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1. INTRODUCTION

The kinematic unicycle model is often used in path-
planning for ground vehicles, since the configuration of a
ground vehicle can often be represented by a point in a
plane that is constrained to move in the direction of the
current heading (Belläıche et al., 1998). The state of this
system can be represented as an element of the special
Euclidean group SE(2), where the control inputs are a
curvature input which controls the rate of change of the
heading angle, and a velocity input which controls the rate
of change of the unicycle position in the direction of the
heading angle.

Given the current configuration of the unicycle and a
desired future configuration, an admissible path for mov-
ing the unicycle from an initial to a final configuration
can be determined via the minimization of some cost
functional. Particularly elegant and well-known examples
of a solution to such an optimization are the minimum-
time solutions of Dubins (1957) and Reeds and Shepp
(1990). Optimal paths of the minimum-time problem con-
sist only of straight-line and circular-arc segments which,
when patched together, create discontinuities in the path
curvature and cause potential difficulty in implementation
since abrupt changes in curvature are hard to track. Pro-
posed modifications that alleviate this problem enforce
that the curvature stay continuous, e.g., Fraichard and
Scheuer (2004), yet it is also possible to penalize the
total curvature along the path in the expectation that
the optimal curvature will be continuous. In this paper,
we take the latter approach, considering the minimization
of the curvature along a path connecting initial and final
unicycle configurations with free final time.

Our solution is obtained using geometric optimal control,
where the necessary conditions for optimality are obtained
⋆ This work was sponsored by the Mitsubishi Electric Research
Laboratories.

via the Pontryagin Maximum Principle (PMP), and Lie-
Poisson reduction (Krishnaprasad, 1993; Ohsawa, 2013).
Using geometric optimal control on SE(2) to find solutions
to path-planning problems has also been considered by
Sussmann and Tang (1991) and Agrachev and Sachkov
(2004). The difference between our work and that of
Krishnaprasad (1993), Dey and Krishnaprasad (2014), and
Justh and Krishnaprasad (2015) is that these authors have
considered a different kind of penalty.

As mentioned, the solution to the minimum-curvature
problem is obtained using optimal control. From the nec-
essary conditions, we show that there are two constants
of motion: the Hamiltonian, which is zero due to time-
optimality, and the Casimir. We show that there are three
possible families of solutions depending on the Casimir. In
the first case, the motion consists of segments of a U-turn;
in the second case, the motion consists of straight lines
or asymptotic approaches thereto; in the third case, the
motion consists of segments of parallel parking trajecto-
ries. After the cases have been enumerated, we provide a
numerical solver that obtains the solution to the optimal
control problem. In the last part of the paper, we present
experimental results on a ground robot, whose dynamics
are that of a unicycle. The results show good tracking of
the curvature and velocity inputs.

The paper is organized as follows. In Section 2, we intro-
duce the problem. In Section 3 we derive the solution, enu-
merate the possible cases, and present a numerical solver.
In Section 4, we present experimental results. Section 5 is
the conclusion.

2. PROBLEM FORMULATION

In this work, we consider minimizing the curvature of a
path in R

2 connecting an initial unicycle configuration
gi with its desired final configuration gf . Since unicycle
configurations can be represented as elements of SE(2), we



formulate this optimization as a geometric optimal control
problem and derive the necessary conditions using PMP
and Lie-Poisson reduction.

Consider the unicycle kinematic equations,

ẋ(t) = v(t) cos θ(t), (1a)

ẏ(t) = v(t) sin θ(t), (1b)

θ̇(t) = u(t), (1c)

where (x(t), y(t)) ∈ R
2 is the position of the unicycle

on the Cartesian plane, θ(t) ∈ R is the heading of the
unicycle, v(t) is the unicycle velocity, which is constrained
between ±1, and u(t) is the signed path curvature, equal
to the rate of change of the heading θ(t).

