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1. Introduction

The Preconditioned Steepest Descent (PSD) iteration is a well known precur-
sor of the optimal Preconditioned Conjugate Gradient (PCG) algorithm for solv-
ing Symmetric Positive Definite (SPD) linear systems. Given a system Ax = f
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with an SPD matrix A and an SPD preconditioner T the method at each iter-
ation i updates the current approximate solution z(*) as

w0t =20 4 oOT(f — A2, i=0,1,...; (1)

where the iterative parameter a(?) is chosen to ensure that the new approxi-
mation z(**1) has the smallest, among all vectors of the form x + oT(f — Azx),
A-norm of the error z(+1) — z.

The optimality of PCG stems from its ability to construct approximations z (%)
that globally minimize the A-norm of the error over an expanding sequence
of Krylov subspaces while relying on a short-term recurrence [4, 11]. In con-
trast, the PSD iteration (1) is locally optimal, searching for a best approxi-
mation z(tY) only in a single direction, given by the preconditioned residual
T(f — Az™).

The lack of global optimality in PSD leads to a lower convergence rate.
In particular, instead of the asymptotic convergence factor (v/xk —1)/(v/k + 1),
guaranteed by the optimal PCG, each PSD step is guaranteed to reduce the error
A-norm by the factor (k—1)/(k+1), e.g., [4, 11], and the error Euclidean norm
by the factor 1 — 1/k, see [12], where x denotes a spectral condition number
of the preconditioned matrix T A. Nevertheless, despite its generally slower
convergence, PSD (and even simpler iterations, such as Jacobi or Gauss-Seidel)
finds its way to practical applications, due to a reduced amount of memory and
computations per iteration [15, 13, 22].

If the matrix A is symmetric indefinite, then an optimal analogue of PCG is
given by the preconditioned MINRES (PMINRES) algorithm [16, 8] 1. Similar
to PCG, PMINRES utilizes a short-term recurrence to achieve optimality with
respect to the expanding sequence of the Krylov subspaces [11, 9]. However,
since A is indefinite, minimization of the error A-norm is no longer feasible.
Instead, PMINRES minimizes the T-norm of the residual f — Az(+Y, where T
is a given SPD preconditioner.

The symmetry and positive definiteness of the preconditioner is generally
critical for PMINRES. Under this assumption the method is guaranteed to con-
verge, with the convergence bound described in terms of the spectrum

AMTA) ={\ <. <A< A1 <. <A}

of the preconditioned matrix T'A. In particular, assuming that A(TA) is located
within the union of two equal-sized intervals Z = [a, b] | [c, d], where a < \; <
Ap £b <0 <e< A1 £y, < d, the following bound on the residual T-norm

IPMINRES is mathematically equivalent to preconditioned Orthomin(2) and Orthodir(3)
algorithms (e.g., [11]) that can as well be viewed as optimal analogues of PCG for symmetric
indefinite systems. However, Orthomin(2) can break down, whereas Orthodir(3) has a higher
computational cost compared to PMINRES. Therefore, throughout, we do not discuss these
two alternative schemes, and consider only the PMINRES algorithm.



holds: /2]
@, <o Vlad = Vlbe| (0) 5
R e e ©)

where 4 is the PMINRES iteration number and || - |7 = (-, T -)%/? [11, 9].

While the optimal PMINRES algorithm is used in a variety of applications
and has convergence behavior that is relatively well studied, to the best of our
knowledge, little or none has been said about PSD-like methods for symmetric
indefinite systems, where the preconditioner is SPD, i.e., is exactly the same as
in PMINRES. For example, as we explain in the next section, iterations of the
form of (1) cannot generally result in a convergent scheme.

In this paper we address the question of what exactly is an analogue of PSD
in the case of a symmetric indefinite system with an SPD preconditioner. In par-
ticular, exactly the same way PSD can be interpreted as a form of PCG restarted
at every step, we show that a basic PSD-like scheme for an SPD-preconditioned
symmetric indefinite system is mathematically equivalent to the restarted PMIN-
RES, where restarts occur after every two steps, i.e., the residual 7T-norm is min-
imized over two-dimensional subspaces. We derive a convergence bound, which
yields a stepwise convergence factor that is similar to the one in (2) up to the
presence of square roots, analogously to the PCG/PSD case for SPD systems.

We also demonstrate that, if certain information about the spectrum of the
preconditioned matrix is at hand, then the two-dimensional minimization can be
turned into minimization over a one-dimensional subspace, while guaranteeing
the same convergence bound. Such information can also provide an interesting
possibility for randomization of the descent direction, which we as well briefly
discuss in this paper.

Although the primary goal of this work is to bridge the theoretical gap be-
tween optimal (PMINRES) and PSD-like methods for solving symmetric indef-
inite systems, we also address several practical issues. In particular, we discuss
implementations of the PSD-like algorithms, which should be fulfilled carefully
in order to ensure a minimal amount of computation and storage per iteration.

Because of the inferior convergence rate, the PSD-like methods cannot be
generally regarded as an alternative to the optimal PMINRES. However, we
point out several specific situations where the use of the more economical PSD-
like iterations is appropriate and can be preferred in practice. Such situations
arise, e.g., when only a few iterations of a linear solver are needed, due to a
high preconditioning quality, good initial guess, or a relaxed requirement on
the accuracy of the approximate solution. For example, this setting appears
in the framework of preconditioned interior eigenvalue calculations, where a
preconditioner can be defined by several steps of a linear solver applied to a
shifted system of the form (A—oB)w = r [20, 25, 7]. The PSD-like methods can
also be used as smoothers in multigrid schemes [6, 22]. In any of these contexts,
the savings in storage and number of inner products offered by the PSD-like
algorithms can potentially be beneficial for achieving the best performance.

