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Abstract

Multi-evaporator vapor compression systems (ME-VCS) are inherently multi-
input multi-output (MIMO) systems, often with complex, highly coupled dy-
namics. Thus, they require more sophisticated control schemes than traditional
on-off logic, or decentralized proportional-integral controllers. Unfortunately,
many MIMO control design techniques are not well suited for this problem since
they require complex numerical computations that do not scale gracefully for
the high-dimensional dynamics of ME-VCS systems. This paper exploits the ob-
served similarity of the room dynamics to reduce the computational complexity
of designing controllers. We use a linear matrix inequality based controller syn-
thesis technique that exploits symmetry for designing controllers for large-scale
ME-VCS systems. This controller synthesis technique was applied to an ME-
VCS system with 50 rooms. Using tradition control design methods required
41 hours to synthesize a controller, while our technique designed an identical
controller in less than 1 second.



0.1 Introduction

Vapor compression systems, such as heat pump, refrigeration, and air-conditioning
systems, are widely used in commercial and residential applications. Multi-
evaporator vapor compression systems (ME-VCS) are a sub-class of vapor com-
pression systems where an outdoor unit processes refrigerant that is distributed
to multiple indoor units to provide heating or cooling to different thermal zones.
Multi-evaporator vapor compression systems (ME-VCS) are inherently multi-
input multi-output (MIMO) systems, often with complex, highly coupled dy-
namics. Thus, ME-VCS systems require more sophisticated control schemes
than traditional on-off logic, or decentralized proportional-integral controllers
[1, 2]. Unfortunately, many MIMO control design techniques are not well suited
for this problem since they require complex numerical computations that do not
scale gracefully for the high-dimensional dynamics of ME-VCS systems. This
is especially a problem for multi-evaporator vapor compression systems with a
large number of indoor units. This paper develops a simplified control synthesis
technique for ME-VCS systems that has constant computational cost regardless
of the number of indoor units.

It has been widely observed that the rooms/indoor units of ME-VCS sys-
tems often have similar dynamics [3, 4, 5]. Using the mathematical formalism
of symmetry we can rigorously quantify this similarity and exploit it in con-
trol design. Symmetries are transformations of a system’s inputs, outputs, and
states for which the system is invariant. Symmetry has been used extensively
to simplify control design [6, 7, 8, 9, 10, 11, 12, 13, 14]. In [6] the authors devel-
oped a linear matrix inequality (LMI) based controller design methodology that
exploits symmetry to reduce computational complexity. The control synthesis
from [6] requires that the user knows the symmetry group of their system and
how this symmetry can be used to select input and output channels that de-
compose the system. A symmetry group of a system can be identified using the
method from [15] and these symmetries can be used to decompose the system
using the method from [16]. The results of [6, 15, 16] are based on highly ab-
stract mathematics which can overwhelm practitioners who are only interested
in applying the results. This paper provides a concrete tutorial for applying
symmetric control design to ME-VCS systems. In this paper, we explicitly re-
port a symmetry group commonly found in ME-VCS systems and provide an
easily verifiable condition for testing whether a particular system is symmetric.
This paper explicitly reports the input and output channels that decompose the
dynamics of ME-VCS systems. Finally, we apply the decomposed control design
from [6] to the decompose ME-VCS. The end result is an intuitive, computa-
tionally simple technique for synthesizing controllers for ME-VCS systems with
a large number of indoor units.

This paper is organized as follows. In Section 0.2 we describe the ME-VCS
and its existing control design procedure. In Section 0.3 we formally define
symmetry and describe a symmetry group for the ME-VCS. Furthermore, we
show how these symmetries can be used to decompose the ME-VCS model into
decoupled subsystems. The emphasis of this section is explaining the hidden
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insights that can be gained by applying the abstract theory of symmetry to
ME-VCS systems. In Section 0.4 we show how to use symmetry to simplify
controller synthesis for ME-VCS systems. Finally in Section 0.5 we validate
the analysis and synthesis results presented in this paper using an empirical
ME-VCS model.

0.2 ME-VCS Control System

In this section we describe the multi-evaporator vapor compression system (ME-
VCS) and its baseline controller.

