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Abstract

Fast iterative shrinkage/thresholding algorithm (FISTA) is one of the most commonly used
methods for solving linear inverse problems. In this work, we present a scheme that enables
learning of optimal thresholding functions for FISTA from a set of training data. In par-
ticular, by relating iterations of FISTA to a deep neural network (DNN), we use the error
backpropagation algorithm to find thresholding functions that minimize mean squared error
(MSE) of the reconstruction for a given statistical distribution of data. Accordingly, the
scheme can be used to computationally obtain MSE optimal variant of FISTA for performing
statistical estimation.
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Abstract— Fast iterative shrinkage/thresholding algorithm
(FISTA) is one of the most commonly used methods for solving
linear inverse problems. In this work, we present a scheme that en-
ables learning of optimal thresholding functions for FISTA from a
set of training data. In particular, by relating iterations of FISTA
to a deep neural network (DNN), we use the error backpropaga-
tion algorithm to find thresholding functions that minimize mean
squared error (MSE) of the reconstruction for a given statistical
distribution of data. Accordingly, the scheme can be used to com-
putationally obtain MSE optimal variant of FISTA for performing
statistical estimation.

1 Introduction

We consider a linear inverse problem y = Hx + e, where the
goal is to recover the unknown signal x € RY from the noisy
measurements y € R The matrix H € RM*¥ is known and
models the response of the acquisition device, while the vector
e € RM represents unknown errors in the measurements.

Many practical inverse problems are ill-posed, which means
that measurements y cannot explain the signal x uniquely. One
standard approach for solving such problems is the regularized
least-squares estimator

~ . 1
x:argmm{2|y—Hx?2 +R(x)}, (1)

x€RN
where R is a regularizer that imposes prior constraints in order
to promote more meaningful solutions.

Two common approaches for solving the optimization
problem (1) is the iterative shrinkage/thresholding algorithm
(ISTA) [1-3] and its accelerated variant called fast ISTA
(FISTA) [4]. Both algorithms can be expressed as

St — thl + ((1 _ Qt—l)/Qt) (thl _ Xt72)
x prox,p (st —~HT (Hs' — y)) ,

(2a)
(2b)

with the initial condition x° = x~! = x,;, € RY. The pa-
rameter v > 0 is a step-size that is often set to v = 1/L
with L £ /\max(HTH) to ensure convergence and parameters
{Qt}te[o,l,...] are called relaxation parameters [4]. For a fixed
gt = 1, iteration (2) corresponds to ISTA, which has O(1/t)
global rate of convergence; however, for an appropriate selec-
tion of {q;}se[o,1,...] as in [4] one obtains FISTA, which has
a faster O(1/t?) convergence rate. When the regularizer R is
separable and acts in an identical manner in every data dimen-
sion, the proximal operator in (2b) reduces to a scalar nonlin-
earity

Ty (2) = prox,z (2) (3a)

£ argmin {1(91: -2)%+ WR(:C)} , (3b)
z€ER 2

applied individual to each component of the input vector.

Traditionally, the regularizer R and the corresponding prox-
imal operator (3) are manually designed to preserve or promote
certain properties in the solution. For example, ¢;-norm penalty
R(x) = |x|l¢, is known to promote sparse solutions in (1),
and has proved to be successful in a wide range of applications
where signals are naturally sparse [5,6]. One popular approach
for designing regularizers comes from Bayesian theory, where
'R is selected according to the prior statistical distribution py of
x as R(x) = — log(px(x)), with the resulting estimator called
the maximum a posteriori probability (MAP) estimator. From
this statistical perspective, £1-norm penalty is often interpreted
as a MAP estimator corresponding to the Laplace distribution.
However, it has been shown that the MAP-based approach for
designing proximals is suboptimal due to surprisingly poor per-
formance of the resulting estimators in terms of mean squared
error (MSE) [7, 8]. On the other hand, recent results have also
showed that minimum MSE (MMSE) statistical estimator can
also be expressed as a solution of (1), where R does not neces-
sarily correspond to the negative logarithm of py [9-11].

In this work, we propose a data-driven scheme for com-
putationally learning MSE optimal nonlinearity 7 for FISTA
from a set of L training examples of true signals {Xg}ge[lr_ﬂ[/]
and measurements {yy} ¢e(1,...,L)- Specifically, we interpret it-
erations of FISTA as layers of a simple deep neural network
(DNN) [12] and develop an efficient error backpropagation al-
gorithm that allows to recover optimal 7 directly from data.
Thus, for a large number of independent and identically dis-
tributed (i.i.d.) realizations of {x¢, y¢}¢e[1,..., ], the trained al-
gorithm can be interpreted as MMSE variant of FISTA for a
given statistical distribution of the signal and measurements.

