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Abstract
This paper discusses some of the current state-ofthe-art and remaining challenges in path
planning and vehicle control for enabling autonomous vehicles. Reliable path planning is
fundamental for the proper operation of an autonomous vehicle. Typically, the path planner
relies on an incomplete model of the surroundings to generate a reference trajectory, used as
input to a vehicle controller that tracks this reference trajectory. Depending on how much
complexity is put into the path-planning block, the path planning and vehicle-control blocks
can be viewed as independent of each other, connected to each other, or merged into one
block. There are several types of path-planning techniques developed over the last decades,
each with its own set of benefits and drawbacks. We review different techniques for path
planning and trajectory generation, and give examples of its use in relation to autonomous
vehicles. We report on our own recent findings and give an outlook on potential research
directions.
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Path Planning and Integrated Collision Avoidance
for Autonomous Vehicles
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Abstract— This paper discusses some of the current state-of-
the-art and remaining challenges in path planning and vehicle
control for enabling autonomous vehicles. Reliable path plan-
ning is fundamental for the proper operation of an autonomous
vehicle. Typically, the path planner relies on an incomplete
model of the surroundings to generate a reference trajectory,
used as input to a vehicle controller that tracks this reference
trajectory. Depending on how much complexity is put into
the path-planning block, the path planning and vehicle-control
blocks can be viewed as independent of each other, connected to
each other, or merged into one block. There are several types of
path-planning techniques developed over the last decades, each
with its own set of benefits and drawbacks. We review different
techniques for path planning and trajectory generation, and
give examples of its use in relation to autonomous vehicles.
We report on our own recent findings and give an outlook on
potential research directions.

I. INTRODUCTION

One of several key problems to solve before autonomous
vehicles become a reality is how to determine a collision-free
trajectory of the autonomous vehicle, when the sensor infor-
mation provides an incomplete, and occasionally even wrong,
picture of the surroundings. Fig. 1 provides a high-level
system schematics for an autonomous vehicle. The sensing
and mapping module uses various sensor information, such
as Radar, Lidar, camera, and global positioning system (GPS)
information, together with prior map information, to estimate
the parts of the surroundings relevant to the driving scenario.
The outputs from the sensing and mapping block provides
the basis for the path planner, which produces a desired
trajectory that the vehicle should follow. Autonomous vehicle
control is commonly divided into trajectory generation (path
planning) and trajectory tracking (vehicle control). However,
the two modules should not be seen as isolated parts of
the autonomous vehicle, but should ideally work together,
and aid each other. Loosely speaking, given a system that is
subject to a set of differential constraints (the dynamics), an
initial state, a final state, a set of obstacles, a set of envi-
ronmental constraints, and a goal region, the path-planning
problem is to find a trajectory that drives the system from
its initial state to the goal region. For general environments
the path-planning problem is known to be computationally
difficult [1], and there exist many different approaches for
solving the path-planning problem. There has been extensive
developments in graph-search methods, for example, A* [2],
D* [3], [4], and D*-lite [5], with several applications to

1Karl Berntorp is with Mitsubishi Electric Research
Laboratories (MERL), 02139 Cambridge, MA, USA,
Email:{karl.o.berntorp,dicairano}@ieee.org

Path planning

Path tracking

Actuator control

Vehicle

Environment

Sensing & mapping

Fig. 1. A high-level system architecture of an autonomous vehicle.

autonomy [6], [7]. The use of probabilistic planners based
on rapidly-exploring random trees (RRTs) has been an active
area of research over the last two decades [8]–[14], and has
also been used successfully in autonomous vehicles [15]–
[20]. RRT relies on random exploration of the state space.
Randomized planners are widely employed because they pro-
vide a path whenever one exists, and optimal variants of the
suboptimal RRT have been developed recently. Oftentimes
structure and prior knowledge of the particular problem in-
stance can be imposed. In such cases, deterministic trajectory
generation based on optimal control can be used [21]–[23],
although nonconvexity of the underlying planning problem
is still oftentimes an issue.