Multi-Evaporator Vapor Compression System

The ME-VCS is comprised of a single outdoor unit and r indoor units as shown
in Figure 1. In cooling mode, the compressor in the outdoor unit increases
the pressure and temperature of the refrigerant which then flows through the
outdoor unit heat exchanger where it loses heat and condenses. The refriger-
ant is then distributed to the indoor units where it flows through an expansion
valve and heat exchanger allowing the refrigerant to absorbs heat from the cor-
responding room, lowering the room temperature. Inner control loops regulate
the amount and quality of refrigerant in each indoor unit to produce a desired
cooling command. A more detailed description of the ME-VCS can be found
in [5].

Compressor

EEV 1 position

outdoor fan 
speed (ODF)

compressor freq (CF)

outdoor air 
temp (OAT)

discharge temp (Td)

heat load 1

zone 1 temp 
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zone 1
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heat load 2

zone 2 temp 
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heat load N
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condensing 
temp (Tc)

evap temp (Te)evap temp (Te)evap temp (Te)

Figure 1: Schematic of the refrigerant flow in an r room ME-VCS system.

The inputs u(t) of the ME-VCS are the compressor frequency CF, outdoor-
fan speed ODF, and the cooling commands CCi to each of the indoor units
i = 1, . . . , r. The measured outputs y(t) are the discharge Td, discharge super-
heat Tdsh, condenser Tc, and evaporator Te temperatures, and the room tem-
peratures Ti for i = 1, . . . , r

The inputs are split into r+ 1 channels; the inputs for the outdoor unit
u0(t) = [CF,ODF]ᵀ and the inputs for the r indoor units ui(t) = CCi for
i = 1, . . . , r. Similarly, the outputs are split into r+1 channels; the outputs
of the outdoor unit y0(t) = [Td,Tdsh,Tc,Te]

ᵀ and the outputs of the r indoor
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units yi(t) = Ti. The dynamics of the ME-VCS are model by the following
linear discrete-time system

G =


A B0 B1 · · · Br
C0 D00 D01 · · · D0r

C1 D10 D11 · · · D1r

...
...

...
. . .

...
Cr Dr0 Dr1 · · · Drr

 . (1)

where A ∈ Rnx×nx , Bi ∈ Rnx×ni
u , Ci ∈ Rn

i
y×nx , and Dij ∈ Rn

i
y×n

j
u for i, j =

0, . . . , r. We denote by Gij the dynamics from the j-th input channel uj(t) for
j ∈ {0, . . . , r} to the i-th output channel yi(t) for i ∈ {0, . . . , r} i.e.

Gij =
[

A Bj
Ci Dij

]
.

We make the following assumption about the system structure.

Assumption (Symmetry). The ME-VCS satisfies:

• The dynamics Gii relating the cooling capacity ui(t) to the room temperature
yi(t) are the same for each indoor unit i.e. Gii = Gjj for all i, j = 1, . . . , r.

• The dynamics Gij that model the coupling between indoor units are the same
for every pair indoor units Gij = Gkl for all i, j, k, l = 1, . . . , r.

• The dynamics Gi0 relating the compressor frequency and outdoor fan speed
u0(t) to the i-th room temperature are the same for every room Gi0 = Gj0 for
all i, j = 1, . . . , r.

• The dynamics G0i relating the i-th cooling capacity command ui(t) to the
discharge, discharge super-heat, evaporator, and condenser temperatures y0(t)
are the same for every indoor unit G0i = G0j for all i, j = 1, . . . , r.

The validity of Assumption 0.2 can be verified in a variety of ways e.g. ana-
lytically using the linear model (1), empirically through laboratory experiments,
or semi-empirically through simulations of a more complex model.

Assumption 0.2 is an input-output property of the ME-VCS in the sense that
it does not depend on how the ME-VCS was modeled, but rather a relationship
between its inputs and outputs. This is an important distinction since the states
of the linear model (1) do not necessarily have physical meaning and since the
state-space realization (1) is not unique. Therefore, we cannot make assump-
tions about any structural properties of the state-space parameters (A,B,C,D).
However, in this paper we will show that Assumption 0.2 can be used to reveal
structure in the state-space matrices.