Several other works have considered relating iterative algo-
rithms to deep neural networks. For example, the learning
scheme presented here extends the one in our recent paper [13]
to FISTA, and thus improves the convergence properties of the
trained algorithm. In the context of sparse coding, Gregor and
LeCun [14] proposed to accelerate ISTA by learning the ma-
trix H from data. The idea was further refined by Sprechmann
et al. [15] who considered an unsupervised learning approach
and incorporated a structural sparsity model for the signal. In
the context of the image deconvolution problem, Schmidt and
Roth [16] proposed a scheme to jointly learn iteration depen-
dent dictionaries and thresholds for ADMM. Similarly, Chen
et al. [17] proposed to parametrize nonlinear diffusion models,
which are related to the gradient descent method, and learned
the parameters given a set of training images. One distinction
of our work is that we optimize for the same nonlinearity across
iterations, which in turn allows us to interpret the algorithm as
the MSE optimal FISTA for a given distribution of data.
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Figure 1: Visual representation of a single layer of the feedforward neural net-
work, which also corresponds to a single iteration of FISTA. We use such lay-
ered representation of FISTA to obtain an error backpropagation algorithm for
optimizing the scalar nonlinearity ¢ by comparing the outputs x " after T" iter-
ations against the true signal x from a set of training examples.

2 Main Results

By define a matrix S £ I —~+H"H, a vector b £ yHT,

parameters p; = (1 —¢q;_1)/q:» as well as nonlinearity

©(-) £ T,(-), we can re-write FISTA as follows
z' S ((1—p)x" "+ wx'"?)+b (4a)
x" « p(zh). (4b)

Fig. 1 visually represents a single iteration of (4), and by stack-
ing several of such iterations one can represent (4) as a feedfor-
ward neural network (see also [13]), whose adaptable parame-
ters correspond to the nonlinearity . Our objective is then to
design an efficient algorithm for adapting the function ¢, given
a set of L training examples {X;,y¢}sef1,...,z]> as well as by
assuming a fixed number of FISTA iterations 7". In order to
devise a computational approach for tuning ¢, we adopt the
following parametric representation for nonlinearities

K

oz) 2 3 ao(x k),

k=—K

®)

where ¢ £ {ck}re[-k,...,k] are the coeficients of the rep-

resentation, ¢ are the basis functions positioned on the grid
A[-K,—K+1,..., K] C AZ. We can formulate the learning
process in terms of coefficients c as follows

(6)

where C C R?E+1 is a set that incorporates prior constraints
on the coefficients such as symmetry, monotonicity, and non-
negativity on R [18,19], and £ is a cost functional that guides
the learning. The cost functional that interests us in this work
is the MSE defined as
&) 2 Slxe <" eyl Q
where x7 is the solution of FISTA at iteration 7', which de-
pends on both coefficients ¢ and the given data vector y,. Given
a large number of i.i.d. realizationf of the signals {x¢,y,}, the
empirical MSE is expected to approach the true MSE of FISTA
for nonlinearities of type (5).
We perform optimization of the coefficients ¢ in an online
fashion with projected gradient iterations
c' < projo(c™t — aVE&(cT)), (8)
where 7 = 1,2, 3, ..., denotes the iteration number of the train-
ing process, a > 0 is the learning rate, and proj. is an orthog-
onal projection operator on the set C. Note that at each iteration
1, we select a training pair (x¢,y,) uniformly at random. By

20

SNR (dB)

least-squares

1 training iterations (/)

Figure 2: Illustration of the learning process for sparse image deconvolution
problem. Top: SNR of training is plotted for each training iteration. Bottom:
Top 8 x 8 pixels of (a) original image; (b) blurry and noisy (SNR = 0.86 dB);
(c) LASSO (SNR = 13.36 dB); (d) Proposed (SNR = 14.48 dB).

defining ®! , = ¢(z!, /A — k), the gradient V&, can be com-
puted using the following error backpropagation algorithm for
t=T,T—1,...,2,

gl g+ @] (9a)
r'=! « [STdiag(¢/ (z"))]r} (%9b)
rﬁfl —rh 4+ (1 — py)rt? (9¢)
rgfl — Mtrt_17 (9d)
where g7 = 0, rT = rT = xT(c,ys) — x4, and v = 0.

Finally, we return VE&;(c) = g + [®!]Tr]. Note that (9) is
backward compatible with the scheme in [13]; in particular,
when p; = 0 for all £, we recover the error backpropagation
algorithm for the standard ISTA.