The configuration of the unicycle can be represented as an
element of the matrix Lie group SE(2). Let g(t) ∈ SE(2)
where,

g(t) =

[

cos θ(t) − sin θ(t) x(t)
sin θ(t) cos θ(t) y(t)

0 0 1

]

. (2)

Then the equations (1) can be written in left-invariant
form,

ġ(t) = g(t)ξ(u(t), v(t)), (3)

where,

ξ(u(t), v(t)) = u(t)X1 + v(t)X2, (4)

and,

X1 =

[

0 −1 0
1 0 0
0 0 0

]

, X2 =

[

0 0 1
0 0 0
0 0 0

]

. (5)

The matrices X1 and X2 are elements of the Lie algebra
se(2). Together with X3 = [X1, X2] = X1X2 −X2X1, X1

and X2 form a basis for se(2).

Without loss of generality, we can assume that g0 = I3,
since g(t) can always be redefined according to g(t) :=
g−1
0 g(t). The final time tf is free and the cost function to
be minimized is,

1

2

∫ tf

0

(

1 + au(t)2
)

dt, (6)

where a > 0 is a scalar penalty. Note that the problem is
not well-posed without a penalty on time, since otherwise
a solution does not necessarily exist. Without a penalty
on time, unless u(t) ≡ 0, the final time may be infinite.

3. OPTIMAL CONTROL SOLUTION

In order to solve the problem we form the pre-Hamiltonian,

H = 〈p, gξ(u, v)〉 − 1

2
(1 + au2), (7)

where p(t) ∈ SE(2)∗ is the adjoint variable. To simplify
the Hamiltonian, we perform Lie-Poisson reduction, intro-
ducing the variable µ(t) ∈ se(2)∗ satisfying the translation
to identity,

〈µ, ξ(u, v)〉 = 〈p, gξ(u, v)〉.
As an element of the dual space, µ(t) can be represented
as µ(t) = µ1X

♭
1 + µ2X

♭
2 + µ3X

♭
3, where {X♭

1, X
♭
2, X

♭
3} are

the basis vectors dual to {X1, X2, X3}.
The pre-Hamiltonian therefore becomes,

H(µ, u, v) = 〈µ, ξ(u, v)〉 − 1

2
(1 + au2),

= 〈µ1X
♭
1 + µ2X

♭
2 + µ3X

♭
3, uX1 + vX2〉

− 1

2
(1 + au2),

= µ1u+ µ2v −
1

2
(1 + au2).

According to PMP, the optimal control (u∗, v∗) satisfies,

H(µ∗, u∗, v∗) = max
u∈R, v∈[−1,1]

H(µ∗, u, v). (8)

Therefore the optimal controls are given by,

u∗ = µ1/a, (9)

v∗ = sgnµ2, µ2 6= 0, (10)

where sgn is the signum function and v∗ ∈ [−1, 1] can
take any value when µ2 = 0. The reduced Hamiltonian is
therefore,

h = H(µ, u∗, v∗) =
1

2
µ2
1/a+ |µ2| −

1

2
, (11)

and the dynamics of the µi variables are given by (Krish-
naprasad, 1993),

[

µ̇1

µ̇2

µ̇3

]

=

[

0 −µ3 µ2

µ3 0 0
−µ2 0 0

]

∂h

∂(µ1, µ2, µ3)
, (12)

µ̇1 = −µ3 sgnµ2, (13a)

µ̇2 = µ1µ3/a, (13b)

µ̇3 = −µ1µ2/a. (13c)

Let,
c = µ2

2 + µ2
3. (14)

This variable is called the Casimir and it is a constant
of motion, implying that the variables µ2 and µ3 evolve
on circle of radius

√
c. Along with the Casimir, the

Hamiltonian (11) is also a conserved quantity of motion.
Since the final time is free, the Hamiltonian must be equal
to 0, resulting in the constraint,

|µ2| =
1

2
(1− µ2

1/a). (15)

Note that, according to the above constraint, the curvature
u is constrained between±1/

√
a. This is an interesting and

useful fact, since it can be used in the control design. For
example, if it is known that umax is the maximum allowable
heading rate of change θ̇, or equivalently the maximum
allowable curvature u, then a natural choice of penalty
would be to set a ≥ 1/u2

max.

