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Abstract

Thermal comfort in office buildings is emerging as an important variable that can be used to
maximize employee productivity. In this paper we propose a new Internet of Things (IoT)
based system that creates a personalized model of thermal comfort. To create this model, our
system collects telemetry via an IoT network of sensors and user inputs. This data is then
input into machine learning algorithms that continuously calibrate and update a personalized
thermal comfort model for the user. To facilitate the individuality of our models, the system
combines personal measurements from the Microsoft Band, such as biometric readings and
user feedback, with environmental measurements such as temperature, humidity, and air
speed. In this work, we evaluate a broad set of classification and regression algorithms. Our
experimental results show that using our IoT based system improves the mean squared error
of the thermal prediction by about 50% when compared to the industry standard method
developed by P.O. Fanger.
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Abstract—Thermal comfort in office buildings is emerging as
an important variable that can be used to maximize employee
productivity. In this paper we propose a new Internet of Things
(IoT) based system that creates a personalized model of thermal
comfort. To create this model, our system collects telemetry
via an IoT network of sensors and user inputs. This data is
then input into machine learning algorithms that continuously
calibrate and update a personalized thermal comfort model
for the user. To facilitate the individuality of our models, the
system combines personal measurements from the Microsoft
Band, such as biometric readings and user feedback, with
environmental measurements such as temperature, humidity,
and air speed. In this work, we evaluate a broad set of
classification and regression algorithms. Our experimental
results show that using our IoT based system improves the
mean squared error of the thermal prediction by about 50%
when compared to the industry standard method developed by
P.O. Fanger.
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able Devices

I. INTRODUCTION AND BACKGROUND

The growing diversification of today’s workforce has
created new social challenges in the office environment. A
particular challenge that has emerged is that of keeping a di-
verse office population comfortable throughout the workday.
Comfort, and particularly thermal comfort, has been shown
to improve not only the happiness of workers, but also their
productivity and social interactions. For example, one study
by Hedge et. al. [1] found that reducing temperatures such
that the average female office worker felt chilly increased the
typing mistakes by 74% and reduced output (productivity)
by 46%. Another study by IJzerman and Semin [2] showed
that warmth in the office environment encouraged closeness
and friendliness. Thus, creating a comfortable environment
by optimally setting the office temperature can be a signif-
icant competitive advantage to companies, saving as much
as 12.5% in worker wages [1].

However, finding the optimal office temperature is not
easy and requires that the preferences of multiple individuals
can be accurately modeled. Obtaining such models is not
trivial due to the combination of complex thermodynamics
of the human body and the non-linear mapping between
environmental variables and personal preferences. The topic
of thermal comfort modeling has been studied for at least
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four decades. Presently, the dominant model was developed
by Dr. Povl Ole Fanger [3], [4]. Dr. Fanger’s model did not
model the thermal comfort of a single individual, but rather
the mean vote of thermal comfort of a group of individuals.
Here the thermal vote is defined to be an integer between
1 and 7 on the Bedford Scale or between -3 and 3 on the
ASHRAE scale. Fanger’s model is calibrated such that at
most 5% of respondents are dissatisfied when the predicted
mean vote is comfortable. This model was adopted as an
international standard in ISO 7730.

Fanger’s model is based on heat balance equations that
describe the transfer of heat from the body to the environ-
ment. The model only requires one input (room temperature)
but relies on multiple additional factors such as metabolic
rate, effective mechanical power produced by the body,
clothing insulation, surface area of the body, mean radiant
temperature, relative air velocity, humidity, convective heat
transfer, and clothing surface temperature. These factors are
assumed or solved iteratively in the model. The assumptions
are made based on Fanger’s original experimental work,
which focused on a small group of north European men.
One particularly criticized assumption stemming from this
experimental group is the metabolic rate. Recent work has
shown that in the mixed gender office environment, Fanger’s
model assumptions may be overestimating the metabolic rate
of females by as much as 35% [5].

