. 7 shows the empirical secrecy outage probability and

its asymptotic limit for non-identical backhaul reliability in

scenarios S5 and S6. Based on the asymptotic limit of the

secrecy outage probability derived in Theorem 5, we see that

the empirical secrecy outage probability approaches its limit

specified by P as,L
out =

∏K
k=1(1 − sk). We can see that for
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C̄∞

s : K = 2,S3

Fig. 6. Ergodic secrecy rate for various scenarios at a fixed PRαg,n.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

P̄ /σ2
n [dB]

P
ou
t

 

 

Ex : K = 1,S5
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P as,L
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Fig. 7. Secrecy outage probability for various scenarios at fixed PRαg and
N = 2 with Lg = 1.

scenario S5, P as,L
out is 5 × 10−3 and 1.4× 10−4, respectively,

for K = 2 and K = 3.

In Fig. 8, we use the same scenarios as in Fig. 7. It can be

readily seen that the derived asymptotic limit on the probability

of non-zero achievable secrecy rate is correct and exclusively

determined by backhaul reliability. That is, Pras,L(Cs > 0) =
1−

∏K
k=1(1− sk)

K .

In Fig. 9, we plot the ergodic secrecy rate with its asymp-

totic ergodic secrecy rate for scenario S7 with non-identical

backhaul reliability and different values of Lf . We can see

that as σ2
n decreases, the difference between the ergodic

secrecy rate and its asymptotic ergodic secrecy rate becomes

negligible. As in Fig. 6, a higher diversity gain, which is

mainly determined by the multipath gain, a higher ergodic

secrecy rate can be achieved. Moreover, a higher backhaul

reliability can result in a higher diversity gain. It is also
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Fig. 8. Probability of non-zero achievable secrecy rate for various scenarios
at a fixed PRαg .

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

P̄ /σ2
n [dB]

C̄
s

 

 
C̄as
s , Lf = 2, sk = 0.8

Ex : Lf = 2, sk = 0.8
C̄as
s , Lf = 4, sk = 0.8

Ex : Lf = 4, sk = 0.8
C̄as
s , Lf = 4, sk = 0.7

Ex : Lf = 4, sk = 0.7
C̄∞
s , Lf = 4

Ex : Lf = 4

12 14 16 18
2.5

3

3.5

Fig. 9. Ergodic secrecy rate for various scenarios at a fixed PRαg .

observed that perfect backhaul connections result in a higher

ergodic secrecy rate over the system with unreliable backhaul

connections.

VI. CONCLUSIONS

In this paper, the impact of unreliable backhauls has been

examined for finite-sized cooperative single carrier systems

coexisting with multiple passive eavesdroppers. Taking into

account backhaul reliability, we have derived the distributions

of the end-to-end SNR of the main relaying channel under

non-identical frequency selective fading channel across the

relay and destination nodes in the system. Based on this

derivation, we have derived secrecy performance metrics such

as the secrecy outage probability, probability of non-zero

achievable secrecy rate, and ergodic secrecy rate. For these

derivations, we have first verified their accuracy. We have

also derived the corresponding asymtotic performance metrics.

Specifically, we have shown that irrespective of the system

configuration parameters and frequency selective fading, single

carrier systems display a secrecy outage probability limit

which is exclusively determined by the backhaul reliability. It

has been seen that the conventional promised diversity gain by

single carrier system only affects the convergence time arriving

at these asymptotic secrecy performance limits.

APPENDIX A: DERIVATION OF PROPOSITION 1

From the definition of the random variable λR, we can recall

that

λR = max
k=1,...,K

(
IkP̄ α̃h,k‖hk‖

2
)

(A.1)

where P̄ α̃h,k‖hk‖
2 ∼ χ2(2Lh,k, P̄ α̃h,k). In (A.1), one par-

ticular random variable IkP̄ α̃h,k‖hk‖2 has the following PDF

f
IkP̄ α̃h,k‖hk‖2(x) = (1 − sk)δ(x) +

sk
Γ(Lh,k)(P̄ α̃h,k)Lh,k

xLh,k−1e−x/P̄ α̃h,k (A.2)

where δ(·) denotes the Dirac delta function and CDF

FIkP̄ α̃h,k‖hk‖2(x) =

∫ x

0

fIkP̄ α̃h,k‖hk‖2(y)dy

= 1−
skΓ(Lh,k, x/P̄ α̃h,k)

Γ(Lh,k)
. (A.3)

With some manipulations, we can have the (CDF) of λR =
maxk=1,...,K

(
IkP̄ α̃h,k‖hk‖

2
)

as follows:

FλR(x) =

K∏

k=1

F
IkP̄ α̃h,k‖hk‖2(x)

=

K∏

k=1

(

1−
skΓ(Lh,k, x/P̄ α̃h,k)

Γ(Lh,k)

)

= 1 +
K∑

k=1

K−k+1∑

q1=1

K−k+2∑

q2=q1+1

· · ·
K∑

qk=qk−1+1

(−1)k

k∏

t=1

(
sqtΓ(Lh,qt , x/P̄ α̃h,qt)

Γ(Lh,qt)

)

. (A.4)

Substituting the series expansion of the upper incomplete

gamma function [41, eq. 8.352/2] results in

FλR(x) = 1 +

K∑

k=1

K−k+1∑

q1=1

K−k+2∑

q2=q1+1

· · ·
K∑

qk=qk−1+1

(−1)k

( k∏

t=1

sqt

)

e
−

∑k
t=1

x
P̄ α̃h,qt

k∏

t=1

( Lh,qt
−1

∑

ℓ=0

xℓ

ℓ!(P̄ α̃h,qt)
ℓ

)

= 1 +

K∑

k=1

Υ(−1)k
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

)

e
−

∑

k
t=1

x
P̄ α̃h,qt x

∑k
t=1

ℓt (A.5)
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where we define the summation over all combinations of links

and channel lengths between the transmitters and the relay

node as

Υ =
K−k+1∑

q1=1

K−k+2∑

q2=q1+1

· · ·
K∑

qk=qk−1+1

Lh,q1
−1

∑

ℓ1=0

Lh,q2
−1

∑

ℓ2=0

· · ·

Lh,qk
−1

∑

ℓk=0

(A.6)

following the same steps as in [37].

APPENDIX B: DERIVATION OF THEOREM 1

We first express FλR(x) alternatively as

FλR(x) = 1−
K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

)

e−βxxl̄

= 1− J1 (B.1)

where

J1
△
=

K∑

k=1

Υ(−1)k+1
k∏

t=1

(
sqt

ℓt!(P̄ α̃h,qt)
ℓt

)

e−βxxl̄. (B.2)

Since λD ∼ χ2(2Lf , PRα̃f ), 1− FλD(x) is given by

1− FλD(x) = e−x/PRα̃f

Lf−1
∑

l=0

1

l!

( x

PRα̃f

)l
. (B.3)

Now using (B.1) and (B.3), we can yield (14).

APPENDIX C: DERIVATION OF PROPOSITION 2

The CDF of λE,max in (10) is given by

FλE,max(x) =

N∏

n=1

FλE,n,1(x)FλE,n,2 (x) (C.1)

where

FλE,n,1 (x) =1− sk∗e
− x

P̄ α̃j,n,k∗

Lj,n,k∗−1
∑

r=0

1

r!

( x

P̄ α̃j,n,k∗

)r

(C.2)

is the CDF of the received SNR from the transmitters to the

eavesdroppers and

FλE,n,2 (x) = 1− e
− x

PRα̃g,n

Lg,n−1
∑

r̃=0

1

r̃!

( x

PRα̃g,n

)r̃

(C.3)

is the CDF of the received SNR from the relay to the

eavesdroppers. We can re-express (C.1) according to

FλE,max(x)
△
=

2N∏

n=1

FλE,n,3(x) (C.4)

where we have combined FλE,n,1 (x) and FλE,n,2 (x) as

FλE,n,3 (x) =1− s̃ne
− x

P̃n

L3,n−1
∑

r=0

1

r!

( x

P̃n

)r

(C.5)

with s̃n,P̃n, and L3,n defined in (17), (18), and (19), respec-

tively. We can expand the product term in (C.4) according to

similar steps shown in Appendix A which results in the CDF

expression in (15), from which the PDF follows directly.

APPENDIX D: DERIVATION OF THEOREM 4

The asymptotic CDFs of λR as α̃h,k → ∞ with perfect

backhaul is given by

FλR(x) =

K∏

k=1

(

1−
Γ(Lh,k, x/P̄ α̃h,k)

Γ(Lh,k)

)

=

K∏

k=1

(

1− e
− x

P̄ α̃h,k

Lh,k−1
∑

ℓ=0

1

ℓ!

(
x

P̄ α̃h,k

)ℓ)

≈
K∏

k=1

1

(Lh,k)!

(
x

P̄ α̃h,k

)Lh,k

(D.1)

where we have used the definition of FλR(x) in (A.4)

with sk = 1. As such, the asymptotic expression for (14)

as α̃h,k, α̃f → ∞ with (D.1) and FλD(x) as FλD(x) ≈
1

(Lf )!

