
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Attribute compression for sparse point clouds using graph
transforms

Cohen, R.A.; Tian, D.; Vetro, A.

TR2016-112 September 2016

Abstract
With the recent improvements in 3-D capture technologies for applications such as virtual
reality, preserving cultural artifacts, and mobile mapping systems, new methods for compress-
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compacts the data to guarantee one DC coefficient for each graph-transformed block, and the
other method uses a K-nearest-neighbor extension to generate more efficient graphs.
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ABSTRACT

With the recent improvements in 3-D capture technologies

for applications such as virtual reality, preserving cultural

artifacts, and mobile mapping systems, new methods for

compressing 3-D point cloud representations are needed

to reduce the amount of bandwidth or storage consumed.

For point clouds having attributes such as color associated

with each point, several existing methods perform attribute

compression by partitioning the point cloud into blocks and

reducing redundancies among adjacent points. If, however,

many blocks are sparsely populated, few or no points may

be adjacent, thus limiting the compression efficiency of the

system. In this paper, we present two new methods using

block-based prediction and graph transforms to compress

point clouds that contain sparsely-populated blocks. One

method compacts the data to guarantee one DC coefficient

for each graph-transformed block, and the other method uses

a K-nearest-neighbor extension to generate more efficient

graphs.

Index Terms— point cloud compression, graph trans-

form

1. INTRODUCTION

3-D point clouds have become a practical way to represent

data points in many applications, such as virtual reality, mo-

bile mapping, scanning of historical artifacts, and 3-D print-

ing. An advantage of using point clouds is the fact that the

storage format can be decoupled from the capture method.

Subsequent processing of a point cloud can then be performed

in a variety of ways independently of how it was captured.

In particular, a point cloud comprises a set of coordi-

nates or meshes, representing the point locations and some

attributes attached to each point. Some typical point clouds

may include native connectivity between data points, which

are known as structured or organized point clouds; while

some other point clouds may not have such information and

are unstructured or unorganized. Note that these definitions

are not standardized, as some people may refer to structured

point clouds as being aligned with a rasterized grid that can

correspond for example to a camera-captured image. Earlier

work from the computer graphics community compressed

or reduced the size of point clouds primarily by leveraging

the connectivity of structured point clouds. Such approaches

achieved compression by reducing the number of vertices

in triangular or polygonal meshes by, for example, fitting

surfaces or splines to the meshes. Surveys of many of these

methods can be found in [1], [2], and [3].

Considering the large size and scale of today’s point

clouds, block-based and hierarchical octree-based methods

have been utilized to perform compression on a block-by-

block basis, both for improving coding efficiency and reduc-

ing hardware or software complexity. Peng [4] showed an

octree representation to code structured point clouds, which

has been extended for coding unstructured point clouds in

real time in a recent work in [5]. That work was implemented

using the open-source Point Cloud Library (PCL) [6]. A

tutorial on using PCL to compress point clouds can be found

in [7].

For compressing 2-D images and videos, significant

progress has been made over the past several decades, result-

ing in widely used standards such as JPEG [8], H.264/AVC [9]

and HEVC [10]. The same principles of block-based and hi-

erarchical processing used in image and video coding systems

can be extended to work for point cloud data. By mapping

data from the point clouds into 2-D arrangements, existing

image and video coders can be employed for representation

and compression. For example, Xu [11] proposed to com-

press point clouds in a teleoperation environment based on

H.264/AVC. Mekuria [12] extended the PCL-based approach

in [5] by using a JPEG coder on blocks of attributes, which

achieved substantial improvements in coding efficiency. Re-

cently, Zhang [13] developed a graph transform for coding

blocks of point cloud attributes, but it required the point

cloud to be captured or arranged onto a regular grid. In [14],

point clouds were downsampled to a uniform grid, which in

turn was partitioned into blocks so that the graph transform

could be directly applied. The latter work also included 3-D

intra-block prediction.