In addition to Fanger’s work, there are other heat exchange
models that have been developed. Examples of this work
include modeling human thermoregulation in the 1960s,
refined body segmentation with individualized heat exchange
models [6], and subdividing the human body into an active
controlling system and a passive controlled system [7].
Competing with these models is a class of models called
adaptive models that explain thermal comfort as a function
of outdoor and indoor temperature. Examples of this litera-
ture include the European Committee for Standartizations
CEN method [8], and the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE)
method [9]. Building on these approaches, Haldi proposes
a probabilistic model for thermal comfort in this PhD
dissertation [10]. These models are typically calibrated by
season (ex. Summer, Winter, etc.) and address the critique of
the physiological models that they are incapable of capturing



seasonal variation in individual preferences. Lastly, data
driven approaches for comfort modeling have been proposed
by Jiang and Yao [11] and Farhan et. al. [12], but these
focus on a few machine learning models or the prediction
of comfort on a limited scale.

In contrast with prior work, this work captures the emerg-
ing capabilities of the Internet of Things and wearable
technology to personalize machine learning models to a
degree which was not available even five years ago. This
work is based on the fact that we can monitor biometric
measurements such as heart rate and skin temperature, as
well as room measurements such as temperature, humidity,
and airspeed, and combine these with un-sensed features
such as length of day, day of the year, and time of the day.
These unprecedented capabilities allow us to use a new set of
features (simulated sensors) that, while not as precisely bio-
logically detailed as in the case of thermodynamic models,
allow us to avoid using imprecise estimates of parameters
such as clothing insulation or metabolic rate.

The remainder of this paper will be divided into four
sections. The first section, section II, will describe the IoT
platform used to collect the sensor data for thermal comfort.
Section III will discuss the machine learning algorithms and
the cloud based implementation that is used to derive the
thermal comfort models. Section IV will discuss briefly the
user dashboard developed to provide realtime feedback to
the user. Finally, the paper will conclude by showing results
our work and discussing the implications of this project in
section V.

II. BUILDING THE IOT PLATFORM

The idea in this research is to fuse environmental data
with data obtained from a wearable device and to create
a personal predictive thermal comfort model. This research
differs from prior work describing comfort models from a
thermodynamics perspective, or using indoor and outdoor
temperature to predict comfort. This work is also different
from prior studies that modeled the output of Fanger’s
equation. Examples of this include Atthajariyakul and Leep-
hakpreeda’s [13] Feed Forward Artificial Neural Network
model, and Castilla et. al.’s [14] polynomial model. In this
work, we directly solicit feedback from the user and use this
feedback to calibrate the machine learning model.

A. Room Sensor Node

We begin by describing the sensor node that collects
room data. We collect four principle features (measurement
types) from the room: temperature, humidity, air speed
and occupancy. The measurement of temperature is accom-
plished by placing three sensors in different locations around
the room. The placement of sensors in different locations
facilitates the creation of new simulated measurements, such
as temperature gradients, that allow the machine learning
algorithms to infer additional variables, such as the warming

effect of solar irradiation in the summer or the cooling effect
of windows in the winter. In this project, three temperature
sensors were used: the NEST Learning Thermostat accessed
via the NEST API through a NEST account, an Omega
iSD-TC industrial grade thermocouple, and the inexpensive
DHT11 Arduino platform temperature and humidity sensor.

Similar to temperature, humidity is sensed at multiple
locations in the room. Two sensors are equipped with both
a humidity and temperature sensor: the NEST Learning
thermostat and the DHT11 Arduino sensor. Because these
are placed in different parts of the room, the sensor readings
enable the generation of simulated features, such as a hu-
midity gradient that might be generated by heating from the
HVAC system. The air speed around a user is approximated
by readings from a Modern Device Wind Speed Sensor. This
sensor is currently located near the user but will be replaced
in the future with more precise user-centered algorithms
that estimate air speed around the user. Such algorithms
are currently under development at MERL [15]. Lastly, the
system measures room occupancy such that this information
can be incorporated in smart HVAC control methods that
allow greater energy efficiency. Occupancy is measured by
two Parallax PIR sensors that are placed near the entry point
and near the user. A picture of the room sensor node can be
seen in Fig. 1.

Room Sensor Node

Figure 1.

The Arduino sensor readings from the occupancy sensor,
the DHT11, and the Windspeed Sensor are collected using
an Arduino Mega 2560. This Arduino is connected to one
of two gateways in this project, a Raspberry Pi B+. The
Raspberry Pi serves as the room sensor node gateway that
receives data from the NEST Learning Thermostat, the



Omega thermocouple via Ethernet, and Arduino Data via
its USB port. This gateway then packages the data from
each sensor into a JSON packet and forwards this packet
to Microsoft’s Azure Cloud using the Advanced Message
Queuing Protocol (AMQP). A secondary function of the
Raspberry Pi is to run a messaging queue that ensures
massage retention when communication failure is observed.
This messaging queue is hosted on a local server, on the
Raspberry Pi, running RabbitMQ. Lastly, we should note
that this system could be further optimized by constructing
small voltage division circuits that allow us to connect the
Arduino Sensors directly to the Raspberry Pi GPIO ports.

