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Abstract

Energy harvesting is an emerging technology for enabling green, sustainable, and autonomous
wireless networks. In this paper, a large-scale wireless network with energy harvesting trans-
mitters is considered, where a group of transmitters forms a cluster to cooperatively serve
a desired receiver amid interference and noise. To characterize the link-level performance,
closed-form expressions are derived for the transmission success probability at a receiver in
terms of key parameters such as node densities, energy harvesting parameters, channel pa-
rameters, and cluster size, for a given cluster geometry. The analysis is further extended to
characterize a network-level performance metric, capturing the tradeoff between link quality
and the fraction of receivers served. Numerical simulations validate the accuracy of the an-
alytical model. Several useful insights are provided. For example, while more cooperation
helps improve the link-level performance, the network-level performance might degrade with
the cluster size. Numerical results show that a small cluster size (typically 3 or smaller) opti-
mizes the network-level performance. Furthermore, substantial performance can be extracted
with a relatively small energy buffer. Moreover, the utility of having a large energy buffer
increases with the energy harvesting rate as well as with the cluster size in sufficiently dense
networks.
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Abstract—Energy harvesting is an emerging technology for en-
abling green, sustainable, and autonomous wireless networks. In
this paper, a large-scale wireless network with energy harvesting
transmitters is considered, where a group of transmitters forms a
cluster to cooperatively serve a desired receiver amid interference
and noise. To characterize the link-level performance, closed-form
expressions are derived for the transmission success probability
at a receiver in terms of key parameters such as node densities,
energy harvesting parameters, channel parameters, and cluster
size, for a given cluster geometry. The analysis is further
extended to characterize a network-level performance metric,
capturing the tradeoff between link quality and the fraction of
receivers served. Numerical simulations validate the accuracy of
the analytical model. Several useful insights are provided. For
example, while more cooperation helps improve the link-level
performance, the network-level performance might degrade with
the cluster size. Numerical results show that a small cluster size
(typically 3 or smaller) optimizes the network-level performance.
Furthermore, substantial performance can be extracted with a
relatively small energy buffer. Moreover, the utility of having a
large energy buffer increases with the energy harvesting rate as
well as with the cluster size in sufficiently dense networks.

Index Terms—Energy harvesting, stochastic geometry, cooper-
ative wireless networks.

I. INTRODUCTION

NERGY harvesting is a promising approach for realiz-

ing self-powered wireless networks. A wireless device
equipped with energy harvesting capability may extract energy
from natural or man-made sources such as solar radiations,
wind, radio frequency (RF) signals, indoor lighting, etc.
[2], [3]. Energy harvesting could potentially transform both
infrastructure-based as well as ad hoc wireless networks. For
instance, in cellular systems, energy harvesting could help cut
the operating expenditures for the cell-sites, reduce the carbon
footprint as well as facilitate cell-site deployment [4]. Simi-
larly, energy harvesting is also closely related to the Internet of
Things [5], which broadly is a network consisting of everyday
objects such as machines, buildings, vehicles, etc. Many of
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these smart objects will contain low-power wireless sensors
that communicate with other devices and/or a control unit.
Energy harvesting can potentially enhance the battery lifetimes
while simplifying the network maintenance (for instance, with
an energy harvesting device, no human intervention would
be needed for battery replacement), thus providing the much-
needed autonomy for sustaining such networks [2], [5], [6].

Energy harvesting devices need new communication proto-
cols. Due to limited energy storage capacity and depending
on the type of harvesting, the energy availability at the
device varies over time. This leads to a model where energy
arrivals are bursty. Several papers have proposed optimal trans-
mission policies assuming causal or non-causal knowledge
about energy arrivals for different setups (see [2], [7] for a
comprehensive review). For example, a point-point link [8],
[9], an interference channel [10], and a broadcast channel [11]
have been considered. While prior research has mostly consid-
ered simple information-theoretic setups, some recent studies
have investigated the network-level dynamics in large non-
cooperative wireless networks powered by energy harvesting
(4], [12]-[14].

Stochastic geometry is emerging as a popular tool for
analyzing a variety of setups ranging from ad hoc, to cognitive
and cellular networks. It often leads to tractable analytical
models that yield general performance insights, thus obviating
the need of exhaustive simulations [15]. The performance
of ad hoc networks has been characterized using metrics
such as outage probability and transmission capacity [16]—
[18]. Similar analysis has been applied to single and multi-
tier cellular networks under different assumptions about cell
association, scheduling and power control [18]-[20]. Multi-
cell cooperation has been analyzed for different cooperation
models in [21]-[25]. For example, dynamic coordinated beam-
forming was treated in [21], random clustering with intercell
interference nulling was considered in [22], and pairwise
cooperation with limited channel knowledge was analyzed
in [23]. Similarly, joint transmission without prior channel
knowledge and/or tight synchronization has also been consid-
ered [24], [25]. None of the aforementioned work [21]—-[25] on
cooperative networks, however, considers energy harvesting.

Stochastic geometry has also been used for analyzing
energy harvesting systems. Large-scale self-powered ad hoc
networks have been analyzed in [12] and [13]. In [12], the
network model consists of a large number of energy harvesting
transmitters, where each transmitter has a dedicated receiver



located a fixed distance away. Leveraging tools from stochastic
geometry and random walk theory, spatial throughput was
derived by optimizing over the transmission power. For a
similar setup, the authors in [13] derived the transmission
capacity for a random access network by optimizing over
the medium access probability. Self-powered heterogeneous
cellular networks have been considered in [4]. In [4], base-
station availability (i.e., the fraction of the time it can remain
ON) was analytically characterized using tools from random
walk theory and stochastic geometry. The work in [4], [12]
and [13], however, does not consider any node cooperation
or joint transmission at the physical layer. Cooperative/joint
transmission seems particularly attractive for energy harvesting
networks, as it could compensate for the performance loss due
to uncertain energy availability at the transmitters.

In another line of work, wireless-powered communication
networks have also been investigated using a stochastic ge-
ometry framework [14], [26]-[29]. In [14], the performance
of a cognitive network with opportunistic wireless energy
harvesting was characterized. In [26], a hybrid cellular network
consisting of both base-stations and power beacons was pro-
posed to enable wireless power transfer to mobiles. The trade-
offs between the deployment densities and transmit power
were investigated under an outage constraint on the data links.
The work in [27] characterized the performance of wireless
information and energy transfer in a millimeter wave cellular
network. Similarly, the performance of wireless information
and energy transfer in relay-aided networks has also been
characterized for various relaying strategies [28], [29]. In this
work, however, we do not study wireless information and
energy transfer.

In this paper, we consider a large-scale network of trans-
mitters and receivers, where a receiver node is jointly served
by a cluster consisting of its K closest self-powered trans-
mitter nodes. This model is attractive for many scenarios
involving energy harvesting wireless communications such as
self-powered sensor networks, self-powered wireless hotspots,
and other IoT-inspired applications of the future [2], [5], [6].
We provide a tractable framework to characterize the system
performance as a function of key parameters such as the cluster
size, the energy harvesting capability, the transmitter/receiver
densities and other network and channel parameters. We model
the locations of the transmitters and receivers using indepen-
dent Poisson point processes (PPPs). To reap the benefits of
cooperation, the transmitters are grouped into clusters such that
all the in-cluster transmitters jointly serve a common receiver,
which is subjected to interference from the out-of-cluster
nodes. Channel acquisition and node coordination, which
is formidable even for conventional networks, is typically
exacerbated with energy harvesting nodes. This motivates us
to adopt non-coherent joint transmission as the cooperation
model. The performance of such a cooperative self-powered
wireless network in a stochastic geometry framework has not
been analyzed in the literature.