In this paper, we develop two ways to improve coding effi-

ciency when graph transforms are used for lossy compression

on blocks partitioned from a large or sparse point cloud. In

Section 2, we give an overview on how point clouds can be



partitioned into blocks and how graph transforms have been

used to compress attributes contained within the blocks. Sec-

tion 3 shows how data in a block can be compacted for more

efficient coding. In Section 4, we show that by expanding the

concept of adjacency when allowing the graph to include K

nearest neighbors, the number of graphs used to code a block

can be reduced. Experimental results are shown in Section 5,

and a summary and conclusions are given in 6.

2. POINT CLOUD PARTITIONING AND ATTRIBUTE

COMPRESSION USING GRAPH TRANSFORMS

We can partition a 3-D point cloud into blocks by either cap-

turing the data in way that outputs voxels aligned to a grid,

or we can divide the point cloud by a uniform grid having a

known resolution. In [15], a sparse voxelization approach is

used to capture data and arrange it on a 3-D grid where each

direction has dimensions 2j , and j indexes a voxel hierarchy.

With the data arranged on a grid, the method described in [13]

applies a graph transform to the attributes in each block. For

point clouds that are not necessarily arranged on a grid, the

work in [14] resamples the points to lie on a uniform grid, and

then the grid is partitioned into 3-D blocks of size k × k × k.

A modified shape-adaptive transform is then used to compress

the attributes within each block. For both these methods, and

for this paper, it is assumed that the (x, y, z) point positions

are coded separately before coding the attributes, so the fo-

cus of these works is on compressing the attributes associated

with the points.

The resampling method used in [14] decomposes a point

cloud to an octree representation having a minimum voxel

resolution r, where r represents the minimum length of an

edge of the voxel corresponding to a leaf node of the octree.

If the sensor or capture resolution of the point locations in the

point cloud is less than r, then a leaf node may contain more

than one point. The attribute associated with the leaf node is

set to the average over all points in the node. The geometric

center of this leaf voxel becomes the (x, y, z) location asso-

ciated with this averaged attribute. By using the geometric

center, this ensures that the resampled point cloud lies on a

uniform grid of resolution r, which in turn can easily be par-

titioned into blocks. If, however, we want to preserve all the

attributes and not average them, then the octree resolution r

would need to be set to the sensor resolution to guarantee that

each octree leaf node contained only one point from the input

point cloud. Partitioning these finely-sampled positions into

k × k × k blocks for small k may result in many blocks that

contain very few samples. For larger k, the blocks may be

sparsely populated, or they may contain many non-adjacent

groups of points.

The graph transform, as described in [13], computes

an adjacency matrix A and then populates the matrix with

nonzero weights to indicate which points are considered to be

adjacent. A graph Laplacian matrix Q is computed based on

the weights, and then the eigenvector matrix of Q is applied

as a transform on the attribute values. An example from [14]

illustrating the construction of an adjacency matrix is shown

in Fig. 1. Because the structure of the graph transform is

based upon the adjacency matrix, the transform associates the

equivalent of one DC coefficient and corresponding AC coef-

ficients to every isolated point and isolated groups of adjacent

points. For a block having many isolated points, this structure

produces many DC coefficients; much more than if a more

connected graph transform were applied. As the block size

increases, namely as the block partitioning resolution of the

point cloud increases, coding efficiency will be severely im-

pacted. We will show evidence of these effects in Section 5.

To ameliorate these effects, we introduce two methods: com-

pacting the block prior to applying the graph transform, and

expanding the definition of “adjacent” to include K nearest

neighbors when constructing the graph.