B. Wearable Sensor Node

The second sensor node in the personal thermal comfort
estimation system is the wearable sensor node. Despite
the large number of available wearable sensors, there is a
shortage of platforms that have sensors in excess of the basic
heart rate sensor and accelerometers. Here the Microsoft
Band 2 stands out as the best wearable sensor node. This
is because it has more than 11 sensors including heart
rate, skin temperature, ambient light, galvanic skin response,
barometer, altimeter, pedometer, accelerometer, gyroscope,
distance measurement, calories, and UV light exposure. In
addition, through its open API, the Band allows access to all
of these sensors and internal algorithm outputs at a sampling
rate of 1 Hz on a continuous basis. This sample rate is more
than sufficient for the purpose of estimating personal thermal
comfort. Lastly, one should note that despite being sampled
continuously, the Band retains its long battery life, lasting
more than 8 hours on average from a full charge. Thus this
wearable sensor node is suitable for deployment in an office
thermal comfort optimization scenario.

The gateway for the Band sensor node is a Nokia 635
Windows Phone. To enable this phone to act as an IoT gate-
way, an application was written that subscribes to the Band
Sensors and then packages the incoming data into JSON
packets that are then forwarded to Azure. Because there are
currently no mobile AMQP libraries on the Windows Phone
platform, the data is encrypted using 256 bit encryption and
sent to Azure via HTTPS. In addition, the phone maintains a
list of measurements whose sending operations failed. This
list substitutes for mobile deployments of messaging queues
such as RabbitMQ that are not available for the Windows
Phone.

We enable the application to schedule a background
task on the Windows Phone such that the sensor data is
transmitted to Azure continuously from behind the phone
lock screen. This is implemented to improve the battery
life of the application. Here too, we note that the phone is
capable of lasting a complete work day on a single charge.

Lastly, the phone application facilitates another important
feature of the system: feedback collection. Using speech
recognition by Cortana, the phone app is capable of listening

to the user and recording his state as: Very Cold, Cold,
Chilly, Comfortable, Warm, Hot, or Very Hot. This feedback
can also be given via the microphone on the Band, which
makes the phone gateway merely a transmission device that
can be placed anywhere within Bluetooth signal range.

III. ADDING MACHINE LEARNING

Having created the telemetry system to collect the data,
the next step is to focus on the machine learning component
that will enable the generation of personalized comfort
models. In general there are two approaches to creating a
predictive model. The first approach is to predict discrete
classes of thermal comfort. This can be accomplished by
training classification algorithms that determine which of the
7 user comfort states correspond to the current set of sensor
measurements. The second approach is to predict a contin-
uous value of thermal comfort. That is, we acknowledge
that a user is discretizing his comfort state into the 7 point
Bedford or ASHRAE scale. Using these discretized samples,
a regression function is trained that predicts a continuous
value of thermal comfort. The sections to follow briefly
describe the machine learning methods used. For a full and
detailed description refer to [16].

A. Classification Methods

There are five classification methods whose performance
was evaluated in this project. These methods are Logistic
Regression, Support Vector Machines, Linear Discriminant
Analysis, Quadratic Analysis and K Nearest Neighbor. Lo-
gistic Regression is a method that models the probability
of a particular class (thermal comfort state) given a par-
ticular sample of data using the logistic function. Linear
and Quadratic Discriminant Analysis are methods of ob-
taining classification boundaries assuming the conditional
probability of a sample of data, given a particular class that
can be described by a multivariate Gaussian distribution.
Support Vector Machines (SVMs) are a method of finding
boundaries between neighboring classes that maximize the
distance (margin) between the nearest points of each class
and the boundary. SVMs can take advantage of the ker-
nel trick, which means the problem can be solved in an
alternative space where boundaries could be easier to find.
Lastly, K Nearest Neighbor is a non-parametric method of
classification where the mean vote of the K nearest neighbors
is used to determine the query class.

B. Regression Methods

In addition to the classification methods, ten regression
methods were used to model the continuous function of
thermal comfort. Broadly, these methods can be classified as
linear regression methods, probabilistic regression methods
and non-linear regression methods.