The paper is organized as follows. In Section 2, we present a basic form of the
PSD-like iteration for solving a symmetric indefinite system with an SPD pre-




conditioner, which is based on two-dimensional minimization of the residual T-
norm, and derive the convergence bound. In Section 3, we show how some knowl-
edge of spectrum of the preconditioned matrix can simplify the PSD-like itera-
tion, leading to a scheme which minimizes the residual over a one-dimensional
subspace. A simple randomization strategy is described in the same section. We
consider several examples in Section 4. Conclusions can be found in Section 5.

2. The PSD-like iteration for symmetric indefinite systems

Given an SPD preconditioner T', a candidate PSD-like scheme for symmetric
indefinite systems can be immediately defined by directly applying iterations of
the form (1). In this case, the corresponding error equation has the form

Y = (I —aWTA)e®, (3)

where e = z* — () is the error at step i and z* = A~ f is the exact solution.

Let y; be the eigenvectors of the preconditioned matrix T'A associated with
the eigenvalues \;, and suppose that e() = Z;;l cjy; represents an expansion
of error in the eigenvector basis with coefficients ¢;. Then, according to (3),

n

e =% (1 - aDj)ejy;. (4)

j=1

Since A(T A) contains both positive and negative eigenvalues, for any choice of
the iteration parameter ¥, there exist A;’s of an opposite sign, i.e., such that
sign();) = —sign(a(?). In this case, the corresponding factors p; = 1—a(D\; =
1+ |aD )| in (4) are greater than one.

Thus, regardless of the choice of a?), when applied to a symmetric indefinite
system with an SPD preconditioner, iteration (1) will amplify the error in certain
directions. Hence, it does not deliver a convergent scheme, unless initial guess
is specially chosen. Therefore, we cannot consider (1) as an analogue of PSD in
the indefinite case.

A possible angle to look at (1) is as to a restarted Krylov subspace method.
In particular, the PSD algorithm for SPD systems can be interpreted as PCG
that is restarted at each step. The same viewpoint can be adopted for systems
with an indefinite A and an SPD T'. In this case, we can define an analogue of
PSD as a properly restarted version of PMINRES. As shown above, restarting
PMINRES at every step?, which yields iteration of the form (1), fails to ensure
the convergence. Therefore, we are interested in determining the frequency of
restarts which, on the one hand, keeps the size of the local minimization sub-
space as small as possible and, on the other hand, guarantees the convergence.

Following these considerations, it is natural to consider an iterative scheme
that is obtained from PMINRES by restarting the method after every two steps.

2Such a scheme is equivalent to preconditioned Orthomin(1); see, e.g., [11].



This gives iteration of the form
) = 2@ 4 gOTr® L o OTATO =01, .; (5)

where the parameters a(? and () are chosen to minimize the residual 7T-norm,
i.e., are such that

Ir@ ) = min Ir® — Aul|7. (6)
uEspan{Tr(i),TATr(”}

In what follows, we prove that (5)—(6) converges at a linear rate that is similar
to that of PSD and, hence, represents a true analogue of PSD for symmetric
indefinite systems.

2.1. The convergence bound

Let us first consider a stationary iteration of the form

r@ = f— Az® D = 7@ ) = TAw@ | () = g(0) — By
20t = 20 4 o1 i=0,1,..., (™)
where the parameters o« > 0 and  remain constant at all steps. Scheme (7)
can be viewed as a preconditioned Richardson-like method [4] with the search
direction given by (9, which is a linear combination of w(? = Tr(® and s =
TAw® . The following theorem specifies the values of o and S that yield the
convergence of (7), and states the corresponding convergence bound.

Theorem 1. Let iterations (7) be applied to a system Ax = f with a nonsingu-
lar symmetric indefinite A and an SPD preconditioner T, and assume that the
spectrum of T A is enclosed within the pair of intervals T = [a,b]Jc,d] of equal
length. If b < B < c and 0 < a < 78, where T3 = 2/Arr%a)§}()\2 — BA), then
€ia,
[EaSaed (7S 2
— <y, = max [l—a(A* =N <L 8
P 5P P Xy [ el =8 ®)
Moreover, the convergence with optimal factor

lad| — |bc|

_— 9
lad| + |bc| (9)

P = Popt =

corresponds to the choice = Bopt = ¢ — |b] and o = aopr = 2/(|blc + |ald).

Proof. Let S35 = (IT'A— BI)TA. Then the equation for preconditioned
residuals of iteration (7) can be written in the form Tr(+1) = (I—a.S5)Tr®, and

P0G = (T = aSp)Tr, (I — aSe)TrY) = (Qy, Qy),
where QQ = I — ozT_l/QSBTl/2 is a symmetric matrix and y = T%/2r(®). Hence,

PV < A (@) -



where Anax(Q?) denotes the largest eigenvalue of Q2. Since T_l/zSng/2 is
similar to Sg, both matrices have the same eigenvalues pg()\;), where pg(A) =
A? — B\ and A\; € A(T'A). Thus,

2y _ . 2 1— 2
Amax(Q) ASR?%‘A)“ apg(N)) _glgg( aps(N)7,

and therefore _
[EaSal Pl

WSPETQ%H_QNB(A”- (10)

We now determine the values of parameters a and f that guarantee that
|1 —aug(N)| <1 for all A € Z. Clearly, this is possible only if the value of 3 is
chosen to ensure that ug(A) is of the same sign for all A € Z. Therefore, since
iteration (7) assumes that o > 0, we require that 3’s are such that ug(\) is
positive for all A € Z. Since pg(A) is a parabola, which is concave up with zeros
at 0 and B, ug(A) > 0 on Z if and only if b < 8 < ¢; see Figure 1.

Figure 1: Hlustration of pug(\) = A2 — A, where 3 > 0 and Z = [a,b] U [c,d] .