3. COMPACTING BLOCKS

A diagram of the compacting process is shown in Fig. 2. This

process has similarities to the shifting process used by the

shape-adaptive DCT (SA-DCT) [16]. Unlike [16], however,

we apply it to the input points before performing the graph

transform. Also, we do not need to compute and signal the

boundary shape of the attributes, because our “shape” is de-

fined by the presence of a point occupying an available ele-

ment of the block. These points could be considered as being

the foreground, and elements of the k × k × k block that do

not contain points can be considered the background. The

shifting process shifts out empty elements toward one bor-

der in each dimension. The end result of this process is that

all points are compacted toward one corner of the block. This

guarantees that all points are part of one graph when the graph

transform is applied. Therefore, only one DC coefficient is

produced, along with corresponding AC coefficients. There

is a trade-off inherent in this process: We are gaining coding

efficiency by changing the positions of the points so they can

be compacted with one transform, but we are potentially los-

ing the spatial relationship among the points when processing

the attributes. Note, however, that this repositioning is only

done for applying a transform to the attribute values. The

decoder reverses this compaction process to reconstruct the

point cloud, ensuring that each decoded attribute is assigned

to its corresponding spatial position. The compacting process

is repeated over all blocks, until the entire point cloud is com-

pressed. Blocks not containing points can be ignored, as no

attributes need to be compressed for them.

4. GRAPH TRANSFORM WITH K NEAREST

NEIGHBORS

As described in Section 3, the compacting method relocates

the points in the block, which may make it difficult to lever-

age the correlation among neighboring points before they are
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Fig. 1: Example of graph transform applied to block containing two separate groups of points, and the corresponding adjacency

graph, from [14]
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Fig. 2: Compacting blocks prior to applying the graph trans-

form

moved. As a consequence, a graph constructed on the com-

pacted block is not guaranteed to improve coding efficiency,

especially if the original block could be represented with one

graph.

The graph transform in [13] is limited in that assumes that

the points are aligned to grid positions, and only the points

that are one unit apart in any dimension are identified as be-

ing connected when constructing the graph. This approach

does not permit multiple attributes to be co-located on one

grid point, so resampling or attribute averaging of those points

would be needed. Sampling the grid at a finer resolution

would avoid this problem, but it could lead to many disjoint

sub-graphs in each block, which can impact coding efficiency.

In this section, we construct graph edges to include more

distant points, located on quantized or fractional point posi-

tions. Instead of limiting neighbors to being one unit apart, we

connect each point to its K nearest neighbors and then prune

any duplicated edges. By allowing connections to more dis-

tant points, this K-nearest-neighbors method (K-NN) is able

to incorporate more points into each graph, thus reducing the

total number of disjoint graphs in a sparse block.

Fig. 3 shows the process of constructing the K-NN graph

with K = 3, where the K-NN approach will make new con-

nections (P1, P8), (P2, P7) and (P3, P5), as compared to the

graph constructed using [13]. However, unlike the compact-

ing approach of Section 3, the K-NN graph is not guaranteed

to encompass all points of a block in one sub-graph. Addi-

tional processes could be developed and subsequently applied

to determine how to connect multiple disjointed sub-graphs.

It is worth noting that in the K-NN graph after pruning, there
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Fig. 3: Illustration of process going from separate sub-graphs

to one graph by using K-NN with K = 3

may exist some points which are connected to more than K

points. For example, P7 in Fig. 3 has 5 associated edges be-

cause P7 is a nearest neighbor point for some extra points, P2

and P3, in addition to its own nearest neighbors.

Finally, the weight of the graph edge is a function of dis-

tance, e.g. e
−

d

2σ2 , where d is a measured distance between

the connected points and σ denotes the variation in statistics

of the points. In the next section, we will discuss the results of

experiments using several methods, for different block sizes,

partition resolutions, and values of K.

