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Indirect Adaptive MPC for Output Tracking of
Uncertain Linear Polytopic Systems

Jungiang Zhou, Stefano Di Cairanof, Claus Danielson

Abstract— We present an indirect adaptive model predictive
control algorithm for output tracking of linear systems with
polytopic uncertainty. The proposed approach is based on the
velocity form of the system model, and achieves input-to-state
stable output tracking with respect to the parameter estimation
error and the rate of change of time-varying references. For the
constrained case, recursive feasibility is achieved by including
robust constraints designed from a robust control invariant
set for the system model, and terminal constraints designed
from a positive invariant set for the velocity model. Simulation
results for a numerical example and an air conditioning control
application demonstrate the method.

I. INTRODUCTION

For controlling constrained systems subject to uncertainty,
robust and adaptive model predictive control (MPC) methods
have been proposed [1]. For uncertain systems modeled as
polytopic linear difference inclusions (pLDIs), an indirect-
adaptive MPC strategy was recently proposed [2], [3] that
ensures input-to-state stability with respect to the parameter
estimation error, robust constraint satisfaction, and compu-
tational burden similar to nominal MPC. The method was
named indirect-adaptive MPC (IAMPC) because it adjusts
the model and the cost function based on the parameter
estimate obtained from an external estimator, which needs
to satisfy only minimal assumptions. The estimate needs
only to be a convex combination vector, resulting in the
current prediction model being any convex combination of
the vertices of the pLDI. Thus, IAMPC allows for separating
controller and estimator design, which is desirable in practi-
cal applications.

The IAMPC in [2], [3] was developed for stabilization to
a (fixed) equilibrium. However, several applications, require
the controller to track time-varying (or at least piecewise
constant) output references. Output tracking MPC [4], [5]
is often based on first determining a target state and input
setpoint (xs, us), and then solving a state-input setpoint
tracking problem, where the cost function penalizes the
deviation from the setpoint,

N-1

($N|t—33§v|t)+
k=0

VN =F L(xk|t_IZ|t7uk|t_uZ|t)' (1)

In TAMPC, whenever the parameter estimate changes, the
setpoint needs to be updated based on the adjusted model,
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and such changes are in general unpredictable. However,
when the setpoint changes unpredictably from step to step,
even if only for the last step of the prediction horizon,
($§V\t+1’“?\r|t+1) xN‘t,uNL the optimal cost (1) un-
dergoes step changes. For such cases, the standard design
methods, usually based on LMIs enforcing F(dx N|t+1) +
L(den_1jt41,dun_1)¢41) — F(dwy) < 0 where da =
a — a®, may not guarantee the decrease of the optimal cost
even in the perfect model case, because the setpoints in the
different terms are actually not equal. A method to overcome
some of these limitations is to formulate the prediction model
in velocity form [6]-[8], which avoids the need of explicitly
computing the state and input setpoint by controlling instead
the state variation and the output tracking error.

In this paper we exploit the velocity model together with
a set of integrators that reconstruct the system state and
input. We propose a design for the terminal cost based on
the velocity model that achieves input-to-state stable output
tracking with respect to both the parameter estimation error
and the reference change. The relation between the velocity
model and the system model is exploited to design invariant
sets that guarantee recursive feasibility. The system model is
used to determine a robust control invariant set which ensures
constraint satisfaction even in presence of uncertainty. The
terminal set is designed based on a positive invariant set
obtained by considering together the velocity model and
the system model. The resulting IAMPC for output tracking
solves a quadratic program that is only slightly larger than
the one for stabilization, where the increase is only due to
the higher dimensional (usually more complex) terminal set.

In what follows, the system model with state and input
constraints and the equivalent velocity form are introduced
in Section II, and the IAMPC strategy and the problem
definition are described in Section III. The design methods
for the unconstrained and constrained IAMPC are proposed
in Sections IV and V, respectively. Simulations on an air
conditioning case study are reported in Section VI, and
conclusions in Section VII. Due to the limited space, only
brief descriptions of the proofs are provided.