Given a value 3, such that ug(A) > 0 for any A € Z (b < 8 < ¢), we look
for parameters a that ensure |1 — apg(A)| < 1. Solving this inequality for o
immediately reveals that |1 — apg(A)| < 1 for any A € Z if 0 < a < 75, where

— _ 2 _
75 = 2/ max pg(A) = 2/ g;fg]g(k BA),

with the last equality following from the fact that pg(A) attains its maximum
on T either at a or d (minimum is achieved at b or ¢), i.e.,

_ 2 _ : — 2 _ gy
If\lg%iﬂﬁ(A)—/\én{%z}()\ BA),  minpp(A) Aé%fi}Q BA); (11)

see Figure 1. Thus, for b < 8 < cand 0 < a < 73, we have |1 — apg(N)| < 1 for
any A € Z, and therefore the factor p in (10) is less than 1. Furthermore, the
maximum of |1 — apug(A)| over Z in (10) is given either by |1 — amaxyez ng(N)]



or by |1 —aminyez pg(A)|. Hence, using (11), we obtain the expression for p as
in (8), which completes the proof of the first part of the theorem.

Next, we determine the values of o and 8 that yield the smallest p, i.e., give
an optimal convergence rate. To do so, we first fix an arbitrary 8 € (b, ¢) and
search for the value of «, denoted by aop(8), that minimizes p in (10). Since,
as discussed above, p = max{|l — aminyez ptg(N)|, |1 — amaxyez pg(A)|}, the
optimal value aop:(5) is given by

2 2
Oéopt(ﬁ) = p = . 2 2 .
A A — —
min ps(A) + max pg(X) Agglc}(k BA) + x?iifé}()‘ BA)
(12)
For this choice of o, 1 —aminyez pg(A) = —(1—amaxyez ug(A)), and, hence, p

in (10) is given by popt(8) = 1 — aope () minyez g (). It is then easy to check,
using (11) and (12), that p = pop:(3) can be written in the form

_ A% = BA)
CR@) -1 ey
Popt(B) = W’ R(B) = —Aginc}(/\z ey . (13)

Thus, in order to achieve the smallest p, it remains to find the value of g,
denoted by Sop¢, that minimizes £(5) in (13) over all b < 8 < c.

Let 8 = B« = ¢ — |b]. In this case, the parabola pg, (A) is located symmetri-
cally with respect to the intervals [a, b] and [c, d]. In particular, this implies that
the largest value of ug, (A\) = A% — B, is attained simultaneously at a and d
and the smallest value simultaneously occurs at b and c¢. Thus, by substituting
B« = ¢ — |b] into £(B) in (13) and using the assumption that d — ¢ = |a| — |b],

.
e obtain ~ B2 —pd A\ [(|b]+d—c\ ad u
o= e = () () - -

We now observe that 5, minimizes £(8) in (13), i.e., #(8x) in (14) is the smallest
for all B in (b, ¢). Indeed, if € > 0 is an arbitrary number, then

. (a? — Bua) —ea _ a®> —Bea  d*—B.d
% — > — — ).
F(B +e) (2 —Bsc) —ecc = 2 —Bic 2 —Bic F(B.)
The same can be shown for ¢ < 0. Thus, Bopr = B« = ¢ — |b]. The optimal
convergence factor p = pop: is then given by (9), and is obtained by evaluating
Popt(B) in (13) for B = f. using (14). Finally, from (12), we derive the optimal
value of a, given by aopr = opt(B+) = 2/(|blc + |ald). O

The convergence of the PSD-like iteration (5)—(6) follows immediately from
Theorem 1 and is characterized by the corollary below.

Corollary 1. Method (5)—(6) converges to the solution with residuals satisfying

[+ D]lp Jad| — |bel
|lr@ |7 — |ad| + |be|

(15)



Proof.  Since a!¥ and B® in (5)-(6) are such that r(*1) has the smallest
T-norm over ") + span {Aw(i), As(i)}, where w(® = Tr(® and s = TAw®

[P g = ) — 8D 4w — 0l 45Dl < 1D — FAwD — GAsD |z,

for any &, B €R. The inequality holds for any & and 3 and, therefore, is valid for
the particular choice § = —aopt Bopt and & = aopt, Where aopr = 2/(|blc + |ald)
and Bopt = ¢ — |b| are defined by Theorem 1. Thus,

I Dl < 1 = aope Al |7 = (17|, (16)

where () = () — ﬂoptw(i) and 70D = p(0) — aoptAl(i) is the residual after
applying a step of stationary iteration (7) with optimal parameters to the start-
ing vector #(9). Then, by Theorem 1, ||V |7 < pop|Ir® |7, with pop defined
in (9), and the proof of the corollary follows from (16). O

If we define kK = ad/bc, then the stepwise convergence factor in (15) can be
written as (k —1)/(k+1). The PMINRES asymptotic convergence factor in (2)
is then obtained by taking the square root of k, which gives (v/k—1)/(v/k+1).
This relation is similar to that between the PSD and PCG convergence factors
for SPD systems, where & is, instead, given by the spectral condition number of
TA. Hence, method (5)—(6) can be viewed as a direct analogue of PSD in the
case of symmetric indefinite systems, where the preconditioner 7" is SPD.

2.2. The PSDI algorithm.

We now describe a simple and efficient algorithm implementing the PSD-like
iteration (5)—(6), whose convergence was established in the previous section.
Condition (6) implies that the new residual 7+ = r() — 300) 4y() — () A5()
is T-orthogonal to span{Aw®, As®}, where w® = Tr® and s*) = TAw®.
Thus, at each step of method (5), iteration parameters a® and B can be
determined by imposing the orthogonality constraints

(0D Aw D) = 0 and (r0HD | As®) =0,
which is equivalent to solving a 2-by-2 (least-squares) system
Z*TZé = Z*Tr®, (17)

where Z = [Aw, As™], and the solution is of the form ¢ = (3 ()T, Tt is
easy to check that, if Z*T'Z is nonsingular, (17) yields iteration parameters

B(z) _ (fV B /“7)/(1//14 _ 7}2)7 a(i) _ (/LQ _ §U)/(V“ — 7]2)’ (18)

where & = (w®, Aw®), v = (4D, TAsD), p = (w?, AsD), and n = (s, As().
Moreover, since det(Z*TZ) = vu — n?, the nonsingularity of Z*TZ guarantees
that no division by zero is encountered in evaluating the expressions for a(?
and () and hence iteration parameters (18) are well-defined in this case. Note



that our definition of the iteration parameters through solution of a least-squares
problem is similar to that in the generalized conjugate gradient methods [2, 3].

