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Abstract

We show the great potential of nonbinary LDPC convolutional codes (NB-LDPC-CC) with

low-latency windowed decoding. It is experimentally demonstrated that NB-LDPC-CC can offer a per-
formance improvement of up to 5 dB compared with binary coding.

Introduction

Recent optical communications systems have
used soft-decision (SD) decoding with low-
density parity-check (LDPC) codes'=°. Although
modern LDPC codes already achieve near-
capacity performance in binary additive white
Gaussian noise (BIAWGN) channels, conven-
tional bit-interleaved coded modulation (BICM)
based on binary LDPC codes has a fundamen-
tal limit compared to the theoretical bound, in
particular for high-order modulation. By em-
ploying BICM iterative demodulation (BICM-ID),
the performance can be significantly improved'°.
However, BICM-ID requires SD feedback from
the decoder to demodulator. Hence, BICM-ID
can be less practical due to the high complex-
ity and large latency. By contrast, with nonbinary
(NB) LDPC codes -, turbo demodulation is not
needed while achieving the theoretical bound.
This scheme called nonbinary-input coded modu-
lation (NBICM)'® offers even better performance
than BICM-ID while keeping the total complex-
ity low, especially when combined with high-order
and high-dimensional modulation. This is a great
advantage of NB-LDPC compared to BICM and
BICM-ID. However, the major obstacle has laid
in the fact that the decoder complexity increases
with the Galois field (GF) size.

Recently, it was suggested' that the com-
plexity issue of nonbinary decoding can be mit-
igated by introducing LDPC convolutional codes
(LDPC-CCs)2° with windowed decoding (WD).
LDPC-CCs have drawn significant interest in re-
cent years because of their theoretical features
such as a saturation property and the practi-
cal feasibility of WD, which is capable of low-
latency and low-memory decoding. In this pa-

per, we experimentally demonstrate a significant
performance gain provided by NB-LDPC-CC in
comparison to BICM, for dual-polarization 64-ary
quadrature-amplitude modulation (DP-64QAM)
and DP-256QAM. As the complexity of WD is
roughly proportional to the window size and the
maximum column weight, we consider the mini-
mum column weight of 2 and small window size
W = 6 for low-power decoding.

GMI of BICM and NBICM

Generalized mutual information (GMI)'” has been
recently used to predict SD performance of vari-
ous modulation formats. The normalized GMI can
be extended '* for any nonbinary coding as

Tom=1— E[logQ >, exp(—Lq)‘B - o],

where  E[] denote the  expectation,
{Lo,...,Lg-1} denote the log-likelihood ratio
(LLR) vector as L, = logPr(B = 0)/Pr(B = q)
for the ¢-th element of GF(Q), Q is the GF size,
and B is the transmitted element. When Q = 2,
it reduces to the conventional GMI for BICM sys-
tems. If the GF size @ matches the modulation
order M, the above GMI is simply called MI for
some literature as a coded modulation bound.
Fig. 1 shows the normalized GMI for M-ary QAM
with different GF size. Although binary coding
systems (BICM with Q = 2) have little degra-
dation from nonbinary coding systems for high
rate regimes, BICM can suffer more than 0.5 dB
loss in particular for higher-order modulation in
mid-/low-rate regimes. In contrast, the GMI of
the NBICM systems can closely approach the
Shannon limit for low signal-to-noise ratio (SNR).
Note that even when Q < M, NBICM shows



some gain over BICM.

It was experimentally demonstrated'” that
high-order QAM with low-rate code provides
higher spectral efficiency; e.g., low-rate 16QAM
having an overhead (OH) of 194% can be optimal.
It suggests that the performance of mid-/low-rate
LDPC codes is also of a great importance.
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Fig. 1: Normalized GMI for 16/64/256QAMs.