Notation: R,Roy, Ry, 7,70, Z4 denote the set of real,
nonnegative real, positive real, and integer, nonnegative
integer, positive integer numbers. We denote intervals by
notations such as Zy, ;) = {z € Z : a < z < b}. For
vectors x € R”, y € R™, (z,y) = [2/ ¢/], and [z]; is
the i-th component. For « € R", |z|, is the p-norm, and
|z| the Euclidean norm, whereas for A € R"*", |A|, is
the induced p-norm, and |A| = |A|s. For ¢ : Zoy — R™,
lloll = sup{|¢p(t)| : t € Zo }. A continuous-time signal 2(7)



sampled with a period T is denoted by the discrete-time
signal x(t) = x(tT), where t € Zoy. For x(t) € R", zy),
denotes the value predicted k-step predicted from xz(t), and
Zjo,N|t] = (S(:0|t7 - ,.’L‘N|t). For2CRLEM =2x ... xE.

II. SYSTEM MODEL AND VELOCITY FORM

We consider the constrained linear discrete-time system
with polytopic uncertainty described by

14

w(t+1) =Y [fidiz(t) + Bu(t), =(0)=mz0 (2a)
=1

y(t) = Cx(t) (2b)

x(t) € X, wu(t)el, (2¢)

with state x € R”, input v € R™ and output y € RP. The
constraint sets on states X' C R™ and inputs 4/ C R™ are
polyhedral. The uncertain state matrix A(€) := Y'_, [€]; A;
is a convex combination of given vertex matrices A; €
R™*" i € Zjy 4, with unknown convex combination vector
EeR, EcE={ceR: 0< [ <1, 50, (8 =1}
We want (2) to track a time-varying reference r» € R?,

r(t+1) =r(t) + Ar(t), r(0)=ro, 3)

where Ar(t) € R? is such that the reference signal evolves
within an admissible set, 7(t) € €, C RP. Piecewise
constant references are included in (3) by Ar being almost
always 0. In some cases the admissible reference set €2,
may not be pre-assigned, and must be determined with the
controller. Since r(t) € €., it holds that Ar(t) € Qa,(r(¢)),
where Qa,q(r) = {Ar e RP: r + Ar € Q,}.

Assumption 1:

1) The state = is measured;

2) The plant is input-output square, i.e., m = p;

3) The linear polytopic system (2) is reversible, that is,

state matrix A(£) is non-singular for any ¢ € Z;

4) (A(§), B) is controllable, and (C, A(§)) is observable
for any £ € E.
5) For any £ € =, the linear polytopic system (2) has no

invariant zeros on the unit circle, that is,

rank [ c 0

] =n+p, VEEE (4
O
_ Assumption 1.5 implies that for any uncertain parameter

¢ € £, given a reference ry € RP, there exists a unique
steady state pair (zs,us) € R"TP that satisfies

re = Oy, (5)

xs = A(§)xs + Bus,

where z, = 24(€), us = us(€) are functions of &.

In what follows, the value of ¢ in (2) is not known.
As opposed to considering the uncertainty as an additive
disturbance and thus applying robust MPC, such as in [7]
where the velocity form was used, here an estimator provides
a time-varying estimate £(t) of &, such that £(t) € = for all
t € Zo+, which is then used in an adaptive MPC. The need
to update the equilibrium state and input targets is avoided
by using the velocity form of (2).

A. Velocity Model Formulation

To construct the velocity form of (2), we introduce the
input increment Au(t) € R? and formulate the input as

v(t+1) =v(t) + Au(t), ©v(0)= vy, (6)

where v(t) = u(t—1). Then, as in [7], [8], we define the state
increment Ax(t) =x(t) — x(t — 1). The output tracking error
ise(t+1) =y(t+1)—r(t+1) = et)+CAz(t+1)—Ar(t).

For a constant ¢ € =, the velocity form of (2a)-(2b) with state

5(t) = (Az(t), e(t)), denoted as ¥ (€), is

3(t+1)= Ay (€)0(t)+ Bu Au(t) + G Ar(t), 5(0)=0
e(t)= Cud(t).

(7a)
(7b)

The following proposition follows immediately from the
system structure.