(
x

PRα̃f

)Lf

is given by (D.2) at the top of the following

page where L̃h,k
△
=
∑K

k=1(Lh,k).
Similar to [30], we derive the asymptotic limits for a fixed

received SNR of the eavesdropper links since the eavesdropper

links do not affect the system diversity gain. As such, the CDF

and PDF of λE,max with perfect backhaul, i.e., sk = 1 ∀k, is

given by

FλE,max(x)
△
=1 + Ξe−β̃xxl̃ and

fλE,max(x)
△
=Ξ
[

l̃xl̃−1e−β̃x − β̃xl̃e−β̃x
]

. (D.3)

Applying (D.2) and (D.3) to (20), we can derive the

asymptotic secrecy outage probability as in (27). Likewise, the

asymptotic probability of non-zero secrecy rate is derived by

substituting (D.2) and (D.3) into (23) and solving the resulting

integral which results in (28).

To derive the asymptotic ergodic secrecy capacity, we re-

express (25) with a change of integration order as [30]

C̄s =
1

2 log(2)

∫ ∞

0

[ ∫ x1

0

1 + F ∗
λE,max(x2)

1 + x2
dx2

]

fλDF(x1)dx1

=
1

2 log(2)

[ ∫ ∞

0

log(1 + x1)fλDF(x1)dx1
︸ ︷︷ ︸

Ω1

+

∫ ∞

0

∫ x1

0

F ∗
λE,max(x2)

1 + x2
fλDF(x1)dx2dx1

︸ ︷︷ ︸

Ω2

]

(D.4)

where fλDF(x) is the PDF of the SNR λDF which is the

derivative of (14) given by

fλDF(x) =

K∑

k=1

Υ(−1)k
k∏

t=1

(
1

ℓt!(P̄ α̃h,qt)
ℓt

)

Lf−1
∑

l=0

1

l!(PRα̃f )l

(

(l̄ + l)e
−x

(

β+ 1
PRα̃f

)

xl̄+l−1−

(
β +

1

PRα̃f

)
e
−x(β+ 1

PRα̃f
)
xl̄+l

)

(D.5)

and

F ∗
λE,max(x)

△
=FλE,max(x) − 1 = Ξe−β̃xxl̃. (D.6)
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FλDF(x) ≈







∏K
k=1

1
(Lh,k)!

(
x

P̄ α̃h,k

)Lh,k

when Lf > L̃h,k,

1
(Lf )!

(
x

PRα̃f

)Lf

when Lf < L̃h,k,

1
(Lf )!

(
x

PRα̃f

)Lf

+
∏K

k=1
1

(Lh,k)!

(
x

P̄ α̃h,k

)Lh,k

when Lf = L̃h,k.

(D.2)

Based on (D.2), the asymptotic limit of the first integral can

be evaluated for α̃h,k, α̃f → ∞ as

Ω1 =

∫ ∞

0

log(x1)fλDF(x1)dx1

=

K∑

k=1

Υ(−1)k
k∏

t=1

(
1

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l

∫ ∞

0

log(x1)

(

(l̄ + l)e
−x1

(

β+ 1
PRα̃f

)

xl̄+l−1
1 −

(

β +
1

PRα̃f

)

e
−x1

(

β+ 1
PRα̃f

)

xl̄+l
1

)

dx1

=
K∑

k=1

Υ(−1)k
k∏

t=1

(
1

ℓt!(P̄ α̃h,qt)
ℓt

) Lf−1
∑

l=0

Γ(l̄ + l + 1)

l!(PRα̃f )l

(

β +
1

PRα̃f

)−(l̄+l)[

ψ(l̄ + l)− ψ(l̄ + l + 1)
]

(D.7)

where we solve the integral using [41, eq. 4.352.1]
∫∞

0
xν−1e−µx log xdx = 1

µν Γ(ν)[ψ(ν) − logµ].
Applying a change of integration order, the second integral

is solved for α̃h,k, α̃f → ∞ as

Ω2 =

∫ ∞

0

F ∗
λE,max(x2)

1 + x2
(1− FλDF(x2))dx2

≈

∫ ∞

0

F ∗
λE,max(x2)

1 + x2
dx2

= Ξ

∫ ∞

0

e−β̃xxl̃

1 + x2
dx2 = ΞΓ(l̃ + 1)Ψ(l̃+ 1, l̃+ 1; β̃) (D.8)

where Ψ(a, b; z) = 1
Γ(a)

∫∞

0 e−ztta−1(1 + t)b−a−1dt is the

confluent hypergeometric function [41, eq. (9.211/4)]. Sub-

stituting (D.7) and (D.8) into (D.4) results in the asymptotic

ergodic secrecy capacity in (29).