The proposed analytical model captures the key interplay
between the cluster size and the transmitter and receiver
densities. Note that a transmitter cluster may have multiple
candidate receivers, only one of which will be served in a given

resource. We therefore consider a performance metric that cap-
tures the two key events influencing the overall performance:
(i) a receiver is selected for service (modeled via cluster
access probability in Section III-B), and (ii) the transmission
is successful (modeled via link success probability in Section
II-A). For the former, we propose an analytical approximation
for the cluster access probability in terms of the cluster
size and the ratio of the transmitter and receiver densities.
For the latter, we derive simple analytical expressions that
characterize the link performance as a function of system
parameters (e.g., energy harvesting rate, energy buffer size,
transmitter density), channel parameters and cluster geometry,
while accounting for the heterogeneous network interference.
Leveraging these results (each being a novel contribution in
itself), a closed-form analytical expression is derived for the
overall performance metric, and validated using simulations.

We also investigate the impact of cluster size, energy har-
vesting rate and energy buffer size on the overall performance.
Our findings suggest that (i) there is an optimal cluster size
that maximizes the overall performance given the density
parameters; (ii) the optimal cluster size increases with the ratio
of transmitter and receiver densities and typically ranges from
1 to 3; (iii) a relatively small energy buffer size (typically large
enough to store 10 or fewer transmissions in the considered
setup) is sufficient for extracting performance gains; and (iv)
the utility of having a large energy buffer increases with the
energy harvesting rate as well as with the cluster size when the
density ratio is sufficiently large. Our analytical model is ap-
plicable to a general class of networks, with the traditionally-
powered cooperative and non-cooperative networks as special
cases.

This paper is an extension of our previous conference paper
[1] where a similar setup was considered. Unlike [1] which
only considers the link-level performance, we analytically
characterize both the link and network-level performance in
this paper while incorporating heterogeneous network inter-
ference in our model. The rest of the paper is organized as
follows. The system model is described in Section II. Using
tools from stochastic geometry, the analytical expressions for
the considered performance metrics are derived in Section
III. Section IV presents the simulation results and Section V
concludes the paper.

II. SYSTEM MODEL

We now describe the energy harvesting model, the un-
derlying assumptions about the considered network, and the
cooperation scenario.

A. Energy Harvesting Model

We consider a wireless network consisting of transmitters
equipped with energy harvesting modules. An energy har-
vesting module extracts energy from a source and stores it
in an energy buffer. For instance, an RF energy harvesting
module typically consists of a rectenna element that rectifies
the received RF signal, which is then used for charging a
battery (energy buffer). The energy arrivals at the energy buffer
are assumed to be random and independent across nodes. None



of the transmitters are privy to any non-causal information
about energy arrivals. We now describe the energy harvesting
model for an arbitrary transmitter equipped with an energy
buffer of size S € N. The energy arrives at the buffer with
rate p following an independent and identically distributed
(IID) Bernoulli process', i.e., with probability p, one unit of
energy arrives at the buffer in time-slot ¢, while 1 — p is the
probability that no energy arrives at the buffer in that slot.
A node may choose to transmit with fixed power P if it has
sufficient energy in the buffer. No power control is assumed,
therefore each transmission depletes the buffer of P units of
energy. The energy arrivals are modeled using a birth-death
Markov process along the lines of [12], [13], [30], [31].

For medium access, we consider a slotted ALOHA based
random access protocol where in each time-slot, a node (hav-
ing sufficient energy) accesses the medium with probability pcp
independently of other nodes. Let pg denote the probability
that a node has the requisite amount of energy available in the
buffer of size S. Then, pg = Pr [As(t) > ]3}, where Ag(t)
denotes the state (i.e., energy level) of the buffer at time t.
We now define py, the transmission probability of an arbitrary
node, and express it as a function of system parameters.

Lemma 1. For energy arrivals with rate p > 0, finite energy
buffer of size S € N, and channel access probability p., > 0,
it follows that py, = penps in steady state, where
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for the case P = 1.

Proof. It can be proved by solving the balance equations for
the resulting Markov chain (e.g., see [12]). |

Note that 0 < py < pep since lim1 D = Pech, Where p = 1
p—

corresponds to the case when the node is powered by con-
ventional power sources. Furthermore, pg, is fixed throughout
the network. Therefore, the transmission probability of a node
varies as a function of the energy harvesting rate and buffer
size. In other words, the higher the p, of a node, the more
superior the energy harvesting capability (i.e., harvesting rate
and/or buffer size). Note that Lemma 1 has been specialized
for the case P = 1, which is consistent with the system model
explained in the next section. This is because, without loss of
generality, we will consider an equivalent system where the
transmit power of each node is normalized with respect to
that of a reference node, and the reference node uses a unit
transmit power (see the discussion following equation (3) for

! Due to analytical tractability, this is a common approach for modeling an
energy harvesting process (e.g., see [13], [30], [31]). Conceptually, the energy
harvesting rate in this model approximates the average energy arrival rate of
an actual (continuous) energy harvesting process. With RF energy harvesting,
for example, the energy arrivals will randomly fluctuate across slots. When the
received energy exceeds a certain threshold, it may be regarded as an energy
arrival in the buffer. Otherwise, we may assume that no energy arrived in the
buffer in that slot.
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Fig. 1. A network snapshot showing a receiver (%) jointly served by a cluster
of K = 3 closest transmitters amid intrinsic and extrinsic interference. Only
one receiver is shown for illustration purpose.

details). Moreover, the reference transmitter with a full buffer
can transmit for S slots without requiring recharging.

B. Network Model

We consider a large-scale network consisting of transmitters
(TXs) and receivers (RXs) where the TX locations are drawn
from a homogeneous PPP of intensity (density) A, which we
denote as ® £ {x;,i € N}. Similarly, the RX (or user)
locations are modeled using another PPP ®,, of intensity \,,
which is assumed to be independent of ®. In the considered
setup, a cluster of K (self-powered) cooperating TXs jointly
serves a desired RX over the same time-frequency resource
block. We assume that each RX is served by its K closest
TXs in ® (see Fig. 1). When there are multiple candidate
users competing over one or more TXs of a potential cluster,
we assume that only one user will be selected for service
(uniformly at random) in each time-slot (see Section III-B).
This cluster association will possibly entail some control
signaling between the transmitters and users. For example,
the transmitters may transmit a periodic control beacon to
facilitate the users in identifying their closest transmitters.
The users may then request access to their desired set of
transmitters. Since the control signaling phase will usually be
much smaller than the data transmission phase, we focus on
the latter in this paper. We further assume that the TXs in ® are
active with a transmission probability p, (Lemma 1, Section
II-A). For example, when a TX has no candidate user in ®,,
(i.e., void cell), it may still transmit to (wirelessly) charge
other inactive users, or to serve other opportunistic users in the
network (performance characterization of such users, though,
is not the focus of this work).

Consider an arbitrary user in ®, being jointly served by
a cluster consisting of its K closest TXs in ®. It suffers
from co-channel interference due to concurrent transmissions
from the out-of-cluster nodes in ®. We call the interference
originating from ® as in-network or intrinsic interference.
Note that the user may receive additional interference from
other out-of-network devices operating in the same band.
This out-of-network or extrinsic interference will possibly be



heterogeneous as the interfering nodes may have different
transmit power, density, etc. We model the extrinsic interfer-
ence by considering M additional tiers of nodes, where the
nodes in tier m are located according to a homogeneous PPP
b, £ {®im,t € N} of intensity \,,, independently of other
tiers. We let P and {P,,}_, denote the transmit powers of
tiers ® and {®,,, }}1_, respectively. Without loss of generality,
we assume the transmit powers to be normalized by P in the
subsequent analysis. We use P, = };g" to denote the transmit
power of the interfering tier ®,,,, while the transmit power of
the TX tier ® is P = 1.