For proper overall system performance, the path-planning
and vehicle-control blocks should exchange information with
each other. For example, the vehicle control should be able to
closely track the path computed by the path planner. Hence,
limitations on the type of paths that can be tracked should
be transferred to the path planner. Similarly, depending on
the type of path (e.g., lane change, overtaking, braking) the
specific type of vehicle control that is being used may change
and should be propagated to the vehicle-control module. That
the environment is typically changing, also implies that both
path planning and vehicle control need to consider prediction
of the environment.

Autonomous vehicles must react to emergency situations,
for example, emergency turning to avoid suddenly appearing



pedestrians and/or emergency braking to avoid collision with
rapidly approaching vehicles. This is traditionally handled in
the vehicle control module. Methods based on constrained
control, such as model-predictive control (MPC) [24]–[26]
have been proven well suited for this problem, because
of its ability to efficiently handle constraints and that the
trajectory tracking problem is often convex, or at least well
approximated by a convex problem.

In this paper, we review techniques related to integrating
path planning and collision avoidance for autonomous vehi-
cles, and talk about some of the main challenges associated
with autonomous vehicles. We give examples from our own
research and end with a research outlook.

II. VEHICLE MODELS

The detail level of the employed models vary with the
intended purpose of the model. It is important that the path-
planning module at some point considers the constraints
imposed by the kinematics of the vehicle, which implies that
the models need to consider dynamic feasibility. The vehicle
control should also cover the interaction between road and
vehicle, and in case of emergency maneuvers the models
need to be complex enough to cover, or at least be able to
predict, vehicle behavior in the nonlinear operating regime
of the vehicle. The models can broadly be characterized into
kinematic and dynamic models, respectively. The kinematic
single-track model is a model that mimics the vehicle dy-
namics well under mild driving conditions where wheel slip
can be neglected. Fig. 2 provides a schematic of the model.
The dynamic equations are:

ẋ =


ṗX
ṗY

ψ̇
v̇x

 = f(x, u) =


vx cos(ψ + β)/ cos(β)

vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
ax

 ,
where ψ̇ is the yaw rate; vx is the longitudinal velocity at
the center of mass; lf , lr are the distances from the center
of mass to the front and rear wheel base L := lf + lr, the
body slip β is defined as

β = arctan

(
lr tan(δ)

L

)
,

and where the inputs u are given by the steering angle δ and
the acceleration ax. The dynamic single-track model has the
same kinematics as in Fig. 2 but the differential equations
are instead given by [22]

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)),

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)),

Izzψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ),

(1)

where m is the vehicle mass; Izz is the vehicle inertia
about the z-axis; and {Fx,i, Fy,i}i=f,r are the longitudinal
and lateral tire forces acting at the front and rear wheels,
respectively. The forces are in general modeled as nonlinear
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Fig. 2. Schematics of the single-track model. The capital letters denote
the inertial frame.

functions of the wheel slip λ and wheel slip angle α, where
the slip angles αf , αr are described by [27]

αf = δ − arctan

(
vy + lf ψ̇

vx

)
, (2)

αr = − arctan

(
vy − lrψ̇

vx

)
. (3)

For moderate driving, small-angle approximations and linear
tire-force expressions can be used, resulting in a linear
dynamic model of the vehicle.

For the path planning problem, the models provided here
are sufficiently complex, but the vehicle control may, depend-
ing on how aggressive maneuvering should be captured, need
to consider even more complex models. Considering even
simpler models can be possible depending on how low-level
the path plan should be. For instance, curvature-bounded
point-mass models may be sufficient in certain scenarios.
However, ideally the path planning and vehicle control
modules should at least share common characteristics, to be
able to provide guarantees on performance of the overall
system.

III. PATH PLANNING
Let X ⊆ Rn, Y ⊆ Rp, and U ⊆ Rm, and assume that the

vehicle dynamics can be expressed by a nonlinear differential
equation on the form

ẋ(t) = f(x(t), u(t)), x(0) = x0

y(t) = h(x(t), u(t)),
(4)

where the state x(t) ∈ X , the ouput y(t) ∈ Y , and control
input u(t) ∈ U . Further, let Xobs denote the, potentially
dynamic, obstacle space, Xgoal the goal region, and let
Xfree = X/Xobs denote the drivable space. A basic formu-
lation of the path-planning problem we consider is to solve
the following problem,

minimize
x(t)

∫ T

0

g(x(t), u(t)) dt

subject to x(t) ∈ Xfree

ẋ(t) = f(x(t), u(t)), x(0) = x0

u(t) ∈ U
x(T ) ∈ Xgoal,

(5)



with possibly free final time T . In autonomous-driving
applications where the environment changes with time and
the differential constraints of the vehicle need to be enforced,
exact solutions to (5) are unrealistic. Instead, numerical
solutions are sought that provide feasible solutions in short
enough time. Because of the dynamic environment, (5) needs
to be solved sequentially, either at a fixed update rate or
whenever the sensing module provides an environment that
does not match what was used in previous time steps.