Control Objectives

The control objectives are to drive the room temperatures yi(t) = Ti to their
desired reference set-points Ti,rf with zero steady-state tracking error. Further-
more, the discharge temperature Td should be driven to a reference set-point
Td,rf chosen to improve energy efficiency. Thus, we define the reference signal
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y∞ = [Td,rf ,T1,rf , . . . ,Tr,rf ]
ᵀ which includes the reference discharge tempera-

ture Td,rf and room temperatures Ti,rf for i = 1, . . . , r. We assume that there
exists at least one equilibrium state x∞ and input u∞ that produce the desired
reference y∞.

In addition, the controller should limit unnecessary slewing of the control
inputs. Thus, we will design an controller for the ME-VCS that penalizes the
change u(t)−u(t−1) in the control inputs between sample times.

Estimator and Controller Design

In this section we describe the current procedure for designing an estimator and
controller for the ME-VCS. We highlight some of the computational issues with
this procedure. In subsequent sections we will use symmetry to address these
computational issues.

The ME-VCS uses a state-feedback controller where the state includes the
actual plant state as well as the states of an input filter and output filter that
capture the desired closed-loop behavior of the system. The control objectives
specify that the room temperatures should be driven to the desired reference
values and that the discharge temperature should be regulated to a set-point
reference chosen to improve energy efficiency. These control objectives are cap-
tured by a filter W out that acts on the plant outputs y(t) and references y∞.
The inputs of the performance filter W out are the measured outputs y(t) and
the desired reference signals y∞ of the ME-VCS. The states of the filter ξi(t)
integrate the room tracking errors ei(t) = yi(t)− y∞i for i = 1, . . . , r so that the
integral-action of the resulting controller will provide zero steady-state set-point
tracking errors. The outputs z(t) = [e0(t), e1(t), . . . , er(t), ξ1(t), . . . , ξr(t)]

ᵀ of
the filter W out include the discharge temperature tracking error e0, the room
temperature tracking errors ei(t) = yi(t)−y∞i , and the integrated room tracking
errors ξi(t). The output-filter is described by the following discrete-time linear
system

W out =


Ir Bouty −Bouty∞

0 Dout
y −Dout

y∞

0 Bouty −Bouty∞

Ir 0 0

 (2a)

where Bouty = [0, I] and Bouty∞ = [0, I] extract the room temperatures yi(t) and
the room temperature references y∞i from the plant outputs y(t) and references
y∞ respectively, and Dout

y = [1,0] and Dout
y∞ = [1,0] extract the discharge

temperature and discharge temperature reference from the measured outputs
y(t) and references y∞ respectively. We denote by W out

y and W out
y∞ the response

of the output-filter (2a) to measured outputs y(t) and references y∞ respectively.
The control objectives also specify that the controller should limit the slew

rates of the control inputs. Thus, we use an input performance filter W in that
integrates the actuator slew rates to obtain the actual actuator commands. The
inputs to the filter W in are the incremental inputs δu(t), the state u(t−1)
is the previous control input, and output is the current control input u(t) =
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u(t−1) + δu(t). The input-filter W in is described by the following discrete-time
linear system

W in =

[
Ir+2 Ir+2

Ir+2 Ir+2

]
. (2b)

The ME-VCS model (1) and the performance filters (2) can be combined to
form the augmented plant

W out
y GW in =



I Bouty C 0 0
0 A B B
0 0 I I
0 Douty C Douty D Douty D
0 Bouty C Douty D Bouty D
I 0 0 0


︸ ︷︷ ︸[

A B
C D

]

. (3)

The ME-VCS uses a state-feedback controller that operates on the state x(t) =
[ξ(t), x(t)−x∞, u(t−1)−u∞]ᵀ of the augmented system (3) to compute changes
δu(t) = u(t)−u(t−1) to the actuator commands u(t) where the origin of the
augmented state-space has been shifted to the desired equilibrium state x∞ and
input u∞. The feedback gain F = [F ξ, F, Fu] is chosen to satisfy the Lyapunov
equation (

A + BF
)ᵀ
P
(
A + BF

)
− P � −CᵀQC − F ᵀRF (4)

where A, B, C, and D are the state-space matrices of the augmented system (3).
The penalty matrices R � 0 and Q � 0 are design parameters used to reduce
slewing of the control inputs or produce more aggressive set-point tracking re-
spectively. The Lyapunov equation (4) guarantees that the controller achieves
zero steady-state tracking error for set-point references.