3.1 Characterizing the Types of Motion

According to (14) and (15), the dynamics (13) evolve on
the manifold Mc where,

Mc = Cc ∩H,

Cc = {(µ1, µ2, µ3) ∈ R
3 : c = µ2

2 + µ2
3)},

H = {(µ1, µ2, µ3) ∈ R
3 : |µ2| =

1

2
(1 − µ2

1/a)}.
The manifold Mc is one-dimensional and equal to the
intersection of a cylinder given by Cc and the cylinder-like
shape H. The shape ofMc is determined by the Casimir c.
The constraint (15) is fixed, and therefore the shape of H



(a) c = 0.1 (b) c = 1

4
(c) c = 0.5

Fig. 1. Mc (black) plotted as an intersection of Cc (red) and H (blue) for a = 1 and three values of the Casimir c

does not change with c. On the other hand,
√
c is equal to

the radius of the cylinder Cc. The smallest possible cylinder
C0 is really a line and, since there exists no upper bound
on c, Cc can have an arbitrarily large radius.

The motion of µ evolves on Mc. Due to continuity, it must
evolve on a connected component ofMc, so it is important
to consider the types of possible intersections, of which
there are three corresponding to three different cases: in
Case 1, Cc is strictly smaller than H; in Case 2, Cc is equal
in size to H; in Case 3, Cc is strictly larger than H. To
perform a case-by-case categorization Mc, we note that,
according to (14), the variable µ2 is restricted to ±√

c
and, according to (15), µ2 is restricted to ± 1

2 . In Case 1,

c < 1
4 , so |µ2| ≤

√
c < 1

2 . Therefore the motion evolves on
a connected component of Mc where µ1 does not change
sign since µ2

1 = a − 2a|µ2| ≥ a − 2a
√
c > 0. In Case 2,

c = 1
4 , so the two constraints agree at the extremes and

Mc consists of one connected component. In Case 3, c > 1
4 ,

so |µ2| ≤ 1
2 <

√
c. The motion evolves on a connected

component of Mc where µ3 does not change sign since
µ2
3 = c− µ2

2 ≥ c− 1
4 > 0. See Fig. 1 for a visualization of

the three cases. In the following, we study the three types
of motion in further detail.

3.2 Change of Variables

We now follow the procedure (Jurdjevic, 1997), in which
the independent variable is changed from t to θ in order
to simplify the problem and obtain a solution. Note that
µ1/a = u = θ̇. Therefore the solution to (13b)-(13c) is,

µ2 =
√
c sin(θ + θ0), (16a)

µ3 =
√
c cos(θ + θ0), (16b)

for some constant θ0. According to (15),

µ1 = ±
√
a

√

1− 2
√
c| sin(θ + θ0)|. (17)

According to the chain rule,

dx

dt
=

dx

dθ

dθ

dt
,
dy

dt
=

dy

dθ

dθ

dt
.

Note that v = sgnµ2 = sgn(sin(θ + θ0)) and,

θ̇ = ±
√

1− 2
√
c| sin(θ + θ0)|

/√
a. (18)

Solving for dx
dθ and dy

dθ , we obtain,

dx

dθ
=

ẋ

θ̇
= f±

c,θ0
(θ) cos θ,

dy

dθ
=

ẏ

θ̇
= f±

c,θ0
(θ) sin θ. (19)

where,

f±
c,θ0

(θ) =

√
a sgn(sin(θ + θ0))

±
√

1− 2
√
c| sin(θ + θ0)|

, (20)

has been introduced in order to simplify subsequent expo-
sition.