Path-planning techniques can broadly be divided into vari-
ational methods, graph-search methods, and sampling-based
methods. Variational, or optimal-control based, methods can
be efficient when the problem size is sufficiently small such
that computations of new solutions can be done fast, and/or
when the environment is nearly static, as shown in the
DARPA Urban Challenge [6]. However, oftentimes the non-
convexity of the underlying nonlinear optimization problem
can cause convergence to local minima, slow convergence,
or even lack of convergence.

A. Determining the drivable space

An important part of a trajectory-generation system is to
determine the drivable space Xfree, or equivalently to deter-
mine the obstacle space Xobs. Determining the obstacle space
essentially boils down to predicting the motion of the moving
obstacles. Without motion predictions, the path planner has
to assume a static, or perfectly known, environment, which is
unrealistic because the environment is typically dynamic and
highly uncertain. If precise prediction of the environment is
available, path planners can compute safer, less conservative,
and more robust trajectories. Motion prediction is a fairly
well researched field, but there are still challenges remaining,
such as how to seamlessly integrate the motion prediction
with the path planner.

Motion prediction, which potentially includes driver-
intention recognition, can be approached in several ways.
For example, deterministic methods predict a single future
trajectory, while stochastic methods represent the future
trajectories with probability density functions (PDFs), which
are estimated using statistical methods such as Monte-Carlo
sampling [28]. Another common approach is to base the
prediction on Markov chains [26], [29] for reachable set
computations [30]. In [31], the reachable set computation
was done by means of Monte Carlo and the driver-intention
recognition was implicitly performed by a biased driver-
preference distribution, while we have investigated how to
predict individual vehicles by the notion of similarity with
other vehicles [32].

B. Graph-Search Methods

Graph-search methods approach the path-planning prob-
lem by representing the state space Xfree as a discretized
graph G of vertices (states) V and edges (paths/trajectories)
E connecting the vertices. The initial state x0 is a vertex
of the graph and there is at least one vertex associated
with the goal region Xgoal. Graph-search methods have
been rather commonly used in autonomous driving [6], [33],

[34], especially as a high-level path planning method on
road networks. There exist various methods to construct
the graph as surveyed in [35], such as geometric methods
and sampling-based methods [36]. Looking at the particular
application of autonomous driving on structured road net-
works, it might also be feasible to discretize the preferred
locations in each lane, for example, the middle lanes in each
lane. By modeling the path-planning problem in the road-
aligned frame, as is commonly done in vehicle control and
estimation [31], [37], [38] the dimensionality of the graph
can be heavily reduced, which is one reason why graph-
based methods may be a preferred choice for path planning.
Given a static graph, Dijkstra’s algorithm [39] or A* [2]
can be used for computing the shortest path. As in any path-
planning method, however, the possibility of replanning with
the path plan using the previous plan is important. Thus,
when the environment changes, or perhaps more importantly,
when the environment changes in a way that is inconsistent
with the predictions of the drivable space, a new plan has
to be computed. To this end, D* and its related methods are
efficient replanning methods [4], [40].

When using graph-search methods for trajectory planning
(i.e., path with time information), it becomes important to
consider the differential constraints imposed by the vehicle
dynamics/kinematics. Some work on this can be found in
[41]. Traditional methods have been based on investigating
approximate solutions (e.g., [42]), because in general exact
solutions are infeasible to obtain. In this context, feedback
motion planning [14], [43] can be useful because the edges
are computed by feedback control, and are therefore dynami-
cally feasible by construction. Feedback-based path planning
may also have the potential to better integrate with vehicle
control, because then the two modules share common theory.
In addition, certain guarantees on robustness and invariance
may also be possible.