If Z*TZ is singular, then the PSD-like iteration (5), with (¥ and () com-
puted by (18), breaks down due to division by zero. This, however, constitutes
a “happy” break-down, which indicates that an exact solution can be obtained
at the given step. Indeed, since 7" is SPD, the matrix Z*TZ is singular if and
only if the columns Aw® and As(® of Z are linearly dependent. The latter
implies, in particular, that ) and ATr(® are collinear, in which case mini-
mization (6) yields a zero residual. The associated exact solution is given by
2. = 2D 4+ OTrO  where

B = (r@ ATrOp /(ATrD | ATr D) = (w®, Aw®) /(0D AsD) = ¢/p.
Thus, we have proved the following proposition.

Proposition 1. Iteration (5) with o and 3% defined by (18) does not break
down, provided that w9 = Tr® and s = TAw® are linearly independent.
If w and s% are linearly dependent, then x, = ™ + fWw®  where B =
(w®, Aw@) /(w®, As(™), is the exact solution of Ax = f.

Algorithm 1 summarizes an implementation of the PSD-like method (5)—(6),
which we further refer to as the PSDI algorithm.

Algorithm 1: A PSD-like scheme for symmetric Indefinite systems (PSDI)

Input: The matrix A = A*, a preconditioner T = T* > 0, the right-hand side
f, and the initial guess z(;
Output: The approximate solution x;

Lz 20w T(f — Az);
2: while convergence not reached do
3. 1<« Aw; s+ TI;

40 &+ (w,l);

5. 1+ As; g+ Tl

6: v (L) p (w);n<(s0);

7. if vy —n? > 0 then

8: B (v —pun)/(vp —n?); o (1 = &n)/ (v — 1?);
9: else

10: B« &/n; o+ 0; //exact solution found

11:  end if

12:  Update x <+ =z + fw + as and w + w — Bs — agq;
13: end while
14: Return z.

Each PSDI iteration performs two matrix-vector multiplications and two pre-
conditioning operations. The computation of parameters o and () requires
total of four inner products. The number of stored vectors is equal to five.



2.3. PSDI vs PMINRES(2)

Algorithm 1 is mathematically equivalent to PMINRES restarted after every
two steps. Therefore, a possible implementation of method (5)—(6) can be ob-
tained by directly restarting any “black box” PMINRES solve. However, such
an implementation, referred to as PMINRES(2), is not optimal as each restart
will accrue an additional matrix-vector product and preconditioning operation
that take place at the setup phase to form an initial preconditioned residual
vector. By contrast, each PSDI iteration in Algorithm 1 performs a minimal
number of operations and gives a simple and efficient implementation of (5)—(6).

2.4. PSDI vs PMINRES

Clearly, the convergence of PSDI is generally slower than that of PMINRES,
as confirmed by bounds (2) and (15). However, in some specific situations, to be
illustrated by our numerical examples, the reduction in computation and storage
offered by PSDI (discussed below) can offset the benefit of a faster convergence.

Although PMINRES performs only one matrix-vector product and one pre-
conditioning operation per step, according to (2), it guarantees the residual norm
reduction only after every two iterations. Thus, both PSDI and PMINRES re-
quire two matrix-vector multiplications and two preconditioning operations to
ensure the decrease of the residual T-norm. Similar to PSDI, PMINRES per-
forms two inner products per matrix-vector multiplication, so that the number
of inner products needed for the residual reduction after two PMINRES steps
is four. However, PMINRES also requires an additional inner product at the
setup phase prior to the main loop; see, e.g., [11, Chapter 8|. This extra work
can potentially be sensible, e.g., if the total number of iterations is small or if
the linear solve is repeatedly invoked for a sequence of systems.

More pronounced are memory savings. In contrast to only five vectors stored
by PSDI, a PMINRES implementation relies on at least eight vectors. Four of
these vectors stem from the preconditioned Lanczos step, three are involved in
the search direction recurrence, and one is used to accommodate the approx-
imate solution; see, e.g., [11, Chapter 8]. Thus, the PSDI algorithm can be
attractive in cases where storage is limited or the memory accesses are costly.

Finally, note that if the residual T-norm (or the 2-norm) is required to assess
the convergence, then Algorithm 1 should also store two additional vectors (") =
f— Az and Aw®, and at each iteration perform an extra inner product to
evaluate the residual norm. However, such a residual norm evaluation is often
unnecessary in practice, and a less expensive stopping rule can suffice. For exa-
mple, one can determine convergence using the largest magnitude component of
the preconditioned residual w(® | which is readily available at PSDI iterations.

2.5. PSDI vs existing schemes with comparable cost and storage

One may naturally wonder if PSDI provides any advantage over a number
of existing schemes with comparable cost and storage, obtained by restarting or
truncating earlier methods, such as preconditioned Orthomin and Orthodir [29].

10



As we explained in Section 2, the preconditioned Orthomin(1) algorithm,
equivalent to PMINRES restarted after every step, generally fails to converge
when applied to symmetric indefinite systems with an SPD preconditioner. For
j > 1, the preconditioned Orthomin(j), as well as its restarted versions, are
known to encounter a possible break-down, because zero is in the field of values
of TA [11]. By contrast, according to Theorem 1 and Proposition 1, PSDI is
guaranteed to converge and does not break down.

