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Abstract

This paper considers longitudinal and lateral tirestiffness estimation for road vehicles, using
wheel-speed and inertial measurements. The deviations from nominal stiffness values are
treated as disturbances acting on the vehicle, and are included in a nonlinear vehicle model.
We formulate a Bayesian approach based on particle filtering, where the tire stiffness as well
as the associated uncertainty are jointly estimated together with the vehicle velocity vector,
the yaw rate, and the bias components for the inertial sensors. For computational efficiency,
we marginalize out the noise parameters, hence do not need to include them in the state
vector. Experimental data for a double lane-change maneuver indicate that the stiffness can
be estimated within a few percent of the true values.
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Tire-Stiffness Estimation by Marginalized Adaptive Particle Filter

Karl Berntorp! and Stefano Di Cairano!

Abstract— This paper considers longitudinal and lateral tire-
stiffness estimation for road vehicles, using wheel-speed and
inertial measurements. The deviations from nominal stiffness
values are treated as disturbances acting on the vehicle, and are
included in a nonlinear vehicle model. We formulate a Bayesian
approach based on particle filtering, where the tire stiffness
as well as the associated uncertainty are jointly estimated
together with the vehicle velocity vector, the yaw rate, and the
bias components for the inertial sensors. For computational
efficiency, we marginalize out the noise parameters, hence do
not need to include them in the state vector. Experimental data
for a double lane-change maneuver indicate that the stiffness
can be estimated within a few percent of the true values.

I. INTRODUCTION

The tire—road interaction is the dominating factor in gen-
erating, or changing, the motion of a ground vehicle, and the
knowledge of variables related to the tire-road interaction is
essential for advanced driver-assistance systems [1]. A com-
mon way to model the tire—road relation is to assume a static
relationship between force and slip. For small slip values, the
force-slip relation is approximately linear. The slopes in the
longitudinal and lateral directions of the tire are known as
the longitudinal and lateral (cornering) stiffness, respectively.
It is well known that there is a dependence between the
tire stiffness and the peak road-friction coefficient [2], [3].
Furthermore, the linear approximation is widely employed in
different applications; for example, the cornering stiffness is
a key parameter when using the linear single-track vehicle
model for control [4] and estimation [5].

Consequently, there is a rich literature on tire-stiffness
estimation. The approaches in [2], [6] formulate the stiffness
estimation as linear regressions, [3] uses the longitudinal
dynamics to solve for the longitudinal stiffness in a nonlinear
total least-squares problem, and [7] employs an observer-
based technique. In [8], a sliding-mode observer and an
extended Kalman filter estimate the cornering stiffness,
whereas [9] exploits independent wheel actuation to estimate
friction coefficient and cornering stiffness. Another approach
for lateral stiffness estimation based on the planar lateral
dynamics is found in [10].

This paper reports on a novel approach for jointly es-
timating stiffness parameters in both the longitudinal and
lateral direction, the vehicle velocity vector, and the yaw
rate. Since we treat both longitudinal and lateral dynamics,
we increase the available information than if considering
the longitudinal and lateral dynamics separated from each
other, which is often done in literature. The vehicle state is
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not directly observed. We therefore pose the problem as a
nonlinear, joint state and parameter estimation problem with
wheel-speed, acceleration, and yaw-rate measurements; that
is, using sensors often available in production cars. To handle
the resulting nonlinear, non-Gaussian estimation problem,
we propose a computationally efficient particle-filter based
solution, where the stiffness parameters are considered as un-
known Gaussian disturbances affecting the vehicle dynamics.
Particle filters solve nonlinear non-Gaussian filtering prob-
lems by generating random state trajectories and assigning
a weight to them according to how well they predict the
observations [11].

A common approach to jointly estimate states and param-
eters is to augment the state vector and let the parameters
be driven by artificial dynamics, as for example, in [8].
However, increasing the state dimension is particularly prob-
lematic for particle filters in automotive applications, where
computational burden must be limited. Instead, we rely on
marginalization [12] and propagation of the sufficient statis-
tics of the noise parameters, conditioned on the estimated
vehicle states, using the concept of conjugate priors [13].
The resulting estimation model has dependent process and
measurement noise. We leverage a computationally efficient
framework to account for this; see our companion paper [14]
for a more detailed derivation. Our framework is related to
[15], but extends to dependent noise sources and partially
known measurement noise. Furthermore, we incorporate es-
timation of the inherent bias in the inertial sensors.