The first method of linear regression used was Ordinary
Least Squares (OLS). This method serves as a baseline test



to compare the performance of other methods. The OLS
method is mathematically described as finding the regression
coefficients that minimize the sum of the squared errors:

n k

error = Z(yL - Z(ﬁjxm))’ M

i=1 j=1

where y are the reported user comfort measurements, x; ; are
the observed sensor readings (features), 3; are the regression
coefficients, n are the total number of data samples, and &
are the number of coefficients in the regression. In addition
to OLS, three modified linear regression methods are tested
in this paper, LASSO, Ridge Regression and FElastic Net.
These methods add a penalty term to the Least Squares loss
function that penalizes large, or in some cases, non-zero
coefficients:

k
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Here )\ is a meta parameter of the algorithms that must
be tuned for each data set on which LASSO and Ridge
Regression are trained. As shown above, the LASSO penalty
is the Ly norm of the regression coefficients, which forces
the identified model to be sparse with few non-zero coef-
ficients. This is particularly helpful in revealing which of
the inputs are the most important predictors. In the case of
thermal comfort, this helps to determine which room and
personal measurements most directly determine the state of
the human comfort. In contrast, Ridge Regression uses a
penalty that is the Ly norm of the regression coefficients,
which penalizes large model coefficients. Ridge Regression
does not result in a sparse model but reduces the variance
in regression coefficients when some sensor measurements
are correlated. Combining the two types of penalties, Elastic
Regression seeks to minimize model variance while reducing
the effect of inputs that are not relevant:

k

k
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Lastly, Least Angle Regression builds a regression model by
sequentially adding predicting inputs.

To improve on linear regression methods, we incorporate
probabilistic regression methods that add information in the
form of probabilistic descriptions of noise in the data. In
particular, the methods here assume that the labeled data is
generated by recording the true data plus Gaussian noise,
N(0,0?). Then the labeled data has the form:

y(n) = z(n) + e(n), 4)

where €(n) N(0,02). Using this model, Bayesian Ridge
Regression, assumes the distribution of a probability of a
thermal comfort state given the model coefficients and a

sample of data that can be described by a Gaussian distri-
bution. Moreover, Bayesian Ridge Regression assumes the
distributions for all thermal comfort states can be described
by identically distributed Gaussian functions. The advantage
of this approach is that Bayesian Ridge Regression directly
estimates the output without the need for algorithm training,
or calibration of meta parameters. If the assumption of
identically distributed Gaussian distributions is relaxed to in-
dependent distributions, then the method is called Automatic
Relevance Determination. Lastly, the thermal comfort can
also be directly estimated using the covariance matrices and
assuming the form of the covariance function. This method
is called the Gaussian Process Regression.

Finally, two non-linear methods of regression are used:
Support Vector Regression and Kernel Ridge Regression.
Kernel Ridge Regression is the determination of a regression
model using the ridge regression loss function after the
kernel trick has been applied to the data. Support vector
regression is a method of finding a regression function
that deviates at most v from the training data. Here v is
minimized while training the support vector regression.

C. Model Training and Cross Validation

For the experiments in this paper, the machine learning
models described in the previous section are trained on 530
labeled data points. However, in order to eliminate bias
in the model fit, the data set is partitioned to train model
meta parameters and to perform cross validation to find the
average root mean square error (RMSE) of the prediction.
To train model parameters, we partition the original data
set using a 20/80 split. Here 20% of the data is used to
train the model meta parameters and choose the best data
kernel, while 80% of the data is used in cross validation
to obtain the average RMSE. We chose to use leave-one-
out cross validation method because it has the lowest error
bias of all the cross validation methods. Details regarding
cross-validation methods can be found in [16].

IV. DISPLAYING THE RESULTS

Having constructed the IoT network that collected teleme-
try data and trained machine learning models on this data,
the final step is to combine all elements into a dashboard
where the user can see real-time sensor measurements, the
current algorithm estimate of thermal comfort, and a display
of the change of model parameters after new user feedback
is provided. This dashboard is constructed using the Bokeh
package created by Continuum Analytics. A screenshot of
the dashboard can be seen in Fig. 2. The dashboard is
divided into three columns. The leftmost column displays
some of the current measurements observed by the sensors.
The center column displays the current model parameters
and the changed model parameters after each user feedback
recording. The rightmost column displays a plot similar to
Fig. 3, which will be discussed in the section to follow. This
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Figure 2.