C. Sampling-Based Methods

Sampling-based methods are focused toward incrementally
build a feasible path, or a sequence of feasible paths that
converge to an optimal path, given enough computation time.
RRT is an important instance of sampling-based methods,
which has found various applications [41]. RRT-type al-
gorithms incrementally build a tree by selecting a random
sample and expanding the tree towards that sample. Checking
if the sample and the corresponding edge is in Xfree amounts
to pointwise comparison. RRT does therefore naturally inte-
grate with some of the methods for determing the drivable
space, since it does not require a geometric expression for
Xfree, as opposed to some methods for constructing the graph
in graph-search methods. RRT provides a path whenever
one exists [44], but is suboptimal [45]. The quality of the
path in RRT can vary heavily between any two planning
instants, which is highly undesirable for autonomous driving.
There exist various heuristic techniques to provide good
performance [41], one of which was developed for the
DARPA Urban challenge [15]. Optimal variants of RRT have
recently been provided, such as RRT* [45], [46] and RRT#



[13], [47], under the assumption of known obstacles. RRTX

[48] is an extension that allows for optimality in uncertain
environments. A difficulty in RRT-type algorithms is to allow
for differential constraints, which are important to consider
in vehicle applications, where the vehicle dynamics limits
the drivable region. Work towards alleviating this problem
can, for example, be found in [15], [17], [43], [49], [50].
One underlying assumption is the availability of a steering
function that connects two vertices. However, this amounts to
solving a two-point boundary value problem, which is com-
putationally difficult to solve in general. Local linearization
[51] or focusing on linear dynamics [49] simplify the solution
to the boundary-value problem, and differential flatness has
been utilized for autonomous high-speed driving [17].

Avoiding the need for exact steering is clearly desired for
autonomous-driving applications. One approach toward this
is the Stable sparse tree (SST) [52], which is based on gen-
erating random controls and propagating them through the
dynamic model, whereas we in [50] developed an extension
to the closed-loop prediction in [15], thus providing certain
optimality without imposing a steering function. Feedback-
based sampling methods seem like a fruitful approach for
increasing robustness and computational efficiency. Using
feedback-based planning bridges the gap between the path-
planning and vehicle-control modules, and can potentially
offer a more integrated approach to path planning and
collision avoidance in autonomous driving.

IV. VEHICLE CONTROL AND COLLISION
AVOIDANCE

Predictive control, specifically MPC [24], [25], has re-
cently evolved as an important approach in the research
literature for automotive control in general and vehicle-
dynamics control in particular. In its general form, MPC
admits nonlinear dynamics as in (4). MPC solves at each time
step a finite-horizon optimal-control problem and applies
the first of the optimal inputs to the system. There exist
various formulations of the MPC problem, depending on the
nature of the models, constraints, computational resources,
and performance guarantees. A rather basic discrete-time
formulation is

minimize
u(t)

F (x(Np)) +

Np−1∑
k=0

L(x(k), y(k), u(k))

s.t. x(k + 1) = f(x(k), u(k)),

xmin ≤ x(k) ≤ xmax, k ∈ {1, . . . , Np},
umin ≤ u(k) ≤ umax, k ∈ {0, . . . , Nc},
x(0) = x0,

(6)

where Np is the prediction horizon and Nc the control
horizon. Today there exist efficient software and implemen-
tations for real-time solution of MPC, especially for convex
MPC formulations. Furthermore, various MPC approaches
have been proposed in relation to autonomous-driving ap-
plications. For example, [53] suggests MPC for trajectory
generation of an active front steering vehicle. MPC can also
be used in a hierarchical framework, where a high-level

Fig. 3. Example of planning and control stack for driver assistance and
automated driving features.

MPC provides trajectory generation to a low-level trajectory-
tracking MPC [54]–[56]. Here, robust control invariant (RCI)
sets can be exploited to provide the desired guarantess. For
instance, [57] uses robust positive invariant sets to bound
the maximum deviation of the trajectory from a nominal
trajectory and provide collision avoidance, and [58] uses
RCIs for vehicle stabilization.

There are also methods for unifying path planning and
vehicle control/collision avoidance into one module, for
example, by utilizing the structured environment of one-way
roads [59]. Unifying the planning and control modules has
potential, but typically also makes for a more complex and
difficult problem to solve [60], [61]. Completely integrated
path planning and vehicle control may therefore be out of
reach in the general autonomous-driving scenario, but cer-
tainly has potential for several situations (e.g., lane-change
assist).