Proposition 1: Under Assumption 1.3 and 1.4, the pair
(A,(€),B,) is controllable and the pair (C,,A,(§)) is
observable for any & € =. O

While [7] exploits the exact knowledge of the model
to derive a static relationship by inversion, to enforce the

constraints in (2¢), we formulate another system, (&),

(7¢)
(7d)

B(t+1)= ¢(t)+ Eu(§)d(t) + F Au(t), ¢(0) = ¢o
z(t) = é(t) + HyAu(t),

where the state is ¢(t) = (z(t),v(t)). X2(€) is a discrete-
time integrator for X1 (£). The system matrices in (7) are

A0 [B To
el gl [s)

A 0 _[B ~[o
CU:[O Ip]vai:[O 0:|7FU_|:IP:|7H’U_|:IP:|-

The collection of equations in (7) describe the integrator-

augmented velocity model 3(£) to be used as TAMPC
prediction model,

X(t+1) =Aa (€)X (t) +BaAu(t)+GaAr(t), x(0)=xo, (%)
e(t) =Cq (t)v Z(t) = DaX(t) + EaAu(t)v (9b)

where x(t) = (§(t), ¢(t)) is the state, e(t) is the performance
output and z(t) = («(t),u(t)) is the constrained output.

Remark 1: For the trajectories of (2) and integrator-
augmented velocity model (9) to be equivalent, the initial
condition Az in xo must be properly determined. As
discussed in [6] for a fixed £ € Z, the initial condition Az
needs to satisfy

(A(&) — Iao — A(§)Azo + By =0, (10)

For any sequence of input increments Awu in (6) and initial
condition (zg,vg) € X xU, if (10) holds, the trajectories for
x(t) generated by (2) and (9) are equal. O

In MPC, the initial state of the prediction model is re-
initialized at each sampling time ¢. By selecting x(t) =
(x(t) —a(t —1),Cx(t) —r(t),x(t),u(t — 1)), where z(t —
1), u(t—1) are the signals from the previous sampling instant,
condition (10) is satisfied. Therefore, (9) can be used to
predict trajectories of (2).
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Fig. 1.  Cascaded structure of the constrained velocity model: X1 (§)

includes the velocity states (Az,e) and X2(€) includes the constrained
states (x,v).

B. Velocity Model Structure
The structure of integrator-augmented velocity model (9),

in which the state Az of ¥1(£) becomes an input of X (€),
is shown in Fig. 1. The Au—e relationship reveals that
the integrator-augmented velocity model (9) is in Kalman
observable decomposition, where ¢ is observable and control-

lable, while ¢ of ¥5(€) is non-observable with respect to e.

Because of the cascade coupling and since X2 (&) models the
constrained variables, 1 (£) needs to be controlled such that
the trajectory of (Ax(t), Au(t)) ensures that (x:(t),u(t)) in
Yo (€) satisfies the constraints. For achieving output tracking,
only part of the state of ¥1(£), i.e., e, needs to vanish. By (5),
tracking a constant reference implies convergence of (x, u) to
a unique (x5, us). Thus, when tracking a constant reference,
at steady state Au and Ax asymptotically vanish, and the

controller actually asymptotically stabilizes the entire state

0(t) = (Ax(t),e(t)) of X1(&).
III. INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL

The output tracking IAMPC exploits prediction model (9).
However, since ¢ is not known, a (time-varying) estimate &(t)
is used in the prediction model. The parameter estimation
error is £(t) = € — &(t), and £(t) € Z(E(t)) where £(t) €
E¢) = {€ e R . 3E € E, st £ =&~ &) The
following assumption on the parameter estimate £(t), and on
the uncertain parameter values used by IAMPC for prediction
&kt» is made throughout.

Assumption 2: The estimate provided to the controller is
such that £(t) € = for all ¢ € Zo4. At any time ¢t € Z., the
predicted value of the parameter estimate &|¢, k € Zo, Ny, 1S
such that iy = g1y forall k € Zg n_1j.

At time ¢, given x(¢) and the predicted parameter vector
&[o,~|¢)> the IAMPC based on (9) solves

Vﬁ(x(t),é“[o,zvu]):gi'gf}) Vn(Au(t); x(t),&o,npy) (11a)