C. Signal Model

We assume the nodes are equipped with a single antenna
each and employ orthogonal frequency division multiple ac-
cess (OFDMA) for communication. We consider a transmis-
sion scheme where a group of K cooperating TXs jointly
transmit the same data to a given user over the same time-
frequency resource block. Given the challenges associated
with channel acquisition, none of the transmitting nodes are
assumed to have any instantaneous channel knowledge. The
considered joint transmission scheme is simple as it does
not require joint encoding at the cooperating transmitters. To
further reduce the coordination overhead, we do not assume
any tight synchronization among the in-cluster TXs. The user,
however, is required to know the composite downlink channel
from the in-cluster transmitters for coherent detection. The
signals transmitted by the cooperating TXs superimpose non-
coherently at the receiver, resulting in a received power boost.
Moreover, interference seen by the user is treated as noise for
the purpose of decoding.

We now describe the channel model. Let H; be the channel
power gain for the link from a TX ¢ in ® to the given
user. We consider a rich scattering environment where all the
links experience IID narrowband Rayleigh fading such that
the small-scale fading power is exponentially distributed with
unit mean, i.e., H; ~exp(1l). Leveraging Slivnyak’s theorem
[15], we consider a typical user located at the origin, and
characterize the performance in the presence of co-channel
interference and noise. Note that the timing offset between
cooperating transmitters causes the received signal power
to vary substantially across a large number of subcarriers
within the coherence bandwidth (particularly when the timing
offset and coherence bandwidth are assumed to be relatively
large). Therefore, we can consider the average received power
across these subcarriers for analysis (along the lines of [25]).
With such a non-coherent joint transmission scheme (see [25,
Appendix A] for details), the signal-to-interference-plus-noise
ratio (SINR) at the user can be expressed as

K -n
leiﬂl‘iﬂ H;
A 1=
== 2
v T+ o2 ()
where the Bernoulli random variable 1; models the uncertainty
due to bursty energy arrivals at the transmitter such that
Pr(l;=1] = pu; and Pr(l; =0] = 1 — py; Quryi
for the in-cluster TXs (i.e., 1 < ¢ < K), n denotes the

pathloss exponent, while 0% = %2 where 62 gives the variance
of the receiver noise, which we assume to be zero-mean
circularly symmetric complex Gaussian. Moreover, I denotes
the aggregate interference power observed at the receiver. For
analytical tractability, it is assumed that the signals transmitted
by the interfering nodes superimpose non-coherently at the
receiver, which would typically be the case. The aggregate
interference power I can be expressed as

M
I=Ig+ > In
m=1

0o M
- Z ]11”‘772”7"}[1 + Z Z ]]-i,nLPm”xi,nLuinHi,nL
i=K+1 m=1z; ., €Dy,

intrinsic extrinsic

3)
where the first term I, accounts for the in-network or in-
trinsic interference due to the out-of-cluster TXs in ®. Here,
Pr[1; = 1] = py,, while Pr[l; = 0] = 1 — py.o = i, for all
the out-of-cluster TXs (i.e., ¢ > K). The second term in (3)
models the extrinsic or out-of-network interference from the
nodes belonging to the M interfering tiers {®,,}M_,. Note
that for the interfering tiers, we use a slightly modified notation
by including ¢,m in the subscript to denote a node ¢ that
belongs to the interfering tier ®,,,. As done for the TX tier ,
we can similarly define Pr[1;,, =1] = pt(,.m ) for the nodes
in tier m. The assumptions about the channel model are as
explained for the TX tier @, i.e., H;,, ~exp(1l). From (2) and
(3), it also follows that a system with powers P, { P,,}_, has
the same SINR as a normalized system with powers P = 1,
{P,,}M_,. Without loss of generality, we therefore focus on
a system with normalized transmit powers.

Notation. Table I summarizes the notation introduced in
this section. We adopt the following notation for the trans-
mission probabilities of the nodes belonging to tier ®. For
i=1,---, K, we define py ; £1 — qir,; to be the transmission
probability of the i*" in-cluster TX belonging to ®, whereas
Du,o gives the transmission probability of all other (i.e., out-
of-cluster) TXs in ®. Similarly, for m = 1,--- , M, we define
™ 2 1-¢\™ 10 be the transmission probability of the nodes
belonging to the interfering tier ®,,. The above notation allows
both the in-cluster and out-of-cluster nodes to have different
transmission probabilities. This is in line with the considered
model, where we have allowed the nodes to have possibly
different energy harvesting capabilities. For ease of exposition,

GQtr,15 5 G, K5 Qir,05 qt(rl)a e 7(Jt(rM)f’ which
depends on the energy harvesting parameters (i.e., energy
harvesting rate and energy buffer size).

we define = =

We now define the notation to describe the cluster geometry.
For a given cluster of size K, let {d;}X, denote a realization
of the respective distances between a user and its K serving
TXs. This set is assumed to be arranged in ascending order
such that dy and dg refer to the closest and farthest serving
TXs respectively. We define w; = j}i (0 < w; <£1) such that
{w;}E | denotes a set of normalized distances. The cluster

geometry parameters {w; } X, can be physically interpreted in




TABLE I
MODEL PARAMETERS

Notation Description

K cluster size

n path-loss exponent

Pch channel access probability

pr =1 transmission probability

p energy harvesting rate

S energy buffer size

D Ay PPP with intensity A, modeling RX
locations.

[ORD PPP with intensity A modeling TX
locations.

(P} transmission probabilities of K in-
cluster TXs.

Dir,o transmission probability of out-of-
cluster TXs in ®.

D A PPP with intensity A,, modeling

1<m< M) node locations in tier m.

pt(Im) transmission probability of nodes in

1<m<M) D,

P, normalized transmit power of nodes

1<m< M) in &,

terms of the interference-free guard zone around the user. For
example, a smaller w; corresponds to clusters having larger
guard zones around receivers (and vice Versa) We also define
Q={wl, - ,wl}and Q = {4 o X1 For generality,
we allow €2 to have duplicate elements and further define the
set {d7,- -+, 87} to consist of all the unique elements of the set
€2, where §; occurs in € with multiplicity n;. Note that 7 =
1,---, K, where 7 = 1 denotes the case when ¢ has identical
elements, whereas 7 = K when  has distinct elements?2.
We further define (/) ,, to be the set of all products of
the elements of ) taken K — ¢ at a time. For instance, when

K =3, ( )Q = {wf, w3, w3}, ( )sz = {wle,wgwg’,wgw’}
and (3),, = {wjwjw]

}. We also define a set operator Z [']

that returns the sum of the elements of the set that it operates
on. We further define

wo-E[(E)) e

The summation in (4) is taken over the elements of the set
(k=) Similarly, the definition of ;({2) follows from (4)
with the set €2 now replaced by ). For the intensity parameters,
we define A = [\, A1, -+, Aps] where X gives the intensity of
the PPP @, while {\,,,}_, denote the same for the interfering
tiers {®,,}M_,.

III. STOCHASTIC GEOMETRY ANALYSIS

In this section, we derive closed-form analytical expressions
for the link success probability, the cluster access probability,
and the overall success probability.

Note that € is a multiset since it may have duplicate elements. For cleaner
exposition, however, we call € (and other such multisets) a set in this paper.