V. EXAMPLE: INTEGRATING MPC WITH PATH PLANNING

For proper system performance, the different modules
should exchange information with each other. Investigating
Fig. 1 in a bit more detail in Fig. 3, we can interconnect the
vehicle control with the actuator control and path planner,
respectively. For instance, the actuator controller needs to
guarantee that it can achieve the commands selected by the
vehicle controller. The vehicle controller must guarantee a
tracking error bound along the desired trajectory, so that
the path planner can plan a robust trajectory accounting for
such potential tracking error. In general the tracking error
will depend on the reference trajectory, and hence the error
bounds will depend on the classes of desired trajectories,
according to “agreements” such as: “The vehicle controller
will ensure performance measure M as long as the path
planner generates reference trajectories satisfying property
P”. In this example we investigate MPC for tracking control
of a motion plan generated by a path planner, for example
an RRT, that incorporates obstacle prediction. Hence, the
explicit collision avoidance is done at the planning level with
given robustness margins, whereas an MPC ensures that the
generated reference trajectory is tracked with a preassigned
tolerance.

When considering vehicle control through steering, the
shape of the reference trajectory is related to the shape of



the road. Road segments are often similar to clothoids [37],
in which the curvature changes at a constant rate.The road is
therefore well represented by a piecewise-clothoidal (PWCL)
curve, and here we consider PWCL trajectories with bounded
curvature and curvature rate of change. As a consequence,
the trajectories are subject to state-dependent constraints, i.e.,
the currently allowed range of curvature rate depends on the
current curvature.

In [38] we designed a steering controller for PWCL
trajectories ensuring a preassigned bound on the tracking
error. For PWCL trajectories, algorithms for maximal RCI
sets generally results in nonconvex sets, which makes it hard
to do real-time control for PWCL trajectories. Based on
a recently developed method [62] for constructing convex
RCI sets, in [38] we provided a guarantee of the vehicle
controller performance measure (M), when the trajectories
generated by the path planner are in the class of trajectories
satisfying the PWCL curvature and curvature rate bounds
(P). The method can be used to determine which curvature
rate bounds are acceptable, and hence determines at design
time the property P and the control algorithm that enforces
the performance measure M in the “agreement” between
the path planner and vehicle controller. Actuator constraints
are accounted for, to avoid negative interactions between the
vehicle and actuator control modules.

The reference trajectory from the path planner is modeled
as generated by a particle moving at constant speed vx along
a curve with curvature κ = 1/RT , RT being the turn radius.
This results in the model for the desired vehicle yaw, ψdes,
and yaw rate, ψ̇des,

ψ̈des = vxκ̇. (7)

Sampling (7) with sampling period Ts yields

ψ̇des(t+ 1) = ψ̇des(t) + γ(t), (8)

where γ(t) = vxTsκ̇(t) is an exogenous variable that
describes the change of desired yaw rate. Eq. (8) models
PWCL trajectories where the change of curvature is constant
in time periods of length (at least) Ts. The model we use for
vehicle control is described by (1)–(3), but with respect to a
trajectory with yaw rate ψ̇des. The state xe = [ey ėy eψ ėψ]′,
ey , eψ is the lateral and yaw rate tracking errors, respectively,
the input is steering angle ve = δ, the disturbance is d =
ψ̇des. For ensuring that the difference between the reference
trajectory and the vehicle motion is bounded in a preassigned
range, which allows the SU to plan with appropriate safety
margins, we enforce the constraints

eymin ≤ ey ≤ eymax. (9)

Often, additional constraints have to be imposed on the
vehicle system. In particular, the steering angle and angular
rate are bounded, for both physical limitations and for safety
reasons, as

δmin ≤v ≤ δmax, (10a)
∆δmin ≤u ≤ ∆δmax. (10b)

Further constraints can be imposed on the state variables
such that together with (9) they result in the state bounds

xemin ≤ xe ≤ xemax. (11)

Thus, (10a), (11) describe the performance measure M that
the vehicle control has to guarantee in the ”agreement” with
respect to the path planner.