We proceed case by case, using the expressions (19) and
the initial conditions (x(0), y(0), θ(0)) = (0, 0, 0) in order
to obtain a solution in the variable θ. For the subsequent
analysis, we set a = 1.

3.3 Case 1: c < 1
4

In the first case, we consider the situation when c < 1
4 .

Here, since µ1 does not change sign, θ is monotonic and
therefore we can parametrize the solution by θ.

Proposition 1. Assume c < 1
4 . Let,

γc(θ) =

∫ θ

0

f+
c,0(θ

′)

[

cos θ′

sin θ′

]

dθ′. (21)

Then,
[

x(t)
y(t)

]

= C(θ0,±)T(γc(θ(t) + θ0)− γc(θ0)), (22)

for some θ0 ∈ [0, 2π), where C(θ0,±) is the orthogonal
matrix,

C(θ0,±) = ±
[

cos θ0 − sin θ0
sin θ0 cos θ0

]

.

Proof. Since c < 1
4 , µ1 and therefore θ̇(t) do not change

sign. Therefore, we integrate (19) to obtain the solution,
[

x(t)
y(t)

]

=

∫ θ(t)

0

f±
c,θ0

(θ′)

[

cos(θ′)
sin(θ′)

]

dθ′

Performing a change of integration variables, we obtain
the equivalent expression,

[

x(t)
y(t)

]

=

∫ θ(t)+θ0

θ0

±f+
c,0(θ

′)

[

cos(θ′ − θ0)
sin(θ′ − θ0)

]

dθ′.

Since,
[

cos(θ′ − θ0)
sin(θ′ − θ0)

]

= C(θ0,+)T
[

cos(θ′)
sin(θ′)

]

, (23)

and
∫ θ(t)+θ0
θ0

=
∫ θ(t)+θ0
0 −

∫ θ0
0 , the result (22) follows.

Since the expression in (22) is periodic in θ0 with period
2π, any solution implies the existence of the same solution
with 0 ≤ θ0 < 2π. ✷



Discussion: Note that (x(0), y(0), θ(0)) = (0, 0, 0) sat-
isfies the initial conditions. To ensure that the final con-
ditions are satisfied, we can vary three parameters: c, θ0,
and ±.

Four solution trajectories are shown in Fig. 2a. The curve
γc corresponds to a solution where θ0 = 0 and µ1 > 0.
In Fig. 2a, we show that increasing c corresponds to
“stretching” the solution curve; changing θ0 corresponds
to choosing a point on γc and centering the curve at
γc(θ0), simultaneously rotating the curve about the origin
so that the tangent vector at the origin has a heading of 0;
changing the sign of ± corresponds to rotating the curve
about the origin by π.

3.4 Case 2: c = 1
4

The second case is transitional between the case where
c < 1

4 and the case where c > 1
4 . The manifold M 1

4

consists of one connected component, but the motion can
only occur on a particular branch. To see this, consider
the situation where −π/2 < θ0 < π/2. When c = 1

4 ,
∫ π/2−θ0
0

dθ

±
√

1−2
√
c| sin(θ+θ0)|

=
∫ π/2−θ0
0

dθ

±
√

1−| sin(θ+θ0)|
=

±∞, and therefore the time taken for θ to go from 0 to
π/2− θ0 is infinite.

Proposition 2. Assume c = 1
4 . Let,

γ 1

4

(θ) =

∫ θ

0

f+
1

4
,0
(θ′)

[

cos θ′

sin θ′

]

dθ′. (24)

If θ0 = 1
2π + nπ for some integer n, (x(t), y(t)) = (±t, 0).

Otherwise,
[

x(t)
y(t)

]

= C(θ0,±)T(γ 1

4

(θ(t) + θ0)− γ 1

4

(θ0)), (25)

and θ0 ∈ (−π/2, π/2).

Proof. If θ0 = 1
2π + nπ, θ̇ = 0. Therefore θ(t) = 0 is

constant for all t ≥ 0. Furthermore ẋ(t) = ± cos(θ(t)) =
±1 and ẏ(t) = ± sin(θ(t)) = 0 imply that x(t) = ±t and
y(t) = 0. The rest of the proof is similar to the proof of
Proposition 1.