A. Link Success Probability

In this subsection, we focus on the receivers which have
been selected for service in a given resource. We provide
closed-form expressions to characterize the complementary
cumulative distribution function (CCDF) of the SINR v (or
alternatively the link success probability) as a function of
network parameters and cluster geometry. We characterize
the performance for two cases, namely the absolute cluster
geometry and the average cluster geometry. While the former
helps evaluate the performance of a given cluster, the latter
caters to the general case where the absolute cluster geometry
is averaged out.

1) Absolute cluster geometry: We first calculate the link
success probability for a user for the conditional case where
the absolute cluster geometry (i.e., in-cluster distances) is
specified. The following theorem characterizes the link-level
performance of a specific cluster amid interference and noise.

Theorem 1. For a cluster of size K, the CCDF of -,
F,(K,0) = Prly> 0], can be tightly approximated as a
function of the intensity parameters (A), noise power (o?),
energy harvesting parameters (=) and in-cluster distances

({di}E,) using

F,(K.,0)~
T Ny K—1
eSSy (Z (@n(©) = (@) A (o, v)) B,...(0)
u=1v=1 \m=0
Q)
where
K
G =]]aw: ©)
i=1
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-
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X
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The summation in (7) is taken over all possible combinations
of non-negative integer indices k1, - - - , k, that add up to n, —

>

ki=n,—v

m
5un(m—ku,)
=
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v. Further,
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with k = (v!)” * and
2t 2 2
F (i, o) = Al11-22-2 1), i
(t1,t2) Iy 2° 1< i & 1) an

where o F7(-) is the Gauss hypergeometric function [32], and
I'(-) is the Gamma function.

Proof. See Appendix A. |

The terms B, ,(-) in (5) or A,,(-) in (8) capture the
impact of the aggregate interference and receiver noise. In
particular, the term e 0Rl(dxdu)"0® (9) is due to noise,
e~ TPeo K F(810560) ig due to intrinsic interference, while
U, (M) accounts for the extrinsic interference due to the M
interfering tiers. Also note that G defined in (6) gives the
probability that none of the in-cluster nodes transmit. It is a
function of the energy harvesting parameters as well as the
cluster size.

Remark 1. Note that Theorem 1 allows the in-cluster TXs to
have possibly different energy harvesting rates or buffer sizes,
and is therefore useful for getting general insights about the
performance when the given cluster consists of heterogeneous
TXs. Similarly, the multi-tier approach allows capturing the
heterogeneity in out-of-cluster nodes. Furthermore, all the in-
terfering TXs can be assumed to have the maximum harvesting
rate/buffer size to get a lower bound on performance.

Corollary 1. § — 0. In the low-outage regime, the perfor-
mance is limited by the in-cluster energy harvesting parameters
and the cluster size. In particular, as § — 0 in (5), we get
(}i_r)%FW(K, ) = 1 — G, where G given in (6) defines a
limit on the performance and in fact represents the exact link
outage probability in the asymptotic regime. In this regime, the
performance is independent of the out-of-cluster parameters.
This observation also holds for Theorem 2.

Theorem 1 is indeed general as it is applicable to any
given absolute cluster geometry. For instance, it allows two
or more in-cluster TXs to be equidistant from the receiver.
Later, numerical results confirm the accuracy of the analytical
expression proposed in Theorem 1. The following proposition
treats a special case of Theorem 1 where the in-cluster
distances {d;}X, are assumed to be distinct (i.e., 7 = K).
We note that an exact characterization of the link success
probability is possible for this case.

Proposition 1. Given a cluster of size K with distinct in-
cluster distances ({d;}X,), the CCDF of v, F, (K,0) =
Pr [y > 6], can be expressed in terms of the intensity param-
eters (A), noise power (02), and energy harvesting parameters
() as

K
Fy(K,0)=GY | =
j=1

where G follows from (6), and

n 2 2 n
Cj (9) _ efdj Qo e*ﬂ'pu,o)\dK]:(wj 0,77) Dj (M) (13)
N—— —
noise intrinsic extrinsic
with
M 2 ) .
D, (M) = [ e Amdi (OP) T (1 E)T(1-3) (g
m=1
Proof. See Appendix B. |

Recall that G is the link outage probability in the asymptotic
regime § — 0 (Corollary 1). As illustrated in (13), the link
success probability depends on the aggregate interference and
noise via the term C;(6) only.

Corollary 2. {¢.i}X, = gv.o © qu- When all the in-cluster
TXs have identical energy harvesting capabilities, i.e., gi,; =
Gir.o 2 g the CCDF in (12) simplifies to

~ K Kil 673 (Q) (QIri - QtrK) (w;’])i
Fy(K.0)=> | = -
/ w; <H wy — w?)
l#j

j=1
where C;(0) is as given in (13).

C;(0)

as)

2) Average cluster geometry: We now consider the case
where the in-cluster TXs are located randomly according to
®. Recall that the TXs in ® have identical energy harvesting
capabilities such that {guw,;i}2; = g0 £ v The following
theorem characterizes the link success probability by averaging
out over the absolute in-cluster distances given the cluster
geometry parameters. In other words, the following result does
not correspond to a particular cluster. Rather, it is averaged
over all such clusters that have the same cluster geometry
parameters {w;}X ;. Also note the use of superscript / in
F!(K,0) to differentiate it from the earlier notation F. (K, 6)
used in Theorem 1.

Theorem 2. I_n the interference-limited regime (o2 — 0), the
CCDF of v, F.(K,0), can be expressed as a function of the
cluster size (K'), the intensity parameters (A), and the energy

harvesting parameters (Z) for a cluster geometry ({w;}=< ;)
as

K-1

i K |2 (@) (g = a™) (W)’
(K, 0)=Y | = — V; (K. 0)
e (1;1 o - w}?)
(16)

where

Vi (K,0) = (1+F (Wl0.n) + 13 (M) ™" (7



and

9 M
77) (1 - ) Z trm)/\mpm .

) (M) = w;205T (1

(18)
Note that F ( -) follows from (11), and we define p(m) =B ‘1'7"'
and X\, = 7m.
Proof. See Appendix C. =

Note that the term V; (K, 0) in (16) captures the impact of
the aggregate interference. In particular, the term F (w;’t?, 7]) in
(17) is due to the intrinsic interference, while 77 (M) is due to
the extrinsic interference. Further, the link success probability
relates to the intensity parameters only via the term 1;(M)
given in (18).

Remark 2. For the case with no extrinsic interference, i.e.,
with the M interfering tiers turned off, the CCDF expression
in Theorem 2 is independent of the TX intensity A. Intuitively,
this is because the useful signal power tends to increase with
A (as the cluster radius tends to decrease), but so does the
interference such that the two effects cancel out. This follows
by observing that the link success probability depends on
the intensity parameters via 2;(M) given in (18). Setting
{P,}M_, equal to 0 yields 7 (M) = 0, and the result follows.

Remark 3. With the M interfering tiers now turned on, the
CCDF expression in Theorem 2 is no longer independent of
the intensity parameters A. In this case, increasing the TX
intensity A (or more generally the effective intensity p,\) helps
dilute the intensity of the interfering tiers. This is supported
by (18) where the term inside the summation vanishes as A is
increased. This neutralizes the harmful term 7 (M), which
captures the effect of the extrinsic interference. This is in
contrast to the previous case where the TX intensity A\ plays
no role.

The following corollaries have been obtained assuming the
M interfering tiers to be turned off.

Corollary 3. p, — 1. It is worth noting that without energy
harvesting and a random medium access protocol, i.e., as p; —
1 in (16), and further assuming the M interfering tiers to be
turned off, we can retrieve the expression for the CCDF of
~ in a traditionally powered cooperative network as given in
[33], which Theorem 2 generalizes.