A. Path Planning

The path planner can be of any type, as long as it can
generate constrained PWCL reference trajectories according
to the parameters determined determined together with the
steering control law. We have previously designed [19], [20]
an RRT-type path planner that instead of sampling the state-
space (as in RRT) we sample the input space, which makes
the method computationally efficient. We formulate the tree
expansion in the RRT as a nonlinear, possibly multimodal,
estimation problem, which we solve using particle filtering.
Enforcing constraints on the PWCL trajectories amounts to
constraining ψ̇des in the path planner, which is straightfor-
ward.

B. Results

We use as simulation vehicle a mid-size SUV on a dry
asphalt road. The vehicle speed is 80km/h and the single-
track model is discretized with sampling-time Ts = 0.05s.
The bounds on steering and maximum tolerable lateral devi-
ation are δmin = −δmin = 0.165[rad], ∆δmax = −∆δmin =
0.420[rad/s], and eymax = −eyminn = 0.3m. For the values
used in simulations, from dmax we obtain that the minimum
turn radius at 80km/h is 44.44m. The simulation reported
in Fig.4 shows the results for a double lane change with
maximum rate of change γmax, −γmax and where N = 4.
Indeed, it is shown in Fig.4 that the tracking constraints, as
well as the steering and steering rate constraints are satisfied,
despite the short horizon.

VI. CONCLUSION

There has been many advancements over the last decades
for enabling truly autonomous systems. Over the next
decade, the capabilities of production vehicles, eventually
resulting in fully autonomous vehicles, is expected to in-
crease as a result of advancements in algorithms, computing
and sensing capabilities. Autonomous vehicles are complex
decision-making systems and include a number of intricate
subsystems, where the output of one system depends on
the output of the previous. Thus, a research challenge is to
integrate the different modules to ensure performance and
safety of the vehicles. The performance of the complete
system is limited by the weakest link in the chain, and a
sophisticated vehicle controller alone cannot guarantee per-
formance of the vehicle. Integrating MPC with path planning
is one challenge. We presented one possible approach to this,
but there are still things to be done.

Furthermore, achieving trajectory generation in the path
planner that is robust to sensing and prediction errors is far
from trivial. There are approaches targeting this problem, but



rate γ(t+k). Since the SU usually provides a long reference
trajectory, often Npv = N , i.e., the entire preview is reliable,
and (15g) becomes a terminal set constraint. However, for
the cases where the actual future reference may be different
from the predicted one, enforcing the RCI constraints (15g),
with Npv being the smallest value of k such that possibly
γ̂t(t + k) ≠ γ(t + k), ensures that feasibility is maintained,
as long as (8) always holds.
Theorem 2: Given γmax ∈ Γmax and Npv ∈ Z[1,N ], con-

sider the control law u(t) = u∗
0|t = hc(x(t), ζey(t), {γ̂t(t +

k)}N−1
k=0 ), where U∗(t) = [u∗

0|t . . . u∗
N−1|t] is the optimal

solution of (15). For every t ∈ Z+, let γ(t) and γ̂t(t+ k) be
such that (8) is satisfied and γ̂t(t + k) = γ(t + k) for every
k ∈ Z[0,Npv]. Then, for all (x(0), d(0)) ∈ C, (15) is feasible
for every t ∈ Z0+ for (4) in closed-loop with hc. !
Theorem 2 follows from enforcing the RCI set in (15)

which is invariant for any trajectory satisfying P . The details
of the proof are omitted due to limited space.
By (14), the MPC is equivalent to LQR when d = 0

and the constraints are inactive, which results in guaranteed
local stability in an invariant set containing the maximum
constraint admissible set [6] of the LQR subject to the MPC
constraints. From Theorem 2, the next result follows.
Corollary 1: For any choice γmax ∈ Γmax, the corre-

sponding C, the controller u(t) = hc(x(t), ξ(t), {γ̂t(t +
k)}N−1

k=0 ) and S0 = C in Theorem 2 solve Problem 1. !
An additional important property of the control law hc

is that (15) results in a quadratic program that can be
solved even on platforms with minimal capabilities. Also,
the integral action (12) and the cost function (13), (14) do
not affect the enforcement of the constraints and hence the
performance metricsM, but only which trajectory is selected
among those recursively satisfying M. This reduces the
tuning time, and prioritizes the “hard” performance objective
M with respect to other “soft” objectives.