Note that the above discussion also applies to a somewhat less well know
(preconditioned) Orthores algorithm [29]. The latter is known to be alge-
braically equivalent to (preconditioned) Orthomin, converging if and only if
Orthomin converges; see [1].

The situation is slightly different for the preconditioned Orthodir scheme,
which is known to be break-down free. However, restarting preconditioned
Orthodir at every step is equivalent to preconditioned Orthomin(1) and, hence,
fails to converge. Restarts after every two steps yield an implementation that is
mathematically equivalent to PSDI and PMINRES(2), but which is more costly
than both, requiring more (six versus four in PSDI) inner products per restart
cycle. The convergence behavior of the the truncated versions, Orthodir(1) and
Orthodir(2), is not clear.

3. Residual minimization over a one-dimensional subspace.
Let us now assume that we know the endpoints b and ¢ of the intervals Z.

In this case, one can fix a value § € (b, c), and consider the iterative scheme

) ) o ) @) A1)
1) _ () ) @ (@A)
T =z 4+ oWV, « _(Al(i),TAl(i))’2_0’1""’ (19)

which updates the approximate solution by performing steps in the direction
1) = s — 3w Here, the choice of a(¥) ensures that the new residual r(*+1) =
() — q Al has the smallest T-norm, i.e.,

' = argmin||r®? — o AID |7
a€R

The following corollary of Theorem 1 guarantees that method (19) converges to
the solution at a linear rate.

Corollary 2. Method (19) converges to the solution for any f € (b,c) with

residuals satisfying

D

e <P = popt(B), 20

HT'(Z)”T P p Pt( ) ( )

where popt(B) is defined in (13). Moreover, if § = Popt = c—|b|, then (15) holds.
Proof. Since V) in (19) delivers the smallest residual T-norm, we have

[rE+D )z = [ = aDAIO 7 < 5D — GAL |,

11



for any & € R. Hence, the inequality also holds for & = aope(8), with cope(5)
defined in (12), i.e.,

Hr(i+1)”T < ”T(i) _ aopt(B)Al(i)HT = ||7;(i+1)”T7 (21)

where 71t = () _ aopt(ﬁ)Al(i) is the residual after applying a step of sta-
tionary iteration (7) with a given 8 € (b,¢) and o = aope(B) to the starting
vector z(¥). Then, following the proof of Theorem 1, |F0FY |7 < popi(B)[17 D ||,
with popt () defined in (13), and bound (20) follows from (21). Furthermore, by
Theorem 1, if § = Bopt = ¢ — |b] then pop:(8) turns into the optimal factor (9)
and, hence, (15) holds. O

Corollary 2 suggests that the fastest convergence rate of iteration (19), given
by (15), corresponds to S = c¢—|b|. Therefore, with this choice of 3, scheme (19)
can also be viewed as an analogue of PSD in the symmetric indefinite case.

In contrast to (5)—(6), the minimization in (19) is performed only over a one-
dimensional subspace. However, in order to apply the scheme, one has to come
up with reasonable estimates for the “inner” endpoints b and c. For example,
a trivial estimate is given by b = ¢ = 0, which turns the method into the well
known preconditioned residual norm steepest descent scheme [18], but deter-
mining b and c that constitute better approximations to the eigenvalues A\, and
Ap+1 of TA can lead to a faster convergence.

Generally, information about the spectrum of the preconditioned matrix T'A
is not easy to obtain. Nevertheless, for certain problems, such information can
be available through theoretical analysis [19, 27]. Alternatively, one can attempt
to determine the fixed iteration parameter empirically by trying different small
values of . Finally, estimates on b and ¢ can be obtained by applying several
steps of an interior eigenvalue solver (e.g., [10, 25]) to find a few eigenvalues
of T'A near zero. For example, if a sequence of systems with the same matrix
is solved, then such eigenvalue calculations can be performed only once during
preprocessing and their relative cost in the overall computation can be negligible.

3.1. The PSDI-1D algorithm.

An implementation of method (19) is given in Algorithm 2, which we call
the PSDI-1D algorithm.

Similar to Algorithm 1, each PSDI-1D iteration requires two matrix-vector
multiplications and two preconditioning operations. At the same time, due to
the available information about the spectrum, Algorithm 2 brings the number
of inner products per iteration down to two (one per matrix-vector product),
which is two times less than in PMINRES. The number of stored vectors is five,
as in Algorithm 1.

Table 1 summarizes the computational and storage expenses of different algo-
rithms to ensure reduction of the residual T-norm. It shows that, while generally
exhibiting a slower convergence, the PSD-like methods need fewer inner prod-
ucts and storage to reduce the residual. Therefore, if used in a proper context,
the algorithms can be of practical interest for obtaining the best performance.
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Algorithm 2: A PSD-like scheme for symmetric Indefinite systems with
residual minimization over a 1D subspace (PSDI-1D)

Input: The matrix A = A*, a preconditioner T' = T™* > 0, the right-hand side
f, a parameter b < 8 < ¢, and the initial guess (0

Output: The approximate solution x;

1z 29w T(f — Ax);

2: while convergence not reached do

3 s+ TAw;

4: 1+ s — Pw;

5: s« Al; g« Ts;

6 o< (w,5)/(5q)

7:  Update < z + al and w + w — ag;

8: end while

9: Return x.

PMINRES PSDI PSDI-1D

MatVecs/Precs 2 2 2
Inner products 4 (+1) 4 2
Storage (# of vec.) 8 5 5

Table 1: Computational and storage expenses of different algorithms to ensure reduc-
tion of the residual T-norm; “(4+1)” denotes an additional inner product at the setup
phase prior to the main loop.
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3.2. Randomization of the search direction.