Corollary 4. K = 1. For the non-cooperative case, the expres-
sion in (16) simplifies to F7(1,0) = (1 —q)(1 + F(O,7) "
As py — 0, F/(1,0) — 0, which shows that the energy
harvesting parameters are critical in determining outage. Fur-
thermore, with g, = 0, we can retrieve the CCDF expression
for the signal-to-interference ratio (SIR) in a traditionally
powered non-cooperative network as given in [19].

Corollary 5. S — co. As the energy buffer size S goes to in-
finity, the transmission probability p, approaches min (p, pch)
[12]. Plugging g, = 1 — min (p, pen) in (16) yields the outage
probability floor as the buffer size goes to infinity for a

given outage threshold € and cluster size K. For example,
for p < peh, the outage probability floor is given by

out S—o00 (K 9)

0@ (=) = (1= 0)")

i=0

K
1-— Z -
j=1 (,u;? (H wf — w?)
I#£7
(19)

where V; (K, 0) is as given in (17). Furthermore, as § — 0,
hm Put 6 soo(K,0) = (1 —p)*. This defines the minimum
p0551ble outage probability floor for a given energy harvesting
rate p and cluster size K in the large energy buffer regime.

V; (K, 0)

Corollary 6. p > p. As the energy harvesting rate p exceeds
the channel access probability p.,, the transmission probability
Pu — Peh assuming a sufficiently large energy buffer, i.e., as
S — oo. In this regime, the network is independent of the
energy harvesting parameters and behaves like a traditionally-
powered network. The outage probability expression for this
regime can be obtained similar to Corollary 5.

These results shows that the proposed analytical framework
is fairly general with the traditionally-powered cooperative
and non-cooperative networks as special cases. Note that
this subsection provided an analytical treatment of the link
success probability at receivers that have already been selected
for service. To pave the way for the overall performance
metric, the next subsection treats the case where the receivers
compete for cluster access, and characterizes the cluster access
probability at a typical receiver.

B. Cluster Access Probability

There could be multiple candidate users competing over one
or more TXs of a cluster. In each slot, only one such user will
be selected uniformly at random to be served by its desired
cluster. We define the cluster access probability peys (K, 3)
as the probability that a random user is granted access to
the desired cluster, i.e., it is selected for service in a cluster
comprising its K closest TXs. We also note that pes (K, ) is
a geometric quantity that is completely characterized by (i) the
cluster size K and (ii) the ratio of the transmitter and receiver
densities /3. Since the exact analytical characterization seems
challenging, we propose simple closed-form expressions to
approximate the cluster access probability. We illustrate this
point by considering the simple non-cooperative case K = 1,
where each user is served only by its closest TX. In this case,
a typical user will be selected for service with a probability
1/n given that there are n candidate users for the typical TX.

Therefore, peus(K,3) = Y 1 Pr[ncandidate users]. Note

that for K = 1, Pr[n ca?ldildate users] corresponds to the
probability of having n users within the typical Voronoi cell.
While the exact area distribution of a Voronoi cell is not
known, several analytical approximations exist in the literature
[34]. Such an approximation was used to characterize the user
distribution in a Voronoi cell [35]. Leveraging the results in



[34], [35] for the probability distribution of the number of
users in a cell, the cluster access probability for the non-
cooperative case can be approximated as

pclus(K = l,ﬂ) ~

> 3555 (i +3.5) (1) " 1\ ~(+3.5)
; i r(35)(5) (3.5+5)
(20)

where 8 = % is the transmitter receiver density ratio, as
puA is the density of the transmitter PPP obtained by an
independent thinning of ®, while A\, is the density of the
receiver PPP ®,,. Though this approach yields an analytical
expression for peus (K, B) for the non-cooperative case K = 1,
the extension of this formulation to the cooperative case
K > 1 is rather challenging.

Proposed Approximation: We now propose an analytical
approximation for the cluster access probability peus(K, 3)
for the general case. The proposed approach is based on
the following observation. When a user does not have any
neighboring users within a certain guard radius, its desired
set of TXs is less likely to be conflicted by other users. This
means that the user is more likely to be selected for service
by its desired cluster. The guard radius, in turn, depends on
the cluster size K as well the density ratio 5. We, therefore,
calculate the probability that a user has no neighbors within
the specified guard zone, and the guard zone is expressed as a
function of the cluster size and the density ratio. For a typical
user in ®,, located at the origin, recall that ||z k|| denotes the
random distance to its /(th closest transmitter in ®. Similarly,
we let y; be the random distance to its closest neighboring user
in ®,,. We can interpret puys (K, 5) as the probability that there
is no other user within a radius ¢ x ||z k|| of the typical user,
i.e., Pews = Pr[y1 > c||xk||]. The constant ¢ > 0 controls the
radius of this guard zone around the user. Consider

E [P [0 > claxlflocl]] © Bfer w1

®) M}
1+
{ DA

where (a) follows by calculating the void probability for @,
in a ball of radius c¢||z k||, while (b) is obtained by averaging
over |lz||, which follows a generalized Gamma distribution
[36]. Note that we have not yet characterized c in terms of

: _ C1(K)
the model parameters. We propose setting ¢ = T5Ca (K) 2%
in (21), where C1(K) and C2(K) are functions of K. This

results in the following analytical approximation

pclus(K7ﬁ) ~ ! K
{1 LG }
B+C2(K)
Note that peus(K,3) is a function of the cluster size K
and the density ratio 8. Using basic curve fitting tools, we
found that the linear expressions C;(K) = 0.06K + 0.78
and Cy(K) = 0.34K — 0.49 result in a good fit for the
simulation-based pgus (K, 8) over the considered range of
1 < K < 6 (see Fig. 7). While this range is sufficient

ey

(22)

for the setup considered in this paper, similar curve-fitting
approach may be used to obtain a numerical fit for larger
cluster sizes. For the non-cooperative case K = 1, we found
that C1(K) = 0.725 and C3(K) = 0 give an accurate fit.

Also, the proposed expression [1 4 0725 is much simpler
than the analytical approximation given in (20) for K = 1. The
proposed approximation for p.,s(K, ) is validated in Fig. 7.

Remark 4. The cluster access probability increases with the
density ratio and decreases with the cluster size. This is
because for a given cluster size, a higher density ratio suggests
that the typical user requires a relatively smaller user-free
guard zone, which increases the cluster access probability.
For a given density ratio, a larger cluster size causes more
receivers to compete for the same cluster, reducing the cluster
access probability. Moreover, the cluster access probability
also increases with the energy harvesting rate and the buffer
size since the density ratio is proportional to the transmission
probability.

C. Overall Success Probability

We now introduce an overall performance metric to charac-
terize the joint impact of the link success probability and the
cluster access probability. We define the overall success prob-
ability Py, (-) as the joint probability that a user is selected for
service and the transmission that follows results in a successful
packet reception, i.e., Py (K,0) = Prs[’y >0, ”T 7> c}
where we have used the notation from Section III-B. Note
that these two events are not independent as both depend
on the same underlying geometry. Leveraging the framework
developed in Section III-A and III-B, we provide a closed-
form expression for Py, (+) in terms of the model parameters.

Theorem 3. The overall success probability Py, (K, #) can be
expressed as a function of the cluster size (K), the intensity
parameters (A, )\, ), and the energy harvesting parameters (=)
for a cluster geometry ({w;}X,) as

K
suc K,0) ~ Z % Zj (Kve)
j=1 w; <l1;[] w;] — wy)
(23)
where
} B n Y C1(K) )—K
z,(K,e)_<1+f(wje,n)+TJ(M)+ﬂ+C2(K) ,
(24)

F () and T (-) are given in (11) and (18), Cy(K) and
Cy(K) follow from (22), and 8 = ”" is the density ratio.