5. EXPERIMENTAL RESULTS

The input point cloud used for experiments is the uncon-

nected Statue Klimt PointCloud.ply point cloud described

in [17]. For this paper we use the first 3000 points to keep

the simulation times practical. Each point of the input point

cloud comprises a floating-point (x, y, z) location and a cor-

responding RGB color attribute. We convert the RGB color

attributes to YCbCr [18] luminance and chrominance values

and use the 8-bit luminance value Y as the attribute to be

coded. We apply the octree decomposition described in [14]

with an octree resolution of 0.0081, which generates octree

leaf nodes having only one point per node. We used the cen-

ter position of each node as the (x, y, z) coordinate for the

corresponding attribute. This process allows us to align the

data into rows and columns on a fine grid without downsam-

pling. The point cloud is next divided into blocks based on

the partition resolution pr. For these experiments, we use

pr = 0.15, 0.3, and 0.5. For all cases we incorporate the
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Fig. 4: Coding performance of the three graph transform

methods

intra-block prediction of [14]. With an octree resolution of

0.0081, the maximum block sizes associated with these val-

ues of pr are approximately 18, 37, and 61, respectively. As

described [13] and [14], an arithmetic coder using a Laplacian

model is used to entropy code the coefficients. Plots showing

luminance PSNR vs. the rate in bits per point are shown in

Fig. 4. The three methods used here are the unmodified graph

transform from earlier works, where elements were adjacent

if they were within one unit in any dimension; the method

of Section 3 which compacts the points to one corner of the

block before applying the transform; and the K-NN graph

transform method of Section 4 with K = 8.

In Fig. 4 we can see that at the lower rates corresponding

to coarse levels of quantization, the performance of both the

compacting and K-NN methods exceeds that of the unmodi-

fied graph-transform. As the rate increases, the performance

of the graph-transform method eventually exceeds the perfor-

mance of the other two methods. The bit-rate at which this

crossover point occurs increases as the partition resolution or

block size decreases. The primary reason for the improve-

ment in performance of the new methods is that when coding

a sparse block where most of the points are not adjacent, the

unmodified graph-transform method can produce dozens of

DC coefficients that need to be quantized and coded. The

compacting method generates only one DC coefficient per

block, due to its design. For these experiments, the K-NN

method with K = 8 typically produces only one or two

DC coefficients per block. With these modified transforms,

a coarse quantizer typically zeroes out the AC coefficients

but preserves the DC coefficient. With the unmodified trans-

form, the large set of DC coefficients is coarsely quantized,

resulting in an increased distortion. As the rate increases,

eventually the fidelity of the reconstructed DC coefficients is

sufficient to yield an improved coding performance. As the

block size decreases, the total number of DC coefficients for

the whole point cloud increases for the two new methods,
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Fig. 5: Performance of K-nearest-neighbor graph transform

for different values of K with pr = 0.5

thus reducing their overall coding performance. As the block

size decreases for the K-NN transform, the number of disjoint

sub-graphs in each block will decrease, which in turn reduces

the number of DC coefficients per block. This behavior can

be observed in Fig. 4, in that with decreasing block size, the

performance of the K-NN transform approaches that of the

compacting method, which always has one DC coefficient.

Compression performance curves for varying K are

shown in Fig. 5 for partition resolution pr = 0.5. Gener-

ally, at the lower rates where the new methods work well,

using K=3, 4, or 5 neighbors works best. At higher rates

there is not a significant difference in performance among

these values of K. For the cases tested here, increasing K

above 8 decreased performance by about 0.5 dB.

6. SUMMARY AND CONCLUSIONS

In this paper, we extended some of the concepts used to code

images and video to compress attributes from unstructured

point clouds that have been partitioned into blocks without

downsampling, thus preserving all the attributes. By com-

pacting the blocks or modifying the adjacency definition of

the graph transform to include up to K nearest neighbors

without a distance limitation, we reduced the number of DC

coefficients as compared to the unmodified graph transform

in which almost every point may become a DC coefficient

due to the sparseness of the block. Experimental results were

shown for these methods over different partition resolutions

and numbers of K nearest neighbors. In addition to a more

detailed study of performance over a wider variety of param-

eters and point clouds, future work also will include more ad-

vanced ways of connecting sub-graphs within a block, e.g. by

combining distance restrictions and numbers of nearest neigh-

bors; or by considering other structural characteristics of the

points in each block to control compacting and graph genera-

tion.
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