It is common in practice that Algorithm 2 (as well as Algorithm 1) rapidly
reduces the residual T-norm at a few initial iterations and then stabilizes with a
slower convergence rate, resembling the worst-case behavior given by bound (20)
or, if 8 = c—|b], by (15). A possible way to break this scenario, and hence
speed up the convergence, is to exploit the freedom on the choice of 8 € (b, ¢) by
randomly varying the parameter in the course of iterations. As we explain below,
and demonstrate in the numerical examples of the next section, this simple
randomization of 8, and therefore of the search direction IV = s(O) — fw® | can
lead to a substantial acceleration of the method’s convergence.

At each step of method (19), the error transformation can be written as

D = (I — aWSg)e, 85 = (TA— BITA, (22)

which corresponds to a step of the power method with respect to the transition
matrix I — a“’)SB. This step emphasizes the error component in the direction
of the eigenvector associated with the largest, in the absolute value, eigenvalue
of I —aWSs. Since the choice 8 € (b,c) ensures that all eigenvalues of Sg
are positive, regardless of a?), the largest modulus eigenvalue of the transition
matrix is given either by 1 —a® Lmin OF by 1 —al® Imax, where pimin and piyax are
the smallest and largest eigenvalues of Sg, with the corresponding eigenvectors
Umin and Umax-

Thus, after repeatedly performing transformation (22), the error will be
dominated by components in the direction of either vy, or vmax, or a combina-
tion of the two. Hence, a potentially slow convergence of (19) can be attributed
to the difficulty in damping these two components of the error.

Since the eigenvalues of Sg are obtained from those of T'A via the quadratic
transformation, pipi, = minAe{Apﬂ,\pH}(/\z —BA) and pimax = rrl:aux,\e{,\h)\n}()x2 -
BA). Therefore, depending on the choice of 5, vmin is given by v, or vp41, and
Umax corresponds to v; or vy, where vy, vp, vp41, and v, are the eigenvectors of
T A associated with the eigenvalues A1, Ay, A\pt1, and A, respectively.

Now, without loss of generality, suppose that the parameter £ yields pimin =
)\12, — BXp and fimax = A? — BA1, so that after a number of steps the error is
dominated by the eigenvectors vmin = v, or/and vmax = v1. At this point, let
us assume that we can alter the parameter 8 in such a way that pmin and fimax
change to A2, — BAp41 and A2 — B\, respectively. (The change of fimin can
always be achieved by modifying 3, whereas the change of ji,,x depends on the
location of the T'A’s spectrum.) As a result, after the update of 3, the error
transformation (22) will emphasize the components in the direction of v,41 or
vn, and efficiently reduce the components in the problematic directions v, and
v1 that have been dominant in the error’s representation. Thus, even though
the optimal convergence rate is given by 8 = ¢ — |b|, varying 8 can potentially
improve the convergence through the implicit damping of the slowly vanishing
error components.

A simple approach to systematically vary S is to randomly generate a value
from the interval (b, c) at every iteration, i.e., set § = ¢ = b+ (¢ —b)&, where §
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is a random variable uniformly distributed in (0, 1). Clearly, in this case, the op-
timal bound (15) no longer holds, however, the stepwise decrease of the residual
norm is guaranteed by Corollary 2. Although this reduction can be very small
at certain iterations, overall, the randomization of 8 can lead to a noticeably
faster convergence, as demonstrated in our examples of the next section.

4. Examples

In this section, we demonstrate the convergence behavior of the introduced
schemes on several simple examples that admit SPD preconditioning. Our goal
is two-fold. First, we would like to illustrate the convergence bound (15), as
well as show the impact of the simple randomization strategy of Algorithm 2
on the convergence rate. Second, we outline situations where using the PSD-
like methods can represent a reasonable alternative to applying the optimal
PMINRES. As we shall see, such situations can occur in the cases where only a
few iterations are needed to approximate the solution to the desired accuracy,
e.g., due to a good initial guess or high preconditioning quality.

Ezxample 1. In our first example, we consider a symmetric indefinite system
coming from a discretization of the boundary value problem

—AU(X7 Y) - O’U(X, Y) = f(X>Y)a (Xv Y) €= (07 1) X (07 1)’ u|F =0, (23)

where A = §%/0x>+0?/9y? is the Laplace operator and T' denotes the boundary
of the domain €2, given by a unit square. This problem is the Helmholtz equation
with Dirichlet boundary conditions, where ¢ > 0 is a wave number.

Discretization of (23), using the standard 5-point finite difference stencil,
results in a linear system (L —ol)z = f, where L represents the discrete Lapla-
cian. Since L is SPD, the choice of a sufficiently large ¢ introduces negative
eigenvalues into the shifted problem, making the matrix L — o indefinite. If the
degree of indefiniteness is not too high, a simple option to define an SPD pre-
conditioner for (L — o)z = f is given by T'= L' [5]. Below, we use such T' as
an SPD preconditioner for the PSD-like schemes and the PMINRES algorithm.
The right-hand side f and the initial guess z(*) are randomly chosen.

In particular, we let ¢ = 100 and consider the shifted Laplacian problem of
size n = 3,969. Then, if T = L~!, the preconditioned matrix T(L — o) has 6
negative eigenvalues, with A\; &= —4.0671, A\¢ = —0.0149, A7 = 0.2194, and \,, =
0.9939. Thus, the interval Z = [a, b]U]e, d], containing the spectrum of T(L—o1),
can be defined by a = A1, b = Xg, ¢ = A7, and d = 4.2716, where the choice
of d ensures that [a,b] and [d, ¢] are of the same length. This information allows
us to calculate convergence bound (15) and set the parameter § in Algorithm 2
to the optimal value ¢ — |b]. The generation of 8 in the randomized version of
Algorithm 2 is performed with respect to the interval (b, c).