Proof. See Appendix D. |

The term Z; (K, 0) in Theorem 3 incorporates the impact
of the aggregate interference as well as that of the user
competition over potential clusters. In particular, F (wge,n)
in (24) is due to the intrinsic interference, 2; (M) is due
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to the extrinsic interference, and FTCa (R

competition for cluster access.

captures the user

Remark 5. The overall success probability given in Theo-
rem 3 also depends on the user density A, via the density
ratio § = ’i\“u)‘. Moreover, even in the absence of extrinsic
interference, the overall success probability still depends on
the density ratio 5. This is unlike Theorem 2, where the link
success probability is independent of the intensity parameters
when the M interfering tiers are turned off (Remark 2). This
further suggests that densifying the TX tier helps improve the
overall performance regardless of the presence of extrinsic
interference.

Remark 6. As the density ratio § increases, the overall
success probability in Theorem 3 converges to the link success
probability given in Theorem 2. This is because the cluster
access probability approaches unity when the density ratio
is large. Therefore, the overall success probability is mainly
limited by the link-level performance when the density ratio
is large.

Corollary 7. 6 — 0. In the low outage regime, the overall
success probability is limited by the energy harvesting pa-
rameters, the cluster size as well as the density ratio 5. As
60 — 0 in (23), gi_r)%Psuc(K, 0) = paus(K, B) (1 — G), where

G is given in (6) and pgs(K, 3) follows from (22).

Remark 7. In the asymptotic regime § — 0, we get fun-
damentally different insights on node cooperation for self-
powered and traditionally-powered networks when p,, = 1.
In traditionally-powered networks, Corollary 7 implies that
cooperation is in fact detrimental for the overall success prob-
ability, i.e., when py — 1, G — 0 such that gii% Py (K, 0) =

Peus (K, B), which decreases as the cluster size K is increased.
To see this, note that pey(K,3) in (22) admits a simpler
approximation peys(K,3) ~ 1 — % when (3 is sufficiently
large. For a self-powered network, however, the gain due to
cooperation captured by the term (1 — G) = (1 — ¢, ) more
than compensates for the loss due to peus(K, 3) when 3 is
sufficiently large. This suggests that cooperation helps improve
the overall performance in an energy harvesting network.
Furthermore, due to the underlying tradeoff between the link
reliability and the fraction of receivers getting served, there is
an optimal cluster size that maximizes the asymptotic success
probability for a given (. This analytical insight is confirmed
by the numerical results presented in next section.

IV. SIMULATION RESULTS

In this section, we use Monte Carlo simulations to validate
the analytical results for the link success probability, the cluster
access probability, and the overall success probability under
different network scenarios. We also investigate the impact of
several parameters such as cluster size, energy harvesting rate,
and energy buffer size on the system performance to derive
intuition on the system operations.

Each simulation trial consists of generating the transmit-
ter/receiver PPPs in a finite window, according to their re-
spective intensities. We assume that the energy arrival process

at the TXs has reached its steady state. Whether or not a
transmitter transmits is simulated using a Bernoulli random
variable generated according to the specified energy harvesting
parameters. All the wireless links are assumed to be Rayleigh
fading with a path-loss exponent 7. The performance metrics
are computed by averaging over 10,000 such trials.

A. Link Success Probability

0.9 T T

0.8+ v e, K=2 (approx

07t sim

CCDF

Fig. 2. CCDF of + for various values of K given p.;, = 0.7, A\ = 0.01,n = 4,
02 = —114 dBm, and {||z;|}$_; ={5,10,10,10}. The plot is obtained

for a single interfering tier M = 1 with Ay = 0.01, p<1> = 0.53 and

tr
Py = 2. Energy harvesting parameters for the TX tier are {p;}1_, =

{0.4,0.45,0.5,0.55}, po = 0.55 and S = 2. Simulation (sim) results agree
with the analytical approximation (approx) based on Theorem 1.

1) Absolute Cluster Geometry: We first evaluate the link
success probability for a specified cluster with possibly het-
erogeneous in-cluster TXs. This is the case treated in Theorem
1 and Proposition 1. In Fig. 2, we plot the link success
probability F, (K, 0) for various values of the cluster size
K. The plot includes the curves obtained using the analytical
approximation (approx) based on Theorem 1. It also includes
the results obtained by Monte Carlo simulations (sim) for the
specified set of parameters. The analytical model is validated
since there is a complete agreement between the analytical and
simulation results. Similarly, in Fig. 3, we consider the case
where the in-cluster TXs have distinct link distances. It can
be observed that the simulation results match completely with
the (exact) analytical (anlt) results based on Proposition 1.

We can draw two conclusions from Fig. 2 and 3. First, the
SINR distribution at the receiver improves with the cluster size
K due to a received power boost. Second, the link outage
performance is limited by the energy harvesting capabilities
as the CCDF converges to 1 — G in the low-outage regime
(6@ — 0) for any given cluster. This corroborates the analytical
insights provided in Corollary 1.

2) Average Cluster Geometry: We now consider the case
treated in Theorem 2, where the in-cluster TX locations are
random. Further, all the TXs have identical energy harvesting
capabilities. In Fig. 4a and 4b, we plot F’fy (K,0), the CCDF
of v with the absolute in-cluster distances averaged out. Fig.
4a is obtained with the interfering tiers turned off, whereas
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Fig. 3. CCDF of ~ for various values of K given a distinct cluster geometry
{llz:lI}2_; ={5,7,9,11}. Other simulation parameters are same as in Fig.
2. Simulation (sim) results agree with the analytical (anlt) results based on
Proposition 1.

Fig. 4b is obtained with the interfering tiers turned on. We
observe a complete match between the analytical curve based
on Theorem 2 and the simulated CCDF obtained via Monte
Carlo simulations. Similarly, Fig. 5 shows that increasing the
density of the TX tier helps improve the link performance in
the presence of extrinsic interference. This also confirms the
analytical insights provided in Remarks 2 and 3.

We next study how the energy harvesting parameters limit
the outage performance.

3) Impact of Energy Buffer Size on Performance: We first
consider how the link outage probability varies as a function of
the energy buffer size. To get general performance insights, we
use the asymptotic outage probability P23, = G, which defines
an upper limit on performance given the energy harvesting
parameters and cluster size. Note that similar insights can be
obtained if the analysis is particularized for a given outage
threshold 6 using (16). In Fig. 6a, the asymptotic outage
probability P2, is plotted against the energy buffer size S
(in log scale) for various values of the cluster size K. We
see that outage can be considerably reduced by increasing the
buffer size until a limit, beyond which the curves tend to flatten
out. The existence of this outage probability floor follows
from Corollary 5, and the floor value is specified by (19). It
appears that appreciable performance gains can be extracted
with a relatively small buffer size. Moreover, the benefits of
having a high-capacity energy buffer tend to increase with
the cluster size as depicted by the increasing steepness of the
slopes (when S is small) as K is increased. This interplay
between cluster and buffer sizes also suggests that the extent
of cooperation could influence the design of energy harvesting
devices, even though the energy harvesting process is assumed
to be independent across the cooperating TXs. In addition, we
observe that the outage is reduced by roughly an order of
magnitude with every addition in the cluster size.