Method RMSE
SVM 0.560
Kernel Ridge Regression 0.574
Logistic Regression 0.575
Support Vector Regression 0.585
Bayesian Ridge Regression 0.589
Ridge Regression 0.597
LASSO 0.601
ARD 0.608
Linear Discriminant Analysis 0.621
Ordinary Least Squares 0.624
Elastic Net 0.622
K Nearest Neighbor 0.634
Gaussian Process Regression 0.701
Least Angle Regression 0.710
Quadratic Discriminant Analysis | 0.885
Fanger’s Method 1.15

Table I
RMSE OF THERMAL COMFORT ESTIMATION METHODS

plot shows the current estimate of thermal comfort plotted
onto the curve that describes the number of dissatisfied
individuals if the mean group thermal comfort vote is as
predicted.

V. RESULTS AND DISCUSSION

When supplied with telemetry data from the IoT network,
the machine learning methods discussed in the previous
sections are capable of producing a personalized thermal
comfort model for the individual wearer. In this study
the ability of the models to predict thermal comfort was
evaluated using a set of 530 data points. This data was col-
lected both passively, on days when the ordinary thermostat
controlled the room temperature, and actively, by regularly
sampling user feedback while varying room temperature and
humidity.

0

Coefficient Index

a0

Bokeh Dashboard for User Feedback

The results of all learning methods and Fanger’s method
are shown in Table I. Here the results are shown as Root
Mean Squared Error (RMSE) per method and are sorted such
that the method with the lowest RMSE is at the top of the
table. All machine methods outperform Fanger’s method.
In fact, the RMSE of Fanger’s Method is 1.15, which is
about 50% higher than the best machine learning method, the
SVM. This is true despite the fact that Fanger’s formula is
specifically designed as a heat transfer model that describes
the transfer of heat from the body to the environment and
vice versa.

This stark comparison between Fanger’s formula and the
machine learning methods is due to the fact that Fanger’s
formula assumes static values for many of its parameters. As
previously mentioned, these values include a fixed metabolic
rate, clothing surface temperature, and activity level. We
should note that in this study, the inputs to Fanger’s formula
were slightly increased to include humidity and air velocity.
Thus the calculation of Fanger’s formula does benefit from
the IoT framework.

In contrast, the machine learning methods take into ac-
count measurements for many of the variables in Fanger’s
equation. In addition, the non-linear relationships employed
in the SVM and Kernel Ridge Regression were closest to
approximating the thermodynamic relationships and physi-
ological relationships. As an example, heart rate is closely
linked to metabolic rate and its coefficient in the learned
models reflects this.

Another way to evaluate the effectiveness of the thermal
comfort prediction method is to compare the predicted
percentage of dissatisfied (PPD). The PPD was calibrated
by Fanger such that when the average comfort vote was
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Figure 3. RMSE of Thermal Comfort Prediction vs. Percent of Dissatisfied
Occupants

“comfortable,” the percent dissatisfied would be 5%. The
plot of percent dissatisfied vs the predicted thermal comfort
is shown in Fig. 3. Note that the two quantities have
a parabolic relationship, which means that as the mean
vote moves away from O (comfortable) the percentage of
dissatisfied people quickly increases. The background of the
plot is also color coded to show the comfort scale: green
stands for the comfortable zone, light blue stands for the
chilly zone, light red stands for warm zone, blue stands for
cold, and red stands for hot.

The red bars across the plot show the RMSE level for
the given method. For example the top bar shows Fanger’s
method has an RMSE of 1.15, which corresponds to 33%
dissatisfaction. The best machine learning method, the SVM,
has an RMSE of 0.56 which corresponds to 11.5% dissat-
isfaction. This means that reducing the RMSE by 50% has
yielded a 21.5% reduction in the percent of dissatisfied office
occupants.

VI. CONCLUSION

This paper presented an IoT based system that uses
machine learning to find a personal thermal comfort model.
Using low-cost room sensors, a wearable fitness band, a
smart phone and a Raspberry Pi, we assembled an IoT sys-
tem that provides a sufficient level of resolution to improve
the accuracy of thermal comfort prediction by about 50%.
By improving the accuracy of thermal comfort prediction
in a personalized fashion, this system enables the creation
of office-wide thermal comfort estimation systems that are
capable of solving thermal comfort problems.
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