N—-1
=min 5;V|tp(5N|t)5N|t+kZO 011 Q0pfe + Aty RAup
s.t. 5k+1\t ZAU(fk.“)(Sk” + BvAth (11b)
Prer1)t = Buje + B (ke )0kt + FolAugy, — (11c)
2t = O + HyDugpp € Cou,s (11d)
(0Nt N e) € X{, (11e)
doje = 0(t), doe = B() (119

where N € Z, is the prediction horizon, Q € R(*+r)x(n+p)
and R € R™*™, @Q,R > 0. The prediction is based on

a “nominal model” (11b)-(11d) of the integrator-augmented
velocity model (9) with time-varying prediction parameter
&k|¢ and constant reference along the horizon, Ary, = 0. The
design of the terminal cost P(&) € R("+P)X(n+P) ' constraint
set Cpy C X X U and terminal set X C R2(n+2) i derived
in the subsequent sections. Au(t) = (Augys, ..., Auy_1)¢)
is the optimizer and Au*(t) = (Aua‘t, cey Au}*\,_llt) is
the optimal solution to (11). The control input at sampling
time ¢ is determined from the first input increment Au(t) =
Aug, = KM(x(t), &[0, npy), resulting in the IAMPC law

u(t) = u(t —1) + K™ (x(t), §o.nv1) (12)

Solving (11) only requires the solution of a quadratic pro-
gram, similar to a nominal MPC.

As discussed in [2], Assumption 2 can be satisfied by
obtaining £(t) as the projection of any estimate o(t) onto =,
and by adjusting the parameter value only at the end of the
prediction horizon, & v while shifting the previous values for
the other steps so that )y = {gq1i—1 for all k € Zjg n_1j.
This amounts to including a N-step delay in the estimate
update, &y = £(t — N + k). Next, we state a useful property
of the value function VX (x(t), {0, ny)-

Lemma 1: Let C,, and X be polyhedral, x(t) € Sy,
and S, be a bounded set in which the optimization prob-
lem (11) is feasible. Then, the value function V3 (x, {0, n|1])
is Lipschitz continuous in S,, that is, there exists L € Ry
such that for all &g njg € ZV 1, and for all x1, x2 €Sy

(13)

O
The proof for Lemma 1 is based on V3 (x,&o,np)) being
piecewise quadratic [9]. Additional steps can be found in [3]

Next, we define the problem to be solved by the control
design.

Problem 1: Consider system (2) subject to Assumption 1
and the associated integrator-augmented velocity model (9), a
time-varying reference (3), a parameter estimator producing
&(t) and &jo, vy satisfying Assumption 2 for any ¢ € Zoy,
design the IAMPC law (12) based on (11) such that:

1) the closed-loop X1 (&) is input-to-state-stable (ISS) with
respect to the estimation error and the reference change,
i.e., there exits a KL function 8 and X functions p1, p2
such that for any t € Zg

16()] < B(16ols t)+pr(l€ose ) +p2(| A, (14)

2) the constraints on Y5(£) are satisfied, i.e., there exists
a set Xy € R" X X x U such that for every
(Az(0),2(0),v(0)) € Xypy and any r(t) € Q,, for
all t € Zog, (x(t),u(t)) € X x U, for every t € Zo.

V& (xas €o,n1) — VR (X2, §o,nvie) | <LIxa — xal-

O
In Problem 1, (14) ensures bounded tracking error for time-
varying references. Furthermore,, when lim; ,~, £(t) = 0

and lim;_,o 7(t) = rs, 31(§) is asymptotically stable. For
estimation errors that are non-vanishing, yet are eventually
smaller than a certain threshold, |£(¢)| < 7, for all ¢ > ¢,
asymptotic stability can be obtained following [3].



IV. UNCONSTRAINED TRACKING IAMPC

First, we consider the unconstrained case, where, with
slight abuse of notation and reminding that m = p, X = R",
U = RP, and the corresponding invariant sets are C,, =
R"*P and X = R2("+P),

Based on (9), we first design a stabilizing control for
the nominal linear parameter varying system o(t+1) =
S L[E())i Av, 6(EB, Au(t) where £(t) € E.

Consider the parameter-dependent Lyapunov function [10]

Vi(6,§) =8'P()s, P(&) =Y [P, (15
where P; = 0 for all i € Z; 4, with the associate stabilizing
control law Au = K (§)d, where K (§) = Zle[f]iKi, such

that the closed-loop system satisfies

Vf ((Av(f) + BUK(f)) 57 §+) - Vf(57 5)
<8 (Q+ K()RK()5, Y¢,6H €2 (16)

LMIs for constructing K () and P(€) that satisfy (16). can
be found for instance in [2], [10].

Next, we analyze ISS with respect £(t) € Z(&(t)) and
Ar(t) € Qar(r(t)) of (9) in closed-loop with the uncon-
strained JAMPC where the terminal cost in (1la) satis-

fies (16). Since X2(&) does not affect the cost function (11a),
in the unconstrained case only 31 (€) is considered [8]. The
next result follows from arguments in [9, Ch.2] and [2] for
unconstrained MPC for linear time-varying systems.