Notation: The notation « ~ N (p, X) for a column matrix
x indicates that « is Gaussian distributed with mean p and
covariance 3. With St(u, T, v), we mean the multivariate
Student-t distribution with mean g, scaling Y, and v degrees
of freedom. Similarly, NiW (u, A, v) is the Normal-inverse-
Wishart distribution with associated hyperparameters. The
notation £y, means the estimate of 2 at time index k given
measurements up to time index m. Furthermore, p(2o.x|yo:x)
is the posterior density of the state trajectory from time index
0 to time index k, given the measurement sequence.

II. VEHICLE MODEL AND PROBLEM STATEMENT

To get a tractable estimation problem using standard
sensors only, we make certain assumptions. First, we con-
sider normal driving conditions with moderate steering and
acceleration. Second, we assume that the left and right
wheel on each axle are similar in terms of stiffness. The
presented framework conceptually can handle these cases,
but it increases computation time and modeling complexity
[16]. With these assumptions, the joint state and parameter
estimation can be based on a single-track model. In the



following, F*  F'Y is the longitudinal and lateral tire force,
respectively, « is the wheel-slip angle, 1) is the yaw, v, vY
is the longitudinal and lateral vehicle velocity, respectively,
and subscripts f,r stand for front and rear, respectively. The
equations are

meX — oY) = Ff cos(d) + F — F sin(0),
m@Y +v¥Xe) = FJ? cos(0) + FY + Fy sin(6), (1)
I = ly(Ff cos(d) + Fy sin(0)) — . FY.

The longitudinal and lateral tire forces depend nonlinearly
on the wheel slip A and slip angle «, but since we assume
normal driving equations, the tire forces can be expressed as

F*~C*\, FY=C(CY, 2)
where C* and CVY are the longitudinal and lateral stiffness,
respectively. Furthermore, because we assume normal driv-
ing conditions, the approximations cos(d) ~ 1, sin(d) & §
hold. We adopt the definition of wheel slip from [17],
X
— Ry,
A= LT 3)
max{vX, R,w}

where w is the wheel rotation rate and R,, is the effective
wheel radius. The slip angles are approximated as

vy+lf¢ Nlrzb—vy

Oéfzé_ X ) r ’UX (4)

v
In (3), (4), since we assume normal driving, we use the
velocity at the center of mass instead of the velocity at the
center of the wheel. The vehicle model composed of (1)—
(4) is nonlinear in vX and contains bilinearities between
states, and states and parameters. There is a benefit with
considering both longitudinal and lateral dynamics, since
coupling is introduced. However, this also increases compu-
tational complexity. The wheel rotation rates wy, w, and steer
angle § form the input vector w, which is assumed known
in the following. This is consistent with many navigation
systems, where dead reckoning is used to decrease state di-
mension. Although the wheel rotation rates can be considered
as measurements disturbed by noise, this would increase
state dimension, which is highly unwanted in automotive
applications, where computational load must be kept low.
After introducing = [v¥ v¥ ¢]T and discretizating with
sampling time T, (1)-(4) can be compactly written as

Ty = flop, ur). )
A. Estimation Model

Eq. (5) can be rewritten by decomposing the stiffness into

one known nominal part and one unknown part,
C*=Cr+AC*, CY=CY+ACY, (6)

where C), is the nominal value of the stiffness, for example,
determined on a nominal surface, and AC is the time-
varying, unknown part. We define

wy = [AC] ACY ACY]T € R

as random process noise acting on the otherwise determin-
istic system. We assume that the noise term w;, is Gaussian
distributed according to wy ~ N (pg, Xx), where py and
3, are, in general, time varying, mean and covariance of
the unknown tire stiffness. Inserting (6) into (5) allows us to
write the dynamics as

i1 = [, up) + g(@r, up)wy. @)

In the following, we are interested in estimating both the
state @, and the parameters 0y := {py, X5} of the process
noise wyg. One interpretation of the parameters is that the
mean models the stiffness variations based on the surface
type, such as asphalt or snow, and the variance models
the uncertainty due to variations on a surface, or other
unmodeled effects.