4) Impact of Energy Harvesting Rate on Performance:
In Fig. 6b, the asymptotic outage probability P35 is plotted

against the energy harvesting rate p for various values of
energy buffer size S. We observe that outage reduces with
the increase in energy harvesting rate at the transmitters.
Moreover, using a larger energy buffer brings about further
reduction in outage due to enhanced energy availability at the
transmitters. Furthermore, the gains from using a larger buffer
size are more evident at relatively high energy harvesting rates.
Fig. 6b also corroborates the previous observation (cf. Fig.
6a) that substantial performance can be extracted by using
a relatively small buffer size. For example, S = 10 suffices
for this setup. In addition, if the energy harvesting rate p
exceeds the channel access probability p.p, and the buffer size
is allowed to increase, the outage performance limit becomes
independent of the energy harvesting rate p. For example, this
behavior is evident in Fig. 6b for § = 100. This is because
under these conditions, the energy harvesting system tends to
behave like a traditionally powered system. This is consistent
with Corollary 6.

B. Cluster Access Probability

We now validate the analytical approximation for the cluster
access probability pes (K, ) proposed in (22). In each sim-
ulation trial, the transmitter/receiver PPPs are (independently)
generated in a finite window according to the specified densi-
ties. When there is no conflict, a receiver is assigned to its K
closest TXs. In case of multiple candidate receivers, only one
is randomly selected for service. The cluster access probability
is calculated by averaging over 10,000 such trials. In Fig. 7,
there is a nice agreement between analytical and Monte Carlo
simulation-based results. Moreover, in line with Corollary 7,
Pews (I, B) decreases with the cluster size K and increases
with the density ratio 5.

C. Overall Success Probability

The overall success probability is plotted in Fig. 8. The
plots shows that cooperation is generally beneficial for the
overall success probability in self-powered networks (unlike
the traditional case as discussed in Remark 7). Moreover, it
also captures the underlying tension between two competing
metrics, the link performance and the fraction of receivers
getting served. As explained in Remark 7, this leads to an
optimal cluster size that maximizes the overall network-wide
performance. We further observe that the optimal cluster size
increases with the density ratio due to an underlying increase
in the cluster access probability. Though the plot is obtained
for the asymptotic case § — 0, similar trends can be observed
when the analysis is particularized for a given value of 6.

V. CONCLUSIONS

We have considered a large-scale cooperative wireless
network where clusters of self-powered transmitters jointly
serve a desired receiver. Using stochastic geometry, we have
provided a tractable analytical framework to characterize the
link and network-level performance at the receiver amid het-
erogeneous network interference. The analysis leads to several
useful insights on system operation. First, the overall success
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Fig. 4. (a) CCDF of ~ in the interference-limited regime for K € {1,2} with the M tiers turned off (i.e., intrinsic interference only). The plot includes

the analytical (anlt) curve based on Theorem 2 as well as the simulated (sim) CCDF of «. The simulation parameters are wj

=1 for K = 1 and

{wi}?_; ={0.5,1} for K =2, ps, = 0.8 and ) = 4. The energy harvesting parameters are p = 0.75 and S = 2 for all TXs. (b) For the same parameters,
CCDF of # is plotted when both intrinsic and extrinsic interference are present. Other parameters include M = 1, P; = 2, and pl(rl) = 0.5. Unlike (a) which

is independent of intensity, (b) is obtained for A = 0.1 and A\; = 0.05.
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Fig. 5. The link success probability vs. the TX density A with and without
extrinsic interference. Densifying the TX tier helps improve performance in
the presence of extrinsic interference (M > 1). The simulation parameters
are = 0.1, wy = 1 for K = 1 and {w;}2_; = {0.5,1} for K = 2,
peh = 0.8 and = 3.6. The energy harvesting parameters are p = 0.75 and
S = 2 for all TXs. The parameters for extrinsic interference are M = 1,
Py =2, and p{) =0.5.

probability might degrade when the cluster size is too large,
unlike the link success probability which improves with the
cluster size. This is due to the underlying tradeoff between
the link quality and the fraction of receivers getting served.
Moreover, the resulting optimal cluster size increases with the
density ratio due to the underlying improvement in the cluster
access probability. Second, we get fundamentally different
insights on node cooperation in self-powered and traditionally-
powered networks. In particular, in the asymptotic regime
where the link outage threshold is small, it is optimal not

to cooperate in a traditionally-powered network. In a self-
powered network, however, cooperation could be beneficial
since it helps overcome the performance loss due to uncertain
energy availability at the transmitter. Third, the overall perfor-
mance improves with the buffer size and the energy harvesting
rate. Furthermore, most performance gains can be extracted
using a relatively small buffer size, with the improvement
becoming more pronounced for large clusters in sufficiently
dense networks.

APPENDIX A: DERIVATION OF THEOREM 1

We first state a lemma that will be used in the following
derivation.

Lemma 2. For a non-negative integer n, and a positive real
number z, the regularized upper incomplete Gamma function
Q(n,x) can be upper bounded as Q(n,z) < 1—(1—e~ )",
where ¢ = (n!)_%.

Proof. See [37]. |

For ease of exposition, we use an alternative notation for the
nodes in TX tier ® from here on. Specifically, the subscript
0 is used while referring to the quantities of nodes in the TX
tier, e.g., g = O, Ao = A\, 2, = ;. Using (2), we write

F,(K,0) = Pr[y>6] = E [Pr [SK > O0dg" (I+02)]],
K . .

where S = > 1;H; and H; = iwi_". We condition on
i=1

the in-cluster distances such that ||z;|| = d; fori =1,--- | K.

To proceed further, we first find the CCDF of Sy, where
Sk is a sum of K independent random variables. Note that
H; is exponentially distributed with mean w; 7, whereas the
indicator 1; follows a Bernoulli distribution with mean py ;,
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P2 for various values of K at fixed p = 0.75 and pc, = 0.8. The outage

probability floor is based on Corollary 5. The utility of having a larger energy buffer increases with the cluster size. (b) Impact of energy harvesting rate p
on asymptotic outage probability P25 for various values of energy buffer size S at fixed pc, = 0.8. The curves are plotted for cluster size K € {1,3,6}.
The outage performance becomes independent of the energy harvesting rate as the latter exceeds the channel access probability for sufficiently large energy

buffers.
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Fig. 7. Cluster access probability peys (K, 3) as a function of density ratio 8
for different values of the cluster size K. The results based on analytical
approximation (apprx) in (22) closely match the simulation (sim) results.
Pewus (K, B) also gives the overall success probability for a traditionally-
powered network in the low outage regime (0 — 0). The results are in line
with Remark 4 and 5.

independently of H;. The CCDF of Sk can be expressed as
(x> 0)

Fsk (x) =

T Ny K-—1
GO (am(®) = an(@)) An(nu,0) | Qv %)
u=1v=1 \m=0

(A.1)
where A,,(n,,v) is given by (7), while Q(a,b) =

ﬁ bf t*~le~tdt denotes the regularized upper incomplete
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Fig. 8. Overall success probability Psc (K, 0) in the asymptotic regime (6 —
0) as a function of the density ratio 8 for different values of the cluster size
K. Cooperation improves performance in a self-powered network. There is
an optimal cluster size K for a given value of . The energy harvesting
parameters are fixed to S = 2 and p = 0.5, and p., = 0.8.