V. SIMULATIONS
We use as simulation vehicle a mid-size SUV on a dry

asphalt road. In the simulations the vehicle speed is 80km/h,
i.e., 22.22m/s, and the discrete-time model (4a) has sampling
with period Ts = 0.05s. The bounds in (5), (6) are δmax =
−δmin = 0.165[rad], ∆δmax = −∆δmin = 0.420[rad/s], and
eymax = −eymin = 0.3m. In (7) we include the additional
constraints |ė1| ≤ 2.5, |e2| ≤ 0.25, |ė2| ≤ 1, that, however,
are basically always inactive in the reported simulations.
We consider as reference trajectory model (2) subject

to (8), where dmax = 0.5[rad/s] and we determine Γmax

by (11), obtaining γmax = 0.05203. This is relatively time
inexpensive since Algorithm 1 executes in less than 1 minute,
as opposed to the one searching for C∗ [7], which did not
converge in 12 hours. Here, we choose to proceed with
γmax = 0.05 and the corresponding C, thus enlarging the
sets of feasible trajectories on which the controller optimizes
the cost function. A physical interpretation of the values of
γmax and dmax can be obtained in terms of corresponding
maximum yaw rate, and curvature and turn radius, and cor-
responding rates of change that are allowed. For the values
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(b) Time trajectories of lateral error, desired yaw rate, steering, input
(black, solid), and constraints (red, dash). Second plot from top: yaw
rate change (blue, dash-dot) and constraints (magenta, dot) scaled by
3.

Fig. 3. Double lane change with maximum curvature rate of change.

used in simulations, from dmax we obtain that the minimum
turn radius at 80km/h is 44.44m, and from γmax we have
that while turning with 100m radius, the admissible radius
rate of change is slightly above 20m/s. In all simulations, the
vehicle slip angles remain in the linear region, ensuring the
validity of model (4). We solved (15) by the method in [11]
that in all the simulations presented next, always required
less than 3ms.
We have also verified that if the entire d is taken as

the uncertainty, i.e., without introducing γ, for the given
value of dmax, C∗ = ∅. This occurs because d jumping
arbitrarily between dmax and−dmax causes the tracking error
to violate its bounds before the controller can compensate.
Significantly reducing dmax results in a non-empty C∗ but
the allowed turn radius range is also reduced, i.e., some
maneuvers allowed by the controller developed here and
simulated next would no longer be admissible.
The controller hc uses Nprev = N . The simulation

reported in Fig.3 shows the results for a double lane change
with maximum rate of change γmax, −γmax and where N =

(a) Spatial path. Desired (red, dash), and actual (black, solid).

rate γ(t+k). Since the SU usually provides a long reference
trajectory, often Npv = N , i.e., the entire preview is reliable,
and (15g) becomes a terminal set constraint. However, for
the cases where the actual future reference may be different
from the predicted one, enforcing the RCI constraints (15g),
with Npv being the smallest value of k such that possibly
γ̂t(t + k) ≠ γ(t + k), ensures that feasibility is maintained,
as long as (8) always holds.
Theorem 2: Given γmax ∈ Γmax and Npv ∈ Z[1,N ], con-

sider the control law u(t) = u∗
0|t = hc(x(t), ζey(t), {γ̂t(t +

k)}N−1
k=0 ), where U∗(t) = [u∗

0|t . . . u∗
N−1|t] is the optimal

solution of (15). For every t ∈ Z+, let γ(t) and γ̂t(t+ k) be
such that (8) is satisfied and γ̂t(t + k) = γ(t + k) for every
k ∈ Z[0,Npv]. Then, for all (x(0), d(0)) ∈ C, (15) is feasible
for every t ∈ Z0+ for (4) in closed-loop with hc. !
Theorem 2 follows from enforcing the RCI set in (15)

which is invariant for any trajectory satisfying P . The details
of the proof are omitted due to limited space.
By (14), the MPC is equivalent to LQR when d = 0

and the constraints are inactive, which results in guaranteed
local stability in an invariant set containing the maximum
constraint admissible set [6] of the LQR subject to the MPC
constraints. From Theorem 2, the next result follows.
Corollary 1: For any choice γmax ∈ Γmax, the corre-