The measurements assumed available are the longitudinal
and lateral accelerations a;y, a,, and the yaw rate P,
forming the measurent vector yy = [a:x a¥, 1,,]T. To relate
Yy to the states, note that a™ and a¥ can be extracted from
(1), and the yaw-rate measurement is directly related to the
yaw rate. An inertial sensor typically has a bias b, which
needs to be modeled for any realistic implementation. We

model the bias as a random walk,
b1 =by +wp 8)

where by = [byr byi bQNC]T € R® are the bias terms
for the acceleration vector and yaw rate, and wy j is as-
sumed to be zero-mean Gaussian with covariance matrix
Q, wp i, ~ N(0,Q). The characteristics of the noise source
wy, 1, can be determined from an Allan-variance analysis [18].
Thus, the measurement model can be written as

Yr = h(xg, ug) + by, + & € R? ©)

where, €, = d(x, ur)wy + e + wy g, dy = 3,

d(xr,ur) = [Tsgr (Tr, ur) Toga(xr, ur) O]T,

where g; means the jth row of g in (7), and ej is
the Gaussian zero-mean noise from the inertial sensors,
e, ~ N (0, R), where R can be determined a priori.

Remark 1: Tt is possible to treat the measurement-noise
parameters as unknown and include any bias terms in the
mean of the measurement noise. The resulting measurement-
noise parameters to be estimated would then include a com-
bination of stiffness parameters, actual measurement noise,
and bias terms. From a computational point of view, it is
beneficial to treat the noise parameters from the inertial
measurements as known, since these can be determined a
priori. Furthermore, the characteristics of the bias can also
be determined offline. This information can then be utilized
for more reliable estimation of the noise parameters.

B. Observability

Observability can be analyzed by augmenting the dynamic
model (5) with the stiffness parameters, model them as a
random walk, and derive the observability Gramian by lin-
earization. In our case, assuming nonzero steering angle and
wheel slip, it can be shown that the Gramian is nonsingular,
hence the system is weakly observable.



C. Problem Formulation

We want to jointly estimate the state vector xj, the
parameters 6y := {pg, X} of the Gaussian process noise
wy, and the bias of the inertial sensors, by, subject to the
system model consisting of (7)—(9). We tackle this problem
by approximating the joint posterior p(bg, Ok, Zo.x|Yo:k)-
From the joint posterior, we can then extract the different
quantities. Next, we describe a computationally efficient
method for doing this joint estimation in a Bayesian frame-
work. Since the unknown noise parameters enter both (7)
and (9), the noise sources are dependent.

III. STATE AND TIRE-STIFFNESS ESTIMATION

We formulate the joint estimation in a Bayesian framework
as approximating the joint density p(bg, Ok, To.x|Yo:x). We
decompose

P(bk, Ok, To:k|Yo:x) = (br|Ok, ok, Yok )P(Ok |o:k, Yo:k)
'p(mO:k|yO:k)- (10)

The three densities at the right-hand side of (10) are es-
timated recursively. The key idea is that given the state
trajectory, we can update the sufficient statistics of the
unknown noise parameters. Similarly, given the parameters
and the state trajectory, the posterior density of the bias
simplifies considerably. However, the three densities are not
computed independently from each other.

A. State Estimation

We approximate the posterior of the state trajectory with
a particle filter [11] as
N

P(@orlyor) = D ahd(@ok — mfy),
=1

an

where 4(-) is the Dirac delta function and ¢, is the impor-
tance weight for the ith state trajectory wf): - For simplicity,
in this work we use a sequential importance resampling
(SIR) based particle filter [11]. In general, the particles are
sampled using a proposal distribution 7(x+1|Ty. ., Yo:k+1)-
For dependent noise, the weight update is [19]

P(yk|w6;k7 yo:k—1)p($§c |$6;k717 Yo:k—1)

ﬂ-(w;q‘wg;k_p yO:k)

) X qh_y (12)

where p(yk|xf., Yo.x—1) is the likelihood. If the proposal is
chosen to equal p(x} |z, 1, Yo:k—1), (12) simplifies to
(13)

a1 X g _1P(Yk|Thor Yok—1)-

Clearly, since the unknown process noise parameters affect
both the measurement and prediction step (see (9))

(14a)
(14b)

p(yk|m6ka yO:k—l)a

p(w2+1 |w6:k, Yo:k )

the weight update will depend on the parameter estimates.