Gamma function. The expression in (A.1) can be obtained
by finding the characteristic function of Sk, applying partial
fraction expansion and then taking the inverse transform
[38]. Conditioning on the aggregate interference power I, we
can write F|; (K,0) = Fs, (0dg"(I 4 0%)). Using (A.1),
and by unconditioning with respect to I, F., (K,6) can be
expressed as (for 6 > 0)

T Ny K-—1
F’Y(Kva) :GZZ Z (O‘m(Q) _O‘m(Q)> Am(nuav)
u=1lv=1 \m=0

x E [Q (v,00dk"0 (I + 0%))] (A2)



where the expectation in (A.2) is over the aggregate interfer-
ence power I, i.e., over both fading and interferer locations.
A series expansion of the incomplete Gamma function gives
the following alternative form

E[Q (v,67dk"0 (I +0%))] =
Uz_l e 0udx"00% g | ,—0lldx"01 ((dena (I + Uz)y
i=0

e -
7!

(A3)

To avoid directly dealing with the expectation in (A.3), which
seems rather unwieldy, we leverage the upper bound for Q (-, -)
given in Lemma 2.

E[Q (v,61dk"0 (I +0°))]
Sy,

i v n n 2
E 1)L Rl dx"0(I+0%)
L; (7)o

i Z)(_l)z+1e—neagdx”9n2E[e—déﬁdh’"@f} (A4)
=1

where k = (v!)_%, and the last equation follows by apply-
ing the Binomial theorem. The next step is to evaluate the
expectation E [e*’d‘sﬂdf("‘g[]. Since the PPPs {®,,}M_ are
assumed to be independent, it follows that

M
E {ewwgdﬂef} —F {ené6ﬂd;<"910] H E [efnfésznelm
m=1
(A.5)
where the first term (with m = 0) corresponds to intrinsic
interference, whereas the remaining terms (m > 1) correspond
to extrinsic interference. The expectation in (A.5) can be

evaluated using the Laplace transform of I,,,, which we denote
by L, (s) =E [e5m].

—s > P Hy||zi,m| ™"
L (s)=E |e 2i,m €2m\B(gm)

[I

LZi,m G&’m \B(gm)

E [e_SPm,Hi Hﬁ'i,1n||7n:|

H 1
- 1+ S-P'rnl‘iﬂn_?7
_afi,mE(I)m\B(gm)

A R x
=e —27Am ——dx A.6
Xp ( ™ /y 1+s*1Pm71:C’7 ) (A.6)

m

where B(g,,) denotes a disc of radius g,, centered at the
origin, and models an interference-free guard zone around the
user with respect to tier m. The inner expectation in (a) is
over fading power while the outer expectation is over the PPP
®,,, of intensity A, outside the guard zone B(g,,). Next, we
exploit the property of independent thinning of a PPP to deal
with the transmission indicator and consider a (thinned) PPP

d,, with effective density A = p™ A, for 1 < m < M and
A = Dyr,oAm for m = 0. As the fading is IID across links and
from further conditioning over the location, we obtain (b). The
last equation follows by invoking the probability generating
functional (PGFL) [15] of the PPP and by further algebraic
manipulations. With some additional algebraic steps, (A.6) can
be expressed in terms of a hypergeometric function, which
with s = klddK"0 gives

R Sd "
Lr,,(8)]s=resndi e = exp (—W/\mgfn]: (prm,.;,ge, 77))
(A.7)

where F (-, -) is given by (11). To compute the expectation of
the term in (A.5) arising due to the out-of-cluster TXs in P,
set go = di. This is because the cluster is assumed to consist
of the K closest nodes, and the interference is due to the
nodes located outside this protection zone. For the interfering
tiers {®,,, }21_,, however, no such protection zone is assumed.
Without an interferer-free protection zone (i.e., g,, — 0),
Ly, (s) further simplifies to

Lr,,(8)s=resnaxng =
A8 2dp? 2/n
exp (=mAnd, 2T (1 + 2/ (1 = 2/n) (Pubst)*/").
(A8)

Evaluating the expectation in (A.2) using (A.7), (A.8), and
further substituting Py = 1, Ao = py.oXo, and A, = pU™ A,
we obtain the result in Theorem 1.

APPENDIX B: DERIVATION OF PROPOSITION 1

Similar to Appendix A, we can express F. (K,0) =

K .
E [PI‘ [SK > 9”37}(”” (I-"-UQ)]], where Sg = Z 1,H;,
=1
and H; = H;w;". Further, we condition on the in-cluster
distances such that ||z;|| = d; for i € {1,---,K}. Recall

that Proposition 1 is specialized to the case where the set ()
consists of distinct elements (i.e., 7 = K). Given a distinct
cluster geometry, the CCDF of Sk given in (A.1) can be
further simplified to the following form (for z > 0)

T (00l — o @) (@)

i=0
n (T on_ o
w H.wl — W}
I#3

where (B.1) follows by plugging 7 = K and n,, = 1 (for u =
1,---,7)in (A.1). Conditioning on the aggregate interference
power I, we can write [; (K,0) = Fs, (0dg"(I + o?)).
Using (B.1), and taking expectation with respect to I, we can

—Ww. T

K
Fs, (z) = GZ

(B.1)
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express I, (K, 0) (for 0 > 0) as
F,(K,0)=

K-1

@i (Q) — a; () (wy)?

o5 Z( K )

A a(fre-a)
l#]

where the expectation in (B.2) is over the aggregate interfer-
ence power I. Unlike Appendix A where an approximation
was used, the expectation in (B.2) can be directly evaluated
using (A.6). Since the PPPs are assumed to be independent,
it follows that

E [e—dj"el] —F { —d”elo] H E [ ~d] efm] .

m=1

E [eeddolive’)]

(B.2)

(B.3)

As the rest of the derivation follows directly from Appendix
A, some steps are omitted. Evaluating (A.6) at s = d?b‘ yields

d"
g—fleG, 77) ) . (B4

Note that we use an alternative notation for the nodes in TX
tier, e.g., &9 = ®, A\g = A. To compute the expectation of the
term in (B.3) arising due to intrinsic interferers in ®q, set gy =
dr in (B.4). Similarly, for the interfering tiers {®,,}M_,, the
expectation in (B.3) is given by

Ly, (8)ls=aro =
exp (=T And; T (1 + 2/n)0(1 = 2/5) (P6)*/")
(B.5)

Evaluating the expectation in (B.2) usmg (B.4), (B.5), and
further substituting Py = 1, /\0 = Dir,0 0> )\ = p[(r )/\m and
d; = wjdg, yields the result in Proposition 1.

le (8)|s=d;’0 = exp <_775\m972n]: (

APPENDIX C: DERIVATION OF THEOREM 2

We begin the proof along the lines of [33] by leveraging a
known result on the PPP distance distribution. As shown in

[36], the distance ||xk||, between a typical user and its Kth
closest TX, follows a generalized Gamma distribution, i.e.,
S (r) =

pedmr?) e )

2
r[(K) (
Plugging 02 = 0 in (13), and unconditioning the distance
dg according to the distribution of ||z ||, we arrive at the
expression in (C.2) (given at the top of the page) where the
last equation is obtained by using a dummy variable (given in

(C.3)) for integration, and using the definition of the Gamma
(oo}
function I'(K) = [ e *z%~!dz. Unconditioning (15) with

0
respect to dx, and using (C.2), we recover the expression in
Theorem 2.

APPENDIX D: DERIVATION OF THEOREM 3

Leveraging the notation from Section III-B, we
define Py, (K,6) = Prly > 0,y1 > c||lzk]] =
E [Pr[y>0,y1 > clzx|||zx|]] =
E [Pr | Prys > cllzk|||zxll]].  where the

expectation is with respect to the distance ||zk||. Note that
Pr[y > 6|||zk]|] follows from (13) with ¢ — 0, while
Pr [y > cllag||llzxll]] = e« l#xI®. Following steps
similar to those in Appendix C, and using the approximation

% proposed in Section III-B, we retrieve the

expression in Theorem 3.

CcC =
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