The Lyapunov equation (4) used to design the feedback gain F and Lya-
punov matrix P can be recast as a linear matrix inequality and solved using
standard numerical tools [17]. However, solving these linear matrix inequalities
can become intractable when the number of indoor units r is large i.e. r � 1.
In Section 0.4, we will use the symmetry of the ME-VCS model (1) to decom-
pose the Lyapunov equation (4) reducing the computational complexity of the
control design.

The state x(t) of the augmented system (3) is estimated using a reduced-
order observer. Since the states ξ(t) and u(t−1)−u∞ of the filters (2) are
measured directly, the observer only needs to estimate the shifted state x(t)−x∞
of the ME-VCS. The shifted state x(t)−x∞ is estimated using a Kalman filter
where the observer gain L = AΣCᵀ(V + CΣCᵀ)−1 is obtained by solving the
standard discrete-time algebraic Riccati equation

Σ=AΣAᵀ+BWBᵀ−AΣCᵀ
(
V + CΣCᵀ

)−1
CΣAᵀ (5)

where V ∈ Rny×ny is the covariance of the sensor noise and W ∈ Rnu×nu is the
covariance of the heat load disturbance.

The ME-VCS controller can then be described by the linear discrete-time
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system

K =

 I 0 0 Bouty Bouty∞

BF ξ A+LC+BF B(I+Fu) −L L
F ξ F I+Fu 0 0

F ξ F I+Fu 0 G†
dc

 (6)

where the controller inputs are the plant measurements y(t) and the desired
references y∞ and the controller output u(t) the actuator commands to the ME-
VCS. The controller (6) has the same state x(t) = [ξ(t), x(t)−x∞, u(t−1)−u∞]ᵀ as

the augmented system (3). The feedforward term u∞ = G†dcy
∞ is an equilibrium

input corresponding to the reference set-point y∞ where G†dc is a pseudo-inverse
of the steady-state gain Gdc=D+C(I−A)−1B of the ME-VCS (1).

0.3 Decomposition of the ME-VCS using Sym-
metry

In this section we define symmetry and show how symmetry can be used to
decompose a linear system. This decomposition is then used to decompose
the ME-VCS model (1) and the performance filters (2). Since the symmetric
decomposition is a direct consequence of Assumption 0.2, this decomposition
is valid for any linear model (1) of the ME-VCS. This section uses theoretical
results from [16] to the analyze the structural properties of models of vapor-
compression systems.

Definition of Symmetry

A symmetry of a dynamic system G is a pair of invertible transformations of
the inputs Θu ∈ Rnu×nu and outputs Θy ∈ Rny×ny that do not change the
input-output behavior of the system

ΘyG = GΘu (7)

This definition says that the systems G and Θ−1
y GΘu have identical input-

output behavior. Equivalently, definition (7) says that the response y(t) of the
systems G to the input u(t) is related to the response Θyy(t) of the system to
the input Θuu(t). We will index a set G of symmetries using the notation Θu(g)
and Θy(g) for g ∈ G. Without loss of generality, we can assume that that the
set G is a group [18].

In practice, the precise definition of symmetry (7) is overly restrictive. In-
stead, we say a system G is approximately symmetric with respect to the group
G if the condition (7) holds approximately∥∥G−Θy(g)−1GΘu(g)

∥∥
∞ ≤ ε (8)

for each element g ∈ G of the group G where ‖·‖∞ is the H∞-norm of a system.
Definition (8) says that the systems G and Θ−1

y GΘu have approximately the
same input-output behavior. In other words, the responses y(t) = Gu(t) and
y′(t) = G′u(t) of the systems G and G′ = Θ−1

y GΘu to the same input u(t) are
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approximately the same∥∥y(t)− y′(t)
∥∥