B. Parameter Estimation

From (14), knowing both the state and measurement
trajectory gives full knowledge about wo.;, = [wo.x €g.x]".
Thus, the posterior for 8, can be rewritten using Bayes’ rule,

P(Ok|To:k, Yo:i) < p(Wk|0k)p(Ok|Wo.k—1).  (15)

One assumption is that the process noise is Gaussian given
the noise parameters, hence the likelihood p(wy|€)) in
(15) is Gaussian. Therefore, we can utilize the concept of
conjugate priors. If a prior distribution belongs to the same
family as the posterior distribution, the prior is conjugate
to the likelihood. For Normal data @ € R? with unknown
mean g and covariance X, a Normal-inverse-Wishart dis-
tribution defines the conjugate prior [20], p(pi, Xk) =
NiW (Vijs £k |k» Ak Vijie)- The computation of the statis-
tics Sk|k = (’Yk|k7/lk:\kaAk|kaVk|k) is done as [15]

Vk|k—1
iy = ket (16a)
HET T Velk—1
Bl = Bkjk—1 + Vi|k 2k, (16b)
Vklk = Vkjk—1 + 1, (16¢)
A = Apipog + ———2z12F, 16d
k|k klk—1 T 1+7t|t71zkzk (led)
Z = W — flg|k—1- (16e)

For time-varying parameters, the prediction step consists of

1
VE|k—1 = X'Wc—llk—la

Brlk—1 = Pr_1)k—1, a7
Vklk—1 = AVk—1]k—15

Apjp—1 = AMp_1jp—1,

where A € [0, 1] produces exponential forgetting. Further, for
a Normal-inverse-Wishart prior, the predictive distribution of
the data w is a Student-t,

. T+ Yk
St (#km—h |

— = Apie1, Vil —d+ 1)
| klk—15 Vk|k—1 + )

Assume that the predictive distribution in (15) is Normal-
inverse-Wishart. From (15), also the posterior is Normal-
inverse Wishart, p(0k|xo.x, Yo:x) = NIW Ly, Agjks Vil )-
In a practical implementation, (16) and (17) are only applied
to the process noise, thus decreasing the estimation problem
from d = 6 do d,, = 3. However, to include information
from the likelihood into the update of the parameters, wy
in (16e) must be generated through the measurement model.
We will describe this in more detail in Sec. III-D.

C. Bias Estimation

The bias updates rely on having computed both the poste-
rior for the state trajectory and the noise parameters. Thus,
the bias estimation is concerned with computing the posterior
p(bk|Ok, To:k, Yo.r ). First, the prediction model of the bias
states is a random walk, see (8), which is linear. Second,
the dynamics of the bias states are independent on both the
unknown process noise and the vehicle states. Hence, the



Kalman predictor is the optimal predictor, and the prediction
step consists of predicting the mean and covariance of the
bias state, once per particle. Hence,

P, =P, +Q.

For the measurement update, (9) conditioned on the state tra-
jectory and the noise parameters is affine in by with known,
Gaussian measurement noise €. Hence, the measurement
update consists of a Kalman update, again once per particle,

E’k+1|k = Bk|k7 (18)

bk = byt + Ki(yr — hi, — difugp — bijr1),
Py = Pyi—1 — K1 S, 'K
K, = Py S,
Sk = (Pyjj—1 + R+ Zp).
D. Algorithm Implementation

19)

In this section, we make connections between the densities
in (10) to formulate our joint state and parameter estimation
method. Consider first the weight update and measurement
likelihood in (13). To compute (14a), from (7) and (9) it
is clear that the knowledge of xj and wyj characterizes
€. Combining this with the lemma on transformations of
variables in densities [21] gives that

D(Yr|To:ks Yo:k—1) X< p(€x(Yr, Ti)|€0:k—1)- (20)

We marginalize out the noise parameters using the law of
total probability as

P(Yk|To:ks Yo:k—1) = /p(yk|0k7mk)

p(Ok|To:k—1, Yo:k—1) dOx. (21)

For e, = djwy, (21) is the integral of the product of a Gaus-
sian distribution and a Normal-inverse-Wishart distribution.
Hence, (21) is a Student-t distribution [20], implying that

p(er(yr: k) |€0:k—1) = St(frje—1, Ap—1: Pejp—1),

with Uy 1 = Vg|r—1 — 2, and mean and scaling

B -1 = il p—1,

< I+ Yek—1

Apjpe—1 = dy Agjp—1dy -

Vglk—1
However, in our case, € is partially known through the
Gaussian distributions ey and by, which complicates matters
as we have a mixture of Gaussian and Student-t distributions,
whose density has no closed form. To obtain an algorithm
suitable for online implementation, we relax the Gaussian
distribution for the inertial measurements and approximate
it as a Student-t through moment matching. This leads to a
modified scale parameter in the Student-t as