Proposition 2: Consider the IAMPC (12) when X =
R",U = RP, Cpy = R" x R?, X = R2("7)_ The value
function of (11), V3 (x(t),&0,n)¢) is such that there exist
a1, a9, a3 € Ry for which

ar[8(t)[* < VI (x(®), &o.np) < a2ld(t)?, (17a)
Vi (xages €0, v je+17) — VA (X (@), €o,v1) <—asld(8)[?, (17b)

where x11; = Aa(§(t))x(t) + Ba K (x (), §o,wpeg)- O
Proposition 2 relates x(t) and X1}, and hence holds for a
“nominal” system, and follows from arguments in [9, Ch.2]
and [2] for MPC for linear time-varying systems.

Theorem 1: For system (2) and the associated integrator-
augmented velocity model (9), let X = R", U4 = RP.
Consider the IAMPC law (12) that solves (11), where P(¢)
satisfies (16), Cp, = R™™P and 2('){ = R2("*+P) In any
bounded set, the value function Vi (x(t), &[0, n) is an ISS-
Lyapunov function for (&) with respect to the estimation
error &o|; € =(&o);) and reference change Ar(t) € Qa,(r(t))
for the close loop, and there exists «,, p € R4 such that

VI (x(t + 1), §o,npe417) — VE(X(), €jo.v 1)

< —als(t) [+l > + plAr@®)].  (18)

O

The proof of Theorem 1 is based on Proposition 2, that
guarantees a decrease of the value function when there is
error and the reference does not change, and Lemma 1 that
allows to bound the effect of the error and reference change.

Theorem 1 guarantees output tracking since the tracking
error is a state variable in ¥ (€), and (9) and (2) generate
equal trajectories under (10), which holds for IAMPC. Due
to the structure of (9), when \£0|t| = |Ar(t)| = 0, for all
t > t, by Assumption 1 the convergence of the output to a
constant reference implies the convergence of the state and
input of (2) to a steady state. As for Lyapunov stability, this
is only established for the tracking error and the step-to-step
change of state and input of (2), which is in general sufficient

in output tracking applications.

V. CONSTRAINED TRACKING IAMPC

Next, we consider the case when system (2) is subject
to constraints, i.e., X C R", U C RP and X, U are
compact sets. In this case, for ensuring constraint satisfac-
tion and retaining stability, we need to design the robust
constraints (11d) and the terminal set (11e).

A. Robust Constraints and Terminal Set Design

1) Robust Constraint Set: To guarantee robust constraint
satisfaction in the presence of parameter estimation error,
the constraint set C,., is designed based on a robust control
invariant (RCI) set [11] of (2). Let C, C X be the RCI set
such that for any x € C, there exists u € U that satisfies
Aijx + Bu € C, for all i € Zy 4. Then, Cyy in (11) is

Cou={(z,u) € CoxU : Ajx+ Bu € Cp,Vi € Zjy 1}
(19)

If (11d) is designed as in (19), whenever (11) is feasible, the
constraints (2c) are satisfied despite the estimation error.

2) Terminal Constraint Set: The terminal set X{ is de-
signed as an invariant constraint admissible set for (9), which
couples the state & of ¥;(€) and state ¢ of Y¥5(€). Let
K (&) be the control law that satisfies (16). Let K,(§) =
[K(€)  Opx(ntp)] be its extension to X(€), and X = {x :
(Da + EaK(M)X € Cpu, 1 € Z[Lg]}. Then, X){ C Xk
is robust positive invariant (RPI) with respect to the time-
varying parameter £, and contained in X'k,

X ={xC Xk : (A, +B.Ka,)x € X], Vi€ Z[l,z](}zo)

X{ is RPI with respect to known changes of &, but in
general is not RPI in the presence of a parameter estimation
error. Thus, recursive feasibility of the terminal constraint in
presence of such error is achieved by properly choosing the
length of the prediction horizon as explained next.

B. Prediction Horizon and Domain of Attraction

Satisfaction of (11e) for X{ £ R2("+P) in the presence
of estimation error requires X{ to be reachable from every
allowed state in N steps. Thus, one can achieve recursive
feasibility by first determining the set of allowed initial states
of (11), and then determining /N so that the terminal set is
N-step reachable from any of those.