We note that the question of constructing efficient SPD preconditioners for
Helmholtz problems is not in the scope of this paper, and the choice T = L~!
is motivated mainly by simplicity of presentation, allowing to keep focus on
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PSD-like methods for the shifted Laplacian PSDI and PMINRES with a good initial guess for the shifted Laplacian
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1 « PMINRES |
ol Theoretical bound D K
PSDI
PSDI-1D
PSDI-1D with random B
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Figure 2: Convergence of different solution schemes for the shifted Laplacian system
(L — oz = f with ¢ = 100 and T = L% n = 3,969. Left: Comparison of the
PSD-like schemes. Right: Comparison of PSDI and PMINRES for a good initial
guess.

the presented PSDI iterative scheme rather than on preconditioning issues. A
stronger SPD preconditioner for this model problem can be found in [23, 24].
The convergence of the PSD-like schemes is demonstrated in Figure 2 (left).
The figure shows that bound (15) is descriptive. It reflects well the convergence
rate of PSDI and (non-randomized) PSDI-1D throughout the whole run, except
for a few initial steps where the residual norms are reduced faster in practice.
Note that PSDI-1D has a slightly faster convergence than PSDI, which demon-
strates that minimizing the residual over a 1D subspace does not necessarily
yield a slower convergence compared to the 2D minimization of Algorithm 2.
We also observe a significant acceleration of the convergence if a random f is
used within PSDI-1D. Remarkably, the speedup appears at no additional cost
and is a consequence solely of the “chaotic” choice of the descent direction.
Next, we consider a specific setting, where the initial guess is already close to
the solution and only low to moderate accuracy of the targeted approximation
is wanted. In this case, if the preconditioning quality is sufficiently high, only a
few steps of a linear solver should be performed.
The convergence of PSDI and PMINRES for such a situation is compared
in Figure 2 (right). Namely, we compute the exact solution of (L —ol)z = f
and perturb it using a random vector with small entries distributed uniformly
on [0,107%]. We then apply three steps of PSDI and six steps of PMINRES
and track the reduction of the residual T-norm at the few initial iterations.
Since each PSDI iteration requires twice as many matrix-vector products and
preconditioner applications compared to the PMINRES step, instead of the
iteration count, we show the convergence rate with respect to the number of
matrix-vector multiplications (MatVecs) or preconditioning operations (Precs).
Figure 2 (right) shows that both algorithms require the same number of
MatVecs/Precs to achieve the reduction of the residual T-norm by two orders of
magnitude, i.e., the residual T-norms after two PSDI steps and four PMINRES
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steps are identical. At the same time, as has been previously discussed, PSDI
performs slightly less inner products and requires less memory. Hence, in the
given context, if the goal is to improve the solution accuracy by only a few
orders of magnitude, PSDI can be used as an alternative to PMINRES.

However, if higher accuracies are wanted, which requires additional itera-
tions, then PMINRES, as an optimal method, is clearly more suitable. For
example, as seen in Figure 2 (right), its convergence becomes noticeably faster
then that of PSDI starting from the fifth iteration. Note that the convergence
of PSDI-1D at the initial steps, with both optimal and random choice of 3, was
not as rapid compared to PSDI and PMINRES. Therefore, we do not report the
corresponding runs in the figure.

Ezxample 2. Our second example concerns a saddle point system, arising in the
context of PDE-constrained optimization. Here, the solution of the optimal
control problem

1
min 2 lu =l + 7.1,
with the constraint that
—Au=fin Q, ulpr =g,

results, after the finite element discretization, in the symmetric indefinite system

with the matrix
2rM 0 —-M

A= 0 M K|, (24)
-M K 0

where K and M are the SPD stiffness and mass matrices, respectively; see,
e.g., [17]. In particular, we choose 2 = (0,1) x (0,1), 7 = 1072, 4 = (2x —
1)%(2y — 1)? over (0,3) x (0,%) and 0 elsewhere, and use @ finite elements
to obtain the saddle point linear system of size n = 2,883. Exactly the same
example was considered by Wathen and Rees [26], whereto we refer the reader
for more details.

An efficient SPD preconditioner for (24), proposed in [17], has a block-

diagonal form, and is given by

LAt 0 0
b 0, (25)
0 K* MK~

where K and M are approximations to K and M, respectively. In our test, we
approximate K and M using incomplete Cholesky factorization with drop toler-
ance 1073, so that K~! and M ! correspond to the successive triangular solves
with the respective incomplete Cholesky factors. In this case, the spectrum of
the preconditioned matrix T'A is enclosed into the pair of equal-sized intervals
[—1.0108, —0.3096] and [1;1.7012].

In Figure 3 (left), we demonstrate the runs of the PSD-like methods for
system (24), with randomly chosen right-hand side and initial guess vectors.
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PSD-like methods for the saddle point system
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Figure 3: Convergence of different solution schemes for a saddle point system with A
in (24) and T in (25); n = 2,883. Left: Comparison of the PSD-like schemes. Right:
Comparison of PSDI and PMINRES for a good initial guess.

The parameter 8 in PSDI-1D is set to the optimal value ¢— |b|, and the sampling
of B in the randomized version is performed over the interval (b,¢). As in the
the previous example, it can be seen that bound (15) captures well the actual
convergence of PSDI and PSDI-1D, and the convergence rates of both schemes
are comparable in practice. The suggested randomization strategy, again, speeds
up the convergence for PSDI-1D.

Let us note that the convergence of the randomized PSDI-1D depends on the
way random values 3 are generated. In particular, using inappropriate proba-
bility distributions can slow down the convergence. On the contrary, one can
expect to accelerate the method by suitably defining probability distribution.

Effects of B’s probability distribution on the PSDI-1D convergence

\ Uniform on (b,c)
) Normal, mean = c-|b|, stdev = 0.75
Normal, mean = c-|b|, stdev = 0.1
©
1
T 0
g 10 N
© DS
s
S
£ .
g ™,
0
T
[ S
g *3
o -
3
RN
w,
107" S
0 10 20 30 40 50 60

Iteration number

Figure 4: Convergence of PSDI-1D with values of 8 drawn from different distributions
for a saddle point system with A in (24) and T in (25); n = 2, 883.