1+ Yejk-1
Vk\k—l

Vk|k 1=

Acpp1= diAgje—1dy, + R, (22)

Vk|k—1

where R = R + Pyj.—1- The approximation (22) can be
interpreted as a robustification of the measurement noise by
choosing the smallest common degree of freedom. Further-
more, in stationarity, from Vli_)rrolo St(p, Ayv) = N(p, A), it

follows that we recover the Gaussian measurement noise
with precision determined by the forgetting factor. Hence,
the measurement update (13) is done by

Gj, o< qj,_1 St A”, D), (23)
w = hy + dyfigp—1 + br,
- 14+ ygip— Uglk—1 — 2 =
AF — %dkqudg + k|~k71R.
Vk|k—1 VE|k—1
For the prediction step (14b),
P(Trr1]To:k, Yo:x) < p(wr(Try1)|€0:1)- (24)

Now, by marginalizing out the noise parameters in (14b),
utilizing (22) and combining with (24), we obtain

p(wk(wk+1)|é0:k) = St(ﬂ27]&27 V]:)7 (25)
where
pi = fp—1 + deAgp_1 AL 1%k
o vk —d I+ zATy, 2]
Ap = ( k|k—1
Vklh—1 — dy +1

— dp A 1Aék\k 1Ak:|k 1dk)»

Vi = Vglh—1 — dw + 1, 2 = € — flg pk—1-

Using the prediction model as proposal density in the particle
filter simplifies the algorithm greatly, since we can draw
samples from (25), and use these samples both to predict
the particles according to (7) and to update the sufficient
statistics in (16). Note also that the correlation between
process and measurement noise is accounted for by (25).
Particle filters can often benefit greatly from an improved
proposal distribution 7(-), but the simplification by using
the sampled noise values in both the measurement update of
the sufficient statistics and the weight update, is tempting.

Finally, to obtain estimates of the mean and covariance of
the process noise, we approximate the marginal as

P(Ok|yo:x) = /p(9k|ﬂ3o;k,yo:k)p(wo:k|yo:k)d$o:k
N

~ > Gp(OklThs. o),
i=1

(26)

which has complexity O(N). Based on (26), the unknown
parameters can be extracted [12], [14]. To obtain the marginal
posterior of the states, we extract the last state from (11),

Z%(S T — T}).

Both (26) and (27) overlook a potential path-degeneracy
problem, but taking into account different paths often leads
to an algorithm that is intractable for online implementation,
which is the focus here. Furthermore, for sufficient mixing
in the dynamic model (7), errors in the state are forgotten
exponentially in time, which ensures convergence of (27) as
N — oo [11]. For (26), exponential forgetting suppresses the
path-degeneracy problem, which causes issues for estimation

P(xr|Yo:r) 27)



of static parameters. The use of exponential forgetting acts
as a way to include mixing in the parameter estimation.
Algorithm 1 summarizes the method.

Algorithm 1 Bayesian Road-Friction Estimator
~ po(xo), {g6}iL1 = 1/N,

Initialize: Set {x)}Y,

{S0Hy = {7, 1 OvA?w707V(l)}7 {B5 171 ~ po(bo)
1: for k< 0to T do
2 forie{l,...,N} do
3 Update weight g}, using (23).
4 Update noise statistics Skl . using (16).
5: end for
6: Normalize weights as q¢i. = g/ (Z q.).
7 Compute Neg = 1/(32,1,(4})?)
8 if Nog < Nipr then
9 Resample particles and copy the corresponding
statistics. Set {qi}Y, =1/N.
10: end if
11: Approximate state posterior with (27).
12: Approximate parameter posterior with (26).
13: foric{l,...,N} do
14: Measurement update of bias using (19).
15: Predict noise statistics Sl+1|k using (17).
16: Sample 'wk from (25).
17: Predict state xj_ , using (7).
18: Predict bias using (18).
19: end for
20: end for
IV. RESULTS

A. Simulation Results

To generate synthetic data, we use a single-track model
with steering angle and wheel torques as inputs. The in-
puts are square waves with period time 4 and 5 seconds,
respectively, and they are chosen such that the longitudinal
wheel slip is below 5% and the small-slip approximations (4)
for the wheel-slip angles hold. The tire-stiffness parameters
are individually independent and Gaussian distributed with
standard deviation approximately 5% of the true values. At
30 seconds, there is a change of road surface. The mean
of the initial vehicle state and the initial covariance are
zo = [22 0 0]T, Py = diag([1 1 7/180]?), which are also
used to generate the ground truth. The initial standard
deviation of the stiffness estimates is 30 % of the true values
and the stiffness values are 70% of the true values. The noise
values of the measurements are typical for low-cost inertial
sensors. The bias is set to zero for simplicity.