APPENDIX E: DERIVATION OF THEOREM 5

For the asymptotic limit of the CDF of λDF, we can first

derive the asymptotic CDF of λR in (12) as α̃h,k → ∞

FλR(x) =
K∏

k=1

(

1−
skΓ(Lh,k, x/P̄ α̃h,k)

Γ(Lh,k)

)

≈
K∏

k=1

(1 − sk) (E.1)

since Γ(Lh,k, x/P̄ α̃h,k) ≈ Γ(Lh,k) as α̃h,k → ∞. Thus, the

asymptotic CDF of λD as α̃f → ∞ is given by

FλD(x) = 1− e−x/PRα̃f

Lf−1
∑

l=0

1

l!

( x

PRα̃f

)l

≈
1

(Lf )!

( x

PRα̃f

)Lf

. (E.2)

As such, the asymptotic limit for (14) is given by

FλDF(x) =FλR (x) + FλD(x) − FλR(x)FλD (x)

≈
K∏

k=1

(1− sk) (E.3)

since FλD(x) decays faster than FλR(x) as α̃h,k, α̃f → ∞.

Similarly, as α̃j,n,k∗ → ∞, the CDF of λE,n,1 in (C.5) can

be approximated as

FλE,n,1 (x) ≈ 1− sk∗ (E.4)

since the series expansion of e
− x

P̄ α̃j,n,k∗ =
∑∞

k=0(−x)
k/k!(P̄ α̃j,n,k∗)k and the summation of

∑Lj,n,k∗−1
r=0

1
r!

(
x

P̄ α̃j,n,k∗

)r

are both dominated by their

first terms which is equal to 1. As α̃g,n → ∞, the CDF of

λE,n,2 in (C.3) can be approximated as

FλE,n,2 (x) = 1− e
− x

PRα̃g,n

Lg,n−1
∑

r̃=0

1

r̃!

( x

PRα̃g,n

)r̃

≈
1

(Lg,n)!

( x

PRα̃g,n

)Lg,n

(E.5)

As such, the asymptotic limit of the CDF of λE,max in (17)

is given by

FλE,max(x) =

N∏

n=1

FλE,n,1(x)FλE,n,2 (x)

≈
(1 − sk∗)N

((Lg,n)!)N
∏N

n=1 α̃
Lg,n
g,n

( x

PR

)N(Lg,n)

(E.6)

as α̃j,n,k∗ , α̃g,n → ∞.

Applying (E.6) and (E.3) to the derivations of the secrecy

outage probability results in

P as
out =

∫ ∞

0

FλDF(22R(1 + x)− 1)fλE,max(x)dx

=

K∏

k=1

(1 − sk) (E.7)

since fλE,max(x) decays faster than FλDF(x).
Likewise, the asymptotic probability of non-zero secrecy

rate is derived as

Pr(Cs > 0) = 1−

∫ ∞

0

FλDF(x)fλE,max (x)dx

= 1−
K∏

k=1

(1− sk). (E.8)
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The asymptotic ergodic secrecy capacity is evaluated as

C̄s =
1

2 log(2)

[ ∫ ∞

0

log(x1)fλDF(x1)dx1
︸ ︷︷ ︸

Ω3

+

∫ ∞

0

F ∗
λE,max(x2)

1 + x2
(1− FλDF(x2))dx2

︸ ︷︷ ︸

Ω4

]

(E.9)

where

Ω3 =

K∑

k=1

Υ(−1)k
k∏

t=1

( sqt
ℓt!(P̄ α̃h,qt)

ℓt

) Lf−1
∑

l=0

1

l!(PRα̃f )l

∫ ∞

0

log(x1)

(

(l̄ + l)e
−x
(
β+ 1

PRα̃f

)

xl̄+l−1−

(
β +

1

PRα̃f

)
e
−x
(
β+ 1

PRα̃f

)

xl̄+l

)

dx1

=

K∑

k=1

Υ(−1)k
k∏

t=1

( sqt
ℓt!(P̄ α̃h,qt)

ℓt

)
Lf−1
∑

l=0

Γ(l̄ + l+ 1)

l!(PRα̃f )l

(
β +

1

PRα̃f

)−(l̄+l)
[ψ(l̄ + l)− ψ(l̄ + l + 1)] (E.10)

and

Ω4 =

∫ ∞

0

F ∗
λE,max(x2)

1 + x2

(

1−
K∏

k=1

(1 − sk)
)

dx2

=
(

1−
K∏

k=1

(1− sk)
)

ΦΓ(l̃ + 1)Ψ(l̃+ 1, l̃ + 1; β̃). (E.11)
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