Discussion: This case consists of two types of solutions:
a straight line solution, corresponding to the subcase where
the final condition lies on the x-axis, and an asymptotic
solution, which asymptotically approaches a straight line
with slope cot θ0.

As in the previous case, varying the parameter θ0 corre-
sponds to a rotation of the solution curve and changing
the sign of ± corresponds to a rotation of the curve by π.
Note that, due to the definition of (24), the value of θ0 is
restricted to between ±π/2 because the solution goes to
infinity at θ = ±π/2− θ0. See Fig. 2b for a graphic.

3.5 Case 3: c > 1
4

In the third case, we consider the situation when c > 1
4 .

Here, θ is periodic unlike in the previous two cases. This
is proved in the following result.

Lemma 3. Assume c > 1
4 . Let θc be the solution to,

sin θc =
1

2
√
c
< 1, 0 < θc < π/2. (26)

Let ϑ′(t) be the solution to,

ϑ̇′ =
√

1− 2
√
c| sinϑ′|,

with initial condition ϑ′(0) = 0. The solution exists and is
real over the time interval [−tc, tc], where ϑ′(−tc) = −θc
and ϑ′(tc) = θc. Define,

ϑ(t) = ϑ′(t− 2ntc) + 2nθc, n = ⌊t/2tc⌉, (27)

and let θ(ϑ) = (−1)n(ϑ − 2nθc), n = ⌊ϑ/2θc⌉. Assume
θ(0) = 0. Then θ(t) = θ(ϑ(t)).

Proof. The time tc > 0 exists and is finite because

0 < θc < π/2 and tc = 1
2

∫ θc
−θc

dϑ′√
1−2

√
c| sinϑ′|

< ∞. Due

to the definition of θc, the expression under the square
root is non-negative for all −θc ≤ ϑ′ ≤ θc, implying that
ϑc(t) exists and is real over [−tc, tc].

Whenever θ = ±θc, |µ̇1| = | − µ3 sgnµ2| > 0. Therefore,
(x(±θc), y(±θc)) are not equilibrium points. Since the
solution must stay in a connected component of Mc, this
implies that θ̇ changes sign whenever θ = ±θc.

Due to the reversal of sign, θ(t) = −(ϑ′(t − 2tc) − 2θc) =
−(ϑ(t) − 2θc) for t ∈ [tc, 3tc]. The sign changes with
period 2tc. Therefore, due to symmetry, θ(t) is periodic
with period 4tc. The previous two statements imply that
θ(t) = θ(ϑ(t)) when θ(0) = 0. ✷

Because of the periodicity of θ, we have introduced the
monotonic variable ϑ, to parametrize the solution curve.

Proposition 4. Assume c > 1
4 . Let,

γc(ϑ) =

∫ ϑ

0

f+
c,0(θ(ϑ̂))

[

cos(θ(ϑ̂))

sin(θ(ϑ̂))

]

dϑ̂. (28)

Then,
[

x(t)
y(t)

]

= C(ϑ0,±)T(γc(ϑ(t) + ϑ0)− γc(ϑ0)), (29)

where ϑ0 ∈ [0, 4θc).

Discussion: Similar to Case 1, varying the parameter c
results in changing the shape of the curve, where increasing
c “compresses” the curve; increasing the parameter θ0
corresponds to a translation and rotation of the γc; and
changing the sign of ± corresponds to a rotation of the
curve by π. See Fig. 2c for a graphical representation.

3.6 Numerical Solver

Given a desired final configuration, we must consider every
possible case that satisfies the necessary conditions. In the
following, we describe our case-by-case numerical solution
to the optimal control problem.