2
=
∥∥Gu(t)−Θ−1

y GΘuu(t)
∥∥

2

≤
∥∥G−Θ−1

y GΘu

∥∥
∞

∥∥u(t)
∥∥

2
≤ ε
∥∥u(t)

∥∥
2

where ‖ · ‖2 is the L2-norm of a signal. Note that the definition of approximate
symmetry (8) is only applicable to stable systems, since the difference y(t)−y′(t)
between nearly identical but unbounded responses y(t) and y′(t) of the unstable
systems G and Θ−1

y GΘu can be unbounded ‖y(t)− y′(t)‖2 =∞.

Symmetries of the ME-VCS

In this section we define a group of symmetries for the ME-VCS model (1) and
performance filters (2).

According to Assumption 0.2, the ME-VCS has symmetries of the form

Θu =

[
I2 0
0 Θ

]
, Θy =

[
I4 0
0 Θ

]
(9)

where Θ ∈ Sr ⊂ Rr×r is any permutation matrix. Thus, a symmetry group for
the ME-VCS (1) is the (terribly named) symmetric group Sr [18].

The input symmetries Θu permute the cooling capacity commands ui(t) for
each room i = 1, . . . , r while leaving the compressor frequency and output fan
speed u0(t) fixed. The output symmetries Θy permute the room temperature
measurements yi(t) while leaving the discharge, discharge super-heat, evapora-
tor, and compressor temperature y0(t) fixed. Thus, Assumption 0.2 is equivalent
to saying that the definition of symmetry (7) holds for the symmetries (9). If
the ME-VCS is open-loop stable, then we can use the definition of approximate
symmetry (8) to relax Assumption 0.2, instead requiring that the equalities
Gij = Glk hold approximately ‖Gij −Glk‖ ≤ ε.

The performance filters (2) share a similar symmetric structure (9) as the
ME-VCS. According to the definition of symmetry (7), the symmetries of the
input performance filter (2b) are pairs of transformations Θu ∈ Rnu×nu and
Θδu ∈ Rnu×nu that satisfy ΘuW

in = W inΘδu. In this case, the symmetries Θδu

of the incremental inputs δu(t) are the same Θδu = Θu as the symmetries (9)
of the inputs u(t). These symmetries say that the input performance filter W in

applies the same filtering to each of the indoor unit inputs ui(t).
For the output performance filter (2a), we use a special case of the defi-

nition of symmetry (7) where the filter inputs y(t) and y∞ are transformed
independently

ΘzW
out = W out

[
Θy 0
0 Θy∞

]
.

The transformation Θy of the ME-VCS outputs y(t) was defined in (9). The
transformations of the performance outputs z(t) and references y∞ are given by

Θz =

1 0 0
0 Θ 0
0 0 Θ

 , Θy∞ =

[
1 0
0 Θ

]
(10)

where the permutation matrix Θ ∈ Sr ⊂ Rr×r is an element of the symmetric
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group Sr. These symmetries (10) say the output performance filterW out applies
the same filtering to each of the room outputs yi(t) for i = 1, . . . , r.

The performance filters are only marginally stable. Thus, the definition of
approximate symmetry (8) is not applicable since the H∞-norm of the filters are
unbounded. However, since these filters are purely mathematical (rather than
modeling a physical phenomenon) we can ensure that the their dynamics (2)
satisfy the exact definition of symmetry (7).

Symmetric Decomposition

In this section we summarize how symmetry can be used to decompose a dy-
namic system into decoupled subsystems. The technical details can be found
in [16].

The symmetric decomposition finds transformed input channels ûi(t) =
Φ∗u,iu(t) that only affect the corresponding transformed output channel ŷi(t) =
Φ∗y,iy(t). The transformed input and output channels are defined by partitioned,
orthogonal transformations of the form

Φu =
[

Φu,1 . . . Φu,r
]
∈ Rnu×nu (11a)

Φy =
[

Φy,1 . . . Φy,r
]
∈ Rny×ny (11b)

where r is the number of input-output channel pairs and the sizes of the parti-

tions Φu,i ∈ Rnu×n̂i
u and Φy,i ∈ Rny×n̂i

y satisfy
∑r
i=1 n̂

i
u = nu and

∑r
i=1 n̂

i
y =

ny respectively. Since the transformations (11) are orthogonal, the inverse-
transforms are given by u(t) =

∑r
i=1 Φu,iûi(t) and y(t) =

∑r
i=1 Φy,iŷi(t) re-

spectively. Throughout this paper, variables represented in the transformed
domain (11) will be denoted with the hat ·̂ notation.