Next, first we determine the actual set of allowed states.
Then, since such set depends on the unknown parameter &,
we construct a parameter-independent outer approximation.



Finally, the horizon is selected to ensure reachability of the
terminal set from any state in the outer approximation.
To simplify the sets construction, we apply a change

of coordinates to 31(§) defining as the new state d(t) =
(Az(t),r(t)). This results in

Rt +1)= A (E)X(t)+ BaAu(t)+Go Ar(t), X (0) = R0,
e(t) = CA((L)Z(t)v Z(t) = ﬁaf((t) + EaAu(t)7 (21)

where { = (6,¢) = g(x) and g is, with a small abuse of
notation, the change of coordinates.
The set of admissible states is determined as follows.
Lemma 2: For any £ € =,

SX(E) :{(Al',’l",l',v) AS me S C,qc,U EZ/{,
(A(€) — I — A(§)Az + Bu=0}. (22)

is a control invariant set for (21), i.e., for all x € SX(E ), there
exists Au such that A, ()Y + BoAu+ G, Ar € Sy (€). O
The proof of Lemma 2 is based on invariance of C, and
the equivalence of trajectories of (2) and (9) under the
initialization condition (10).

By (22), the components (r, x,v) of (Az, 7, x,v) in Sy (€)
do not depend directly on £. Thus, the allowed values for
(r,x,v) are determined only by the corresponding con-
straints. On the other hand, under Assumption 1, given
(r,x,v), there is a unique value of Ax that satisfies (22),
and it depends on ¢ in an usually nonlinear way. Because of
this SX(E) cannot in general be explicitly computed and a
parameter-independent outer approximation is necessary.

Hence, we build S, D S, (€) for all € € Z,

Sx ={(Az,r,x,v) € R"x Q. xCp xU : Au, (23)
(z,v 4+ Au) € Cpyy « + AjAz + BAu € C,, Vi € Z[Lg]} .

Lemma 3: Let S, (€) and S, be defined as in (22)
and (23), respectively. Then, S, () C S, for any £ € =.
O
The proof of Lemma 3 is based on showing that for any &,
% € S, (€) implies that ¥ € S,. This is due to S, (€) being
defined by an invariance condition and the initialization (10),
while Sx is defined by invariance of the system and its
velocity form. Any state that satisfies the invariance of (2)
and (10) also satisfies the invariance of the velocity form, due
to equivalence. Yet, some states may satisfy both invariance
conditions, without satisfying the initialization.

By SX, we obtain a design for the prediction horizon.

Lemma 4: Let h* € Z be the smallest value such that
7@’;* ) SX, where ﬁ&h) is the set of states that for any given
&0,n—1] € E" can be brought to RO = X{ in I steps while
satisfying the constraints (11d), and is computed as

500) 1

RO - 2]

ﬁthrl) = ﬂ {)A( : E'AU, Aaif( + BaAU c ﬁgch),
1E€EZ[1,£)

Dox + E,Au € cw} .4

Then, the IAMPC law (12) where (11d) is designed accord-
ing to (19), P(&) in (11a) satisfies (16), (11e) is designed
according to (20), and N > h*, is recursively feasible within
X ={x: g0) = x € Sy}, even in the presence of
estimation error &o; € Z(&oj¢). |

The proof of Lemma 4 is based on showing that (11d)
designed by (19) ensures satisfaction of (2c) and that the
terminal constraint is feasible because for the proposed
choice of N, the terminal set XXF is reachable within the
horizon from every y such that g(x) = x € SX.

In computing 7@;}1) at each step we allow for a different
command for each vertex system, i.e., the controller is
aware of &, as opposed to (19), where the same input is
applied to all vertices. Thus results in 7@5!1) being larger than
the corresponding robust reachable set and ensures that we
can find h* such that 7@9) D S, (€). Furthermore, S, =
{(z, Az,v) : Ir € Qy, (x,7, Az, v) € S, }x,.. This allows
for searching for a suitable €2, during the iteration (24), for
trading off between (2, and the prediction horizon N, and
possibly for combining IAMPC with the techniques in [5].

C. Input-to-State Stability

Next we combine the results of Section IV with the design
of the constraint sets and the prediction horizon.