Case 1: We solve (22) for c ∈ [0, 1/4) and θ0 ∈ [0, 2π)
numerically. We have obtained a result outside the scope
of this work that θ(tf ) must be within ±π. This limits
our search to two possible solutions, corresponding to the
possible values of sgnµ1(0). For the initial condition, we
set θ0 = 0 and c to be the solution of ‖γc(π)‖ = ‖(xf , yf )‖.

Case 2: If possible, we connect the initial and final
conditions by a line segment. If not, we attempt to solve
(25) for θ0 ∈ (−π/2, π/2), for two possible values of
sgnµ1(0).
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(a) c = 0.1 (solid black) and 0.18 (dot-
dashed red)
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Fig. 2. γc for different cases (solid black) – increasing c produces the dot-dashed red curve; increasing θ0 produces the
solid blue curve; changing the sign from + to − produces the dashed green curve

Case 3: We solve (29) for c > 1/4 and ϑ0 ∈ [0, 4θc). We
have obtained a result outside the scope of this work that
ϑ(tf ) must be within ±4θc. Since θ is periodic in ϑ, it can
assume the value θf twice in [0, 4θc]. Hence, for each value
of sgnµ1(0), we solve for an additional subcase, bringing
the total number of subcases considered to four. For the
initial condition, we set θ0 = 0 and c to be the solution of
‖γc(4θc)‖ = ‖(xf , yf)‖.
For each case, if the solver times out or becomes unstable,
we terminate the process as a solution to the problem likely
does not exist. After computing all possibilities that satisfy
the necessary conditions, we compare each and choose the
one with minimum cost.

4. EXPERIMENTAL RESULTS

We provide a laboratory demonstration using a mobile
ground robot. The test platform consists of a Pioneer P3-
DX differential drive robot which has width of 380 mm
and a swing radius of 260 mm. The robot is equipped with
reversible DC motors and high resolution motion encoders.
The control station is a computer running ROS (Robot
Operating System), which wirelessly sends commands to
the robot. We use ROS-ARIA as an interface for control-
ling the robot. A Vicon motion capture system is used to
track the robot trajectory and the control commands are
sent to the robot via the MATLAB ROS toolbox.

We design a feedback controller to track the optimal tra-
jectory. Given the optimal reference trajectory (xr, yr, θr)
and optimal reference control inputs (ur, vr), we use the
trajectory tracking scheme from Kanayama et al. (1990).
Specifically, we define error variables,

[

xe

ye
θe

]

=

[

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

][

xr − x
yr − y
θr − θ

]

, (30)

so that the error dynamics are given by,




ẋe

ẏe
θ̇e



 =

[

uye − v + vr cos θe
−uxe + vr sin θe

ur − u

]

, (31)

where (x, y, θ) is the system state and (u, v) are the control
inputs. As proposed by Panteley et al. (1998), we choose
our stabilizing controls to be,

u = ur + c1θe (32a)

v = vr + c2xe, (32b)

for some parameters c1, c2 > 0.

The experimental results of two trials are presented in
Figs. 3-4 corresponding to two different final conditions.
The parameters for both trials were set to a = 1, |vr| =
0.2m/s, c1 = 2Hz, and c2 = 0.5Hz. The robot trajectory
(x, y, θ) is presented in Fig. 3 along with the associated
optimal trajectory (xr , yr, θr). The inputs (ur, vr) and
(u, v) are plotted in Fig. 4. The 2-norms of the final
position errors are 62.8mm and 124.5mm for the first and
second trial, respectively. Both errors are on the order of
the size of the robot, which has a radius of 260mm. The
final heading errors are 3.02◦ and 4.74◦, respectively.

5. CONCLUSION

In this paper, we considered the problem of determining
the minimum-curvature path of a unicycle between two
configurations in SE(2). Techniques from geometric op-
timal control were used in order to obtain the necessary
conditions in Lie-Poisson reduced variables. Three possible
types of paths were presented, which depend on the value
of the Casimir. Experimental results were presented, which
showed a ground robot tracking the optimal path.
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