Consider the subsystem Ĝij = Φ∗y,iGΦu,j that models the response of the
i-th output channel ŷi(t) = Φ∗y,iy(t) to the j-th input channel ûj(t) = Φ∗u,ju(t)
given by

Ĝij =

[
A BΦu,j

Φ∗y,iC Φ∗y,iDΦu,j

]
. (12)

where (12) is not necessarily a minimal state-space realization of the system
Ĝij = Φ∗y,iGΦu,j . Using symmetry, the transformations (11) can be constructed
such that the subsystem (12) between non-matching input ûj(t) and output ŷi(t)
channels i 6=j has no observable and controlable dynamics. In other words, the
minimal realization of the subsystem Ĝij = 0 is zero whenever i 6=j. Therefore,
the transformations (11) decompose the system

Ĝ = Φ∗yGΦu =

 Ĝ11

. . .
Ĝrr

 (13)

Now consider the diagonal blocks Ĝii = Φ∗y,iGΦu,i corresponding to match-

ing input and output channels i = j. Let n̂ix be the number of states of a
minimal realization of the system (12). Then we have

∑r
i=1 n̂

i
x = nx. Thus,

the symmetric decomposition block diagonalizes (13) the system G while main-
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taining the number of states. Furthermore, there exists a state-space trans-
formation Φx that transforms the A matrix of the system G into the decom-
posed matrix Â = Φ∗xAΦx in (13). The i-th block Φx,i of the transformation
Φx = [Φx,1, . . . ,Φx,r] is the controllable and observable subspace of the Kalman

decomposition of Ĝii [16]. Thus, we automatically obtain the state-space sym-
metric transformation Φx simply by computing minimal realizations of the sub-
systems Ĝii.

These results were extended to systems that are only approximately symmet-
ric in [16]. For a stable, approximately symmetric (8) system G, the off-diagonal
terms Ĝij = Φ∗y,iGΦu,j are small∥∥Φ∗y,iGΦu,j

∥∥
∞ ≤ ε

where ε is the tolerance from the definition of approximate symmetry (8). Fur-
thermore, each diagonal term Φ∗y,iGΦu,i is close to a stable system Ĝii with n̂ix
states i.e. ∥∥Ĝii − Φ∗y,iGΦu,i

∥∥
∞ ≤ ε.

Thus, we can approximate the system Ĝ = Φ∗yGΦu by a decomposed system of

the form (13) that preserves the number of states
∑r
i=1 n̂

i
x = nx of the original

system.

Decomposition of the ME-VCS

The symmetries (9) of the ME-VCS can be used to find symmetric transforma-
tions (11) that decompose (13) the dynamics (1) of the ME-VCS. The symmetric
basis are given by

Φu =

[
I2 0
0 Φ

]
, Φy =

[
I4 0
0 Φ

]
(14)

where

Φ =


1
r

1

1
r

−1
r−1

.
.
.

.

.

.

.

.

. 1
1
r

−1
r−1 · · · −1

Λ. (15)

and Λ is a diagonal scaling matrix that normalizes the column vectors of Φ. The
transformations (14) depend only on the symmetries (9) of the ME-VCS. Thus,
we can use these transformations (14) to decompose any ME-VCS model (1)
that satisfies Assumption 0.2. Details about numerical derivation of the trans-
formations (14) can be found in [16].