Theorem 2: Consider system (2), and the IAMPC
law (12) that solves (11), with prediction model (9), P(&)
that saisfies (16), C;, and 2('){ designed according to (19)
and (20), respectively, and IV selected according to Lemma 4.
The value function V3 (x(t),&o,npg) of (11) is an ISS-
Lyapunov function for § = (Ax,e) within the invariant
set Xxf , with respect to the estimation error §~0|t € é(fmt)
and reference rate Ar(t) € Qa,(r(t)). Thus, there exists
@,7,p € Ry such that for all x(t) € X7,

VR (x(t+ 1), o, 8 pe+11) — VR (X(@), Ejo,v14)

< —al6()] +yl&p? + plArt)].  (25)

]

The proof of Theorem 2 follows by combining Theorem 1
that guarantees ISS in the unconstrained case, with Lemma 4
that guarantees feasibility and invariance of Xxf with respect
to 50“ € Z(&ye) and Ar € Qa,(r(t)). As a result, the
proposed IAMPC solves Problem 1.

Result 1: For every initial condition in Xf , (2) in closed-
loop with the TAMPC law (12), which solves (11) with
prediction model (9), P(¢) satisfying (16), C,, and X){
designed according to (19) and (20), respectively, and N
selected according to Lemma 4, satisfies constraints (2¢) and
is ISS in 0 = (Az,e) with respect to the estimation error
&o|+ and the reference change Ar(t). |

VI. CASE STUDY

The case study is inspired by the real world application of
compressor control in a variable refrigerant flow air condi-
tioner (VRF-AC), for which a nominal MPC was designed
in [12] based on a model obtained from first principles and
experimental data, and a stabilizing IAMPC for a given



and fixed setpoint was designed in [2]. Here we design the
IAMPC that can track a changing reference for the room
temperature, r7[°C]. The system model is of 4" order with
the state coordinates being © = [T} T, Ty €)', where T,.[°C]
is the room temperature, 7.[°C] is the evaporating tem-
perature, T4[°C] is the compressor discharge temperature,
¢ is a nonphysical state related to internal conditions of
the air conditioner, observable from the other states and
that can be reconstructed by available measurements. The
control input is the compressor frequency u = C[Hz].
The controller enforces upper and lower bounds on state,
T =26 14 70 oo]’, z = [18 4 50 —o¢]’, and input w = 60,
u = 30, where an infinite bound means that the variable
is not (directly) constrained. Some of the bounds are tighter
than in the actual application to better highlight the capability
of the controller to enforce constraints. The uncertainty in
the dynamics is due to the thermal mass of the room, here
ranging within +35% around the nominal value, and by the
efficiency of the energy transfer from the evaporator to the
room, here ranging within +£20% around the nominal value.
The resulting MPC has ¢ = 4 and N = 12 with 75 = 1.5min.
We have implemented a simple parameter estimator that
computes an unconstrained estimate of the parameter vector
o(t) based on past data window of N,, = 4 steps, which
is projected onto the simplex = and filtered using the first
order filter £(t + 1) = (1 — ¢)&(t) + < - projz(o(t), where
¢ €(0,1), and [£(0)]; = 1/¢, i € Zpy 4. We have simulated
the closed-loop 100 times, by selecting 10 initial conditions
close (within 5%) to the border of the RCI set and simulating
each for 10 plant realizations chosen randomly, with 50%
probability of £ being a random convex combination, and
with 50% probability of £ selecting one of the vertex systems.

The results are reported in Fig. 2 for a sequence of
aggressive step changes, both up and down, in the room tem-
perature reference. The constraints are enforced despite the
uncertainty, and eventually offset free tracking is achieved.
ITAMPC only requires solving a QP, for which there are low
complexity solvers suitable for execution in the microcon-
troller (here we use [13]), which points at the computational
feasibility in the real application.

w

VII. CONCLUSIONS

We proposed an output tracking indirect adaptive MPC
for constrained linear systems with polytopic uncertainty.
The method exploits the velocity form to achieve input-
to-state stability for the closed-loop system, and robust
constraint satisfaction and recursive feasibility are achieved
via invariant sets. Simulation results for an application case
study demonstrated the approach. IAMPC can be extended
relatively easily towards multiple directions, for instance
by allowing for additive disturbances, and allowing for
concurrent reference manipulation as in [5], which will be
subject of future works.
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