Fig. 1 shows stiffness values for one Monte-Carlo trial.
The results are similar for the other stiffness quantities. The
accuracy of the estimated standard deviation in stationarity
in this realization is within 5%.

Fig. 2 display a histogram over the estimated mean of the
front lateral stiffness. The plot shows the probability on the
y-axis and the error in percentage on the x-axis. The error of
the mean value should ideally be Gaussian distributed, since

C¥ 1 A

1 vh oy gy T A

0.7

0.5

0.3 T I I -
0 20 40 60

Fig. 1. Estimated normalized longitudinal tire stiffness (red) and associated
standard deviation (green) for 500 particles with a forgetting factor of A =
0.99, for one realization. Normalized due to confidentiality.

p

0.05

0.03

0 .
-5 0 Err ij [%]

Fig. 2. Histogram of the mean error for the front lateral stiffness, using
500 particles over 100 Monte-Carlo executions. Results are similar for the
other stiffness quantities.

all available information is utilized if the error is Gaussian.
Clearly, the error is centered close to zero with the error
distribution resembling a Gaussian.

B. Experimental Evaluation

We have used a mid-size SUV, equipped with state-of-
the-art validation equipment, to gather data. The parameters
of the vehicle model and the tire-stiffness parameters are
extracted from data sheets and extensive experimental vali-
dation. The dataset consists of an initial accelerating phase
followed by a double lane-change maneuver on dry, even
asphalt. The vehicle model assumes knowledge of the front-
wheel steering angle, which is not measured. However, the
angle of the steering wheel, available from the CAN bus, is
converted to a steering angle of the front wheel assuming
a constant gear ratio. The Normal-inverse-Wishart prior is
initialized to have an error in the mean value of 20%, with
an initial standard deviation of 30% of the mean value.

Fig. 3 shows normalized mean and standard deviations for
the stiffness. In the initial straight-line driving phase (roughly
first 10 seconds), the lateral estimates, especially the rear
stiftness C?, get insufficient excitation. However, the benefits
of including longitudinal dynamics can be seen in the plot
for C}’, which gets excitation through the longitudinal inputs
in the beginning of the data set. The excitation level is small
throughout (see Fig. 4), but as soon as the double lane-change
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Fig. 3. Estimated normalized tire stiffness (red) and associated standard

deviation (green) for 500 particles with A = 0.995. Ground truth in black.
The coupling effects are clearly seen for C}’, which starts to converge
despite virtually no steering in the beginning.
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Fig. 4. Estimated longitudinal velocity and yaw rate. Ground truth for the
lateral velocity was not available for this experiment.

maneuver is initiated, around 13 seconds, the lateral stiffness
estimates start to find the correct values. There is no ground
truth available for the longitudinal stiffness, but the estimated
values are reasonable throughout the experiments.

Fig. 4 displays the estimated and measured longitudinal
velocity and yaw rate, for which we have ground truth. Both
the longitudinal velocity and yaw rate are closely tracked
throughout. Note the small acceleration and yaw-rate values,
indicating that there is only a small level of excitation in the
system. Despite this, the parameters can be estimated with
high precision. For example, the average error of the front
lateral stiffness throughout the experiment is 2.2%, and the
same number for the rear lateral stiffness is 0.2% (Fig. 3).

V. CONCLUSION

We presented a novel approach to joint state and tire-
stiffness estimation using inertial and wheel-speed sensors.

The resulting vehicle model leads to dependence between
the unknown process noise and the measurement noise.
We proposed a computationally efficient method to handle
the dependence. The method relies on conjugate priors
and moment matching to obtain a computationally efficient
marginalized particle filter, and by using exponential forget-
ting in the parameter prediction, we can handle time-varying
road conditions. Preliminary experimental results are highly
promising. It is future work to fully evaluate the algorithm
on longer data sets, under varying road conditions.
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