In Fig. 2, we illustrate results of a simple image deblurring
problem, where a 3 x 3 Gaussian blur of variance 2 was applied
to a 32 x 32 Bernoulli-Gaussian (BG) image with sparsity ra-
tio 0.2. The mean and variance of the Gaussian component of
BG were set 0 and 1, respectively. The blurry image was further
contaminated with additive white Gaussian noise (AWGN) cor-
responding to 20 dB SNR. We plot per-training-iteration SNR
of the reconstruction where training samples were generated in
1.i.d. fashion. In all cases, FISTA was initialized with zero
and run for 100 iterations. The nonlinearity ¢ was represented
with 201 B-Spline basis functions on the interval [—6, 6], and
initialized with an identity operator, which means that initially
the algorithm acted like a simple least-squares estimator. The
plot illustrates that the learning procedure in (9) deviates the
shape of ¢ from identity, which leads to a significant increase
in the SNR of the solution, which eventually surpasses that of
{1-based FISTA estimator denoted with LASSO. In the bottom
of Fig. 2, we give an example reconstructed images by showing
its top 8 X 8 corner.

To conclude, we proposed a scheme, summarized in eq. (9),
to computationally learn shrinkage functions for FISTA. By us-
ing this scheme, it is possible to benchmark the best possible
reconstruction achievable by FISTA in terms of MSE and for
ii.d. signals. Since the shrinkage functions are kept constant
across the layers of our network, the number of parameters the
algorithms needs to learn is small, which means that the scheme
can be implemented on a simple desktop machine without ex-
tensive computations.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for
wavelet-based image restoration,” IEEE Trans. Image Process.,
vol. 12, no. 8, pp. 906-916, August 2003.

J. Bect, L. Blanc-Feraud, G. Aubert, and A. Chambolle, “A ¢1-
unified variational framework for image restoration,” in Proc.
ECCYV, Springer, Ed., vol. 3024, New York, 2004, pp. 1-13.

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity con-
straint,” Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413—
1457, November 2004.

A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM J.
Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp.
489-509, February 2006.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory,
vol. 52, no. 4, pp. 1289-1306, April 2006.

R. Gribonval, V. Cevher, and M. E. Davies, “Compressible distri-
butions for high-dimensional statistics,” IEEE Trans. Inf. Theory,
vol. 58, no. 8, pp. 5016-5034, August 2012.

U. S. Kamilov, P. Pad, A. Amini, and M. Unser, “MMSE esti-
mation of sparse Lévy processes,” IEEE Trans. Signal Process.,
vol. 61, no. 1, pp. 137-147, January 2013.

R. Gribonval, “Should penalized least squares regression be in-
terpreted as maximum a posteriori estimation?” [EEE Trans.
Signal Process., vol. 59, no. 5, pp. 2405-2410, May 2011.

A. Kazerouni, U. S. Kamilov, E. Bostan, and M. Unser,
“Bayesian denoising: From MAP to MMSE using consistent
cycle spinning,” IEEE Signal Process. Lett., vol. 20, no. 3, pp.
249-252, March 2013.

R. Gribonval and P. Machart, “Reconciling “priors” & “priors”
without prejudice?” in Proc. Advances in Neural Information
Processing Systems 26, Lake Tahoe, NV, USA, December 5-10,
2013, pp. 2193-2201.

C. M. Bishop, Neural Networks for Pattern Recognition. Ox-
ford, 1995.

U. S. Kamilov and H. Mansour, “Learning optimal nonlineari-
ties for iterative thresholding algorithms,” IEEE Signal Process.
Lett., vol. 23, no. 5, pp. 747-751, May 2016.

K. Gregor and Y. LeCun, “Learning fast approximation of sparse
coding,” in Proc. 27th Int. Conf. Machine Learning (ICML),
Haifa, Israel, June 21-24, 2010, pp. 399-406.

P. Sprechmann, P. Bronstein, and G. Sapiro, “Learning effi-
cient structured sparse models,” in Proc. 29th Int. Conf. Machine
Learning (ICML), Edinburgh, Scotland, June 26-July 1, 2012,
pp- 615-622.

U. Schmidt and S. Roth, “Shrinkage fields for effective image
restoration,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, June 23-28, 2014,
pp- 2774-2781.

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction
diffuction processes for effective image restoration,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, June 8-10, 2015, pp. 5261-5269.

A. Antoniadis, “Wavelet methods in statistics: Some recent dde-

velopment and their applications,” Statistical Surveys, vol. 1, pp.
16-55, 2007.

M. Kowalski, “Thresholding rules and iterative shrink-
age/thresholding algorithm: A convergence study,” in Proc.
IEEE Int. Conf. Image Process (ICIP 2014), Paris, France, Oc-
tober 27-30, 2014, pp. 4151-4155.



	Title Page
	page 2

	/projects/www/html/publications/docs/TR2016-111.pdf
	page 2
	page 3