sponding C, the controller u(t) = hc(x(t), ξ(t), {γ̂t(t +
k)}N−1

k=0 ) and S0 = C in Theorem 2 solve Problem 1. !
An additional important property of the control law hc

is that (15) results in a quadratic program that can be
solved even on platforms with minimal capabilities. Also,
the integral action (12) and the cost function (13), (14) do
not affect the enforcement of the constraints and hence the
performance metricsM, but only which trajectory is selected
among those recursively satisfying M. This reduces the
tuning time, and prioritizes the “hard” performance objective
M with respect to other “soft” objectives.

V. SIMULATIONS
We use as simulation vehicle a mid-size SUV on a dry

asphalt road. In the simulations the vehicle speed is 80km/h,
i.e., 22.22m/s, and the discrete-time model (4a) has sampling
with period Ts = 0.05s. The bounds in (5), (6) are δmax =
−δmin = 0.165[rad], ∆δmax = −∆δmin = 0.420[rad/s], and
eymax = −eymin = 0.3m. In (7) we include the additional
constraints |ė1| ≤ 2.5, |e2| ≤ 0.25, |ė2| ≤ 1, that, however,
are basically always inactive in the reported simulations.
We consider as reference trajectory model (2) subject

to (8), where dmax = 0.5[rad/s] and we determine Γmax

by (11), obtaining γmax = 0.05203. This is relatively time
inexpensive since Algorithm 1 executes in less than 1 minute,
as opposed to the one searching for C∗ [7], which did not
converge in 12 hours. Here, we choose to proceed with
γmax = 0.05 and the corresponding C, thus enlarging the
sets of feasible trajectories on which the controller optimizes
the cost function. A physical interpretation of the values of
γmax and dmax can be obtained in terms of corresponding
maximum yaw rate, and curvature and turn radius, and cor-
responding rates of change that are allowed. For the values

0 50 100 150 200 250

0

1

2

3

4

5
Y
[m
]

X[m]

(a) Spatial path. Desired (red, dash), and actual (black, solid).

0 2 4 6 8 10 12
−0.5

0

0.5

0 2 4 6 8 10 12
−0.5

0

0.5

0 2 4 6 8 10 12−0.2

0

0.2

0 2 4 6 8 10 12
−0.5

0

0.5

t[s]

δ[
ra
d]

∆
U

/
T

s
d
[ra
d/
s]
,3

γ
[ra
d/
s2
]

e y
[m
]

(b) Time trajectories of lateral error, desired yaw rate, steering, input
(black, solid), and constraints (red, dash). Second plot from top: yaw
rate change (blue, dash-dot) and constraints (magenta, dot) scaled by
3.

Fig. 3. Double lane change with maximum curvature rate of change.

used in simulations, from dmax we obtain that the minimum
turn radius at 80km/h is 44.44m, and from γmax we have
that while turning with 100m radius, the admissible radius
rate of change is slightly above 20m/s. In all simulations, the
vehicle slip angles remain in the linear region, ensuring the
validity of model (4). We solved (15) by the method in [11]
that in all the simulations presented next, always required
less than 3ms.
We have also verified that if the entire d is taken as

the uncertainty, i.e., without introducing γ, for the given
value of dmax, C∗ = ∅. This occurs because d jumping
arbitrarily between dmax and−dmax causes the tracking error
to violate its bounds before the controller can compensate.
Significantly reducing dmax results in a non-empty C∗ but
the allowed turn radius range is also reduced, i.e., some
maneuvers allowed by the controller developed here and
simulated next would no longer be admissible.
The controller hc uses Nprev = N . The simulation

reported in Fig.3 shows the results for a double lane change
with maximum rate of change γmax, −γmax and where N =

(b) Time trajectories of lateral error, desired yaw rate, steering, input
(black, solid), and constraints (red, dash). Second plot from top: yaw rate
change (blue, dash-dot) and constraints (magenta, dot) scaled by 3.

Fig. 4. Double lane change with maximum curvature rate of change.

challenges remain. In particular, there are several methods for
determining the safe space, some based on statistical methods
and other on geometric methods. Still, how to efficiently
incorporate this at the path-planning stage is not a fully
solved problem.
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