In this paper, we use quasi-cyclic (QC)
NB-LDPC-CCs denoted by a protograph of
(J,K,L,N)gr(q), Where J is a column weight,
K is a row weight, L is a termination length,
and N is a QC size. The codeword length is
38,400 bits long, which is identical to a state-of-
the-art LDPC code®. To keep the same code-
word length for various GF size, the QC size
is scaled by @. More specifically, we consider
two protographs (2, 20, 20, 384/ log, Q)gr(q) and
(2,4,50,384/log, Q)gr(q) for the code rates of
0.79 (26.6% OH) and 0.49 (104% OH), respectively,
for @ € {2,4,8,16,64,256}. We use low-latency
WD having a limited window size of W = 6 and
adaptive stopping criterion'. Such low-weight
codes with small window size allows significant
reduction in computational complexity and mem-
ory requirement for nonbinary decoding.

Experimental setup

NB-LDPC-CC performance was validated ex-
perimentally in a back-to-back configuration for
DP-64QAM and DP-256QAM. The experimen-
tal setup'®'® is illustrated in Fig. 2. A pair of
digital-to-analog converters (DACs) operating at
20 GSa/s was used to generate 64QAM and
256QAM signals at 10 GBd, including 1% pilot
symbols. These signals were filtered with a root-
raised-cosine filter with a roll-off factor of 0.1%.
After amplification, these signals were applied to
an 1/Q modulator operating in the linear regime.
The optical carrier was generated by an external
cavity laser (ECL), with a linewidth of 100 kHz.
Polarization-multiplexing was emulated passively

in the optical domain with a delay of 489 sym-
bols. Noise loading was performed by coupling
in a variable power source of amplified sponta-
neous emission (ASE) noise. A discrete compo-
nent coherent receiver was used with a bandwidth
of 70 GHz, while the local oscillator was an ECL
with linewidth of 100 kHz. Quantization was per-
formed using an oscilloscope with 63 GHz band-
width and 160 GSa/s. Offline post-processing was
then performed.
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Fig. 2: Experimental setup 1819,

Our receiver digital-signal processing consisted
of conventional deskew, 4th power intradyne fre-
quency estimation, and matched filtering. A 2 x 2
equalizer was used to compensate for polariza-
tion rotation, residual intersymbol interference re-
moval and timing recovery. The equalizer was
radially trained for good convergence, before be-
ing switched to pilot-aided operation. A radius
directed error term was calculated based on the
pilot symbols only, with updating performed us-
ing the least-mean-square algorithm and an er-
ror term averaged over 10 pilot symbols. Re-
cently proposed carrier phase estimation'® was
then performed. We calculated LLR vectors using
a clustering algorithm to account for transmitter
distortion. The NB-LDPC-CC was then decoded
using WD based on fast Fourier transform @Q-ary
sum-product algorithm.

Experimental results
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Fig. 3: Experimental results for DP-64QAM
The results of our experiments are presented
in Figs. 3 and 4. Although pre-LDPC perfor-
mance exhibits an error floor and a large penalty
from theoretical AWGN performance, LDPC-CCs
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Fig. 4: Experimental results for DP-256 QAM

were able to achieve error-free performance over
65,536 symbols for both DP-64QAM and DP-
256QAM at high SNRs. More importantly, the bit-
erorr-rate (BER) performance can be significantly
improved by increasing the GF size. In partic-
ular for 256QAM with low-rate code, the perfor-
mance improvement by nonbinary coding is more
than 5 dB gain at a BER of 1073. The reason
why NB-LDPC-CCs offer more significant gains
in comparison to the GMI predictions in Fig. 1 is
because we considered practical WD for LDPC-
CCs, using a very small window size W = 6 and
column weight of 2 for low-power decoding.

Conclusions

We have experimentally demonstrated NB-LDPC-
CC performance in back-to-back configuration us-
ing 10 GBd DP-64QAM and 256QAM, with trans-
mitter and receiver laser linewidths of 100 kHz.
Significant performance improvement by up to
5 dB gain was confirmed in the experiments. Us-
ing low-latency WD with small window size for
low-weight NB-LDPC-CCs, the required compu-
tational complexity and memory size for non-
binary decoding can be maintained low, while
achieving excellent BER performance.
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