This point is demonstrated in Figure 4, which compares convergence of PSDI-
1D for values of 8 drawn from different distributions. In the figure, we plot av-
eraged (after 100 runs) residual norms produced by PSDI-1D, where f is either
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uniformly distributed on (b, ¢) (as before), or drawn from the normal distribution
with mean at the optimal value ¢ — |b| and standard deviations 0.1 and 0.75.

One can see that a slower convergence is obtained if 5 is normally distributed
with standard deviation 0.1, in which case the method closer resembles the
deterministic version with the optimal 8. At the same time, increasing standard
deviation to 0.75 removes this effect, resulting in the convergence comparable
to the case with the uniform distribution.

Finally, Figure 3 (right) compares PSDI and the optimal PMINRES for the
case where a good initial guess is available and both methods perform only a
few iterations to reduce the residual T-norm by several orders of magnitude.
Similar to the previous example, we define the initial guess by perturbing the
exact solution with a random vector whose entries are uniformly distributed on
[0,1074]. The figure demonstrates that, at the initial iterations, the conver-
gence of PSDI is comparable to that of PMINRES. However, PSDI requires less
computations and memory, and hence can be preferable to PMINRES in this
type of situation.

Example 3. Another context which gives rise to symmetric indefinite systems
is related to the interior eigenvalue calculations using inexact shift-and-invert,
or preconditioned, eigenvalue solvers, e.g., [14, 25]. In this setting, one seeks to
compute an eigenpair (A, v) of a matrix A that is closest to a given target o. At
each iteration, such eigenvalue solvers require an approximate solution of the
linear system of the form (A — oI)w = r, where r is the eigenresidual.

If a good preconditioner 7' ~ (A — oI)~! is at hand, then w can be defined
as Tr. However, in certain cases, the quality of T is insufficient to ensure a
robust convergence . In this situation, instead, one can run several steps of an
iterative linear solver applied to the symmetric indefinite system (A —ol)w =r
with T" as a preconditioner, and set w to the resulting approximate solution. In
particular, if 7' is SPD, then the approximate solution of (A — ol)w = r can be
computed either using PMINRES or one of the PSD-like methods introduced
in this work.

Let us consider a matrix A coming from the plane wave discretization of
the Hamiltonian operator for the Si2H4 molecule (n = 949) in the framework
of the Kohn-Sham Density Functional theory, generated using the KSSOLV
package [28]. We would like to find an eigenpair corresponding to the eigenvalue
closest to the energy shift o = 0.2 using the Davidson method with the harmonic
Rayleigh—Ritz projection [14]. The given target o points to the 8th eigenpair of
A associated with A = 0.1966. Note that A is complex Hermitian in this test, for
which case all the results of this paper straightforwardly apply, though stated
for the real symmetric matrices. The initial guess for the eigensolver is fixed
to the first column of the identity matrix; the PSDI and PMINRES iterations
start with the zero initial guess.

A traditional choice of T for this type of computation is the Teter—Payne—
Allan preconditioner [21], which is given by an SPD diagonal matrix. However,
a direct use of T" to define the Davidson’s expansion vectors T may not provide
a reliable convergence. In particular, this is the case in our example, where
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the method converges to a wrong eigenpair. Therefore, in order to restore the
convergence, as a preconditioner for the Davidson method, we use several steps
of PMINRES and PSDI applied to (A—cl)w = r, with T being a preconditioner
for the linear solve.

Cnonvergence of the Davidson method with different preconditioners Cnonvergence of the Davidson method with different preconditioners
10 . . . . . : . - 10 — . . . - .

Eigenresidual norm
>
Eigenresidual norm
>

5| —— PMINRES(4) -s| —— PMINRES(4) \
- --PSDI(2) - --PSDI(2) B
PMINRES(8) PMINRES(8) \
o PSDI(4) 5 A et PSDI(4)

[ 2 4 14 16 0 20 40

6 8 10 60 100 120
Number of iterations Number of MatVecs

Figure 5: Convergence of the Davidson method, with respect to the number of itera-
tions (left) and MatVecs (right), to the eigenpair associated with the eigenvalue closest
to o = 0.2 of the Hamiltonian matrix for the Si2H4 system. PSDI(t) and PMINRES(¢)
denote preconditioning options based on ¢ steps of the corresponding linear solver.

Figure 5 (left) shows that the convergence to the correct eigenpair can be
recovered with 2 steps of PSDI and 4 steps of PMINRES used as a precondi-
tioner for the Davidson method. In this case, the convergence of the PSDI-
preconditioned eigensolver is similar to that of preconditioned with PMINRES.
However, the former requires less inner products and storage; see Table 1. Note
that doubling the number of PSDI and PMINRES steps slightly reduces the
eigensolver’s iteration count, whereas the convergence remains identical for both
preconditioning options.

In Figure 5 (right), we consider the change of the eigenresidual norm with
respect to the number of matrix-vector products, which includes MatVecs gen-
erated at the “inner” PSDI or PMINRES iterations as well as those produced by
the “outer” Davidson steps. The figure demonstrates that increasing the num-
ber of PSDI or PMINRES iterations may be counterproductive, even though
the preconditioning quality improves. As a result, we arrive at the framework
where only a few steps of a linear solver are needed, in which case the use of
the PSD-like methods can represent a reasonable alternative. to PMINRES.

5. Conclusions

The paper presents a thorough description of the PSD-like methods for sym-
metric indefinite systems, where the preconditioner is SPD. Several variants of
such methods are discussed and the corresponding convergence bound is proved.
This completes the existing theory for the SPD linear systems, expanding it
to the indefinite case. Because of the slower convergence rate, the presented
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PSD-like methods cannot generally be regarded as a substititute for the op-
timal PMINRES algorithm. However, we demonstrate that for certain cases,
where only a few steps of a linear solver are needed, the PSD-like schemes can
constitute an economical alternative.
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