Remark 1. Scaling the transformations Φy and Φu via a diagonal matrices Λu
and Λy will not change the decomposition (13) of the system Ĝ = Λ−1

y Φ∗yGΦuΛu.
Therefore, we will drop the matrix Λ from (15) when defining the input û =
Λ−1
u Φ∗uu and output ŷ = Λ−1

y Φ∗yy channels in order to make the results of this

section more intuitive where Λu =
[
I2 0
0 Λ

]
and Λy =

[
I4 0
0 Λ

]
. This diagonal

scaling Λ can then be absorbed in the dynamics Ĝ = Λ−1
y Φ∗yGΦuΛu. �
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The partitioned transformations (14) split the inputs u(t) and output y(t)
of the ME-VCS into r channels. The first output channel ŷ1(t) = Λ−1

y,1Φ∗y,1y(t)
is comprised of the outdoor unit outputs y0(t) and the average temperature
1
r

∑r
i=1 yi(t) of all the rooms

ŷ1(t) =

[
y0(t)

1
r

∑r
i=1yi(t)

]
. (16a)

For i = 2, . . . , r, the output channel ŷi(t) = Λ−1
y,iΦ

∗
y,iy(t) is the deviation of

the (i−1)-th room temperature yi−1(t) from the average of last r−i+1 room
temperatures

ŷi(t) = yi−1(t)− 1
r−i+1

∑r
j=iyj(t). (16b)

The inputs u(t) of the ME-VCS are similarly split into r channels. The first
input channel û1(t) = Λ−1

u,1Φu,1u(t) is comprised of the outdoor unit inputs u0(t)

and the average cooling command 1
r

∑r
i=1 ui(t) for all the indoor units

û1(t) =

[
u0(t)

1
r

∑r
i=1ui(t)

]
. (17a)

For i = 2, . . . , r, the input channel ûi(t) = Λ−1
u,iΦ

∗
u,iu(t) is the deviation of the

(i−1)-th cooling command ui−1(t) from average of the last r− i+ 1 cooling
commands

ûi(t) = ui−1(t)− 1
r−i+1

∑r
j=iuj(t). (17b)

The subsystem Ĝ11 = Λ−1
y,1Φ∗y,1GΦu,1Λu,1 that models the response of the

first output channel (16a) to the first input channel (17a) has the form

Ĝ11 =

[
G00 rG01

G10 G11+(r−1)G12

]
(18a)

where G00 models the dynamics of outdoor unit, G11 = Gii models the internal
dynamics of the indoor units, G01 and G10 model the coupling between the in-
door and outdoor units, and G12 = Gij models the coupling between the indoor
units. Intuitively, the subsystem (18a) models the ME-VCS as an outdoor unit
connected to one large fictitious indoor unit that models the combined load of
all r indoor units. The effect rG01 of the average cooling command 1

r

∑r
i=1 ui(t)

on the outdoor unit outputs y0(t) is r times larger than the effect G01 of a sin-
gle cooling command u1(t). If there is no coupling between the indoor units
G12 = 0, the dynamics from average cooling command 1

r

∑r
i=1 ui(t) to average

room temperature 1
r

∑r
i=1 yi(t) are exactly the same as the dynamics G11 of a

single room. When the indoor units are coupled G12 6= 0, the coupling effect
(r−1)G12 becomes more apparent in the average room temperature 1

r

∑r
i=1 yi(t)

as the number r of indoor units increases.
The subsystems Ĝii = Λ−1

y,iΦ
∗
y,iGΦu,iΛu,i that model the response of the i-th

output channel (16b) to the i-th input channel (17b) are identical and have the
form

Ĝii = G11 −G12 (18b)

for i = 2, . . . , r. Intuitively, the decoupled subsystems (18b) model only the
internal dynamics of the room with the coupling dynamics G12 between rooms

10



removed.
For i 6= j, the j-th input channel (17b) has no effect on the i-th output

channel (16b) and thus the subsystem Ĝij = Φ∗y,iGΦu,j = 0 has no observ-
able and controllable dynamics. Therefore, the symmetric transformations (14)
decomposes the ME-VCS model (1) into r decoupled subsystems.

The performance filters (2) can also be decomposed using symmetry. The
output-filter (2a) is decomposed by a transformation Φz on its outputs z(t)
and a pair of transformations Φy and Φy∞ on its inputs y(t) and y∞ respec-
tively. The transformation Φy is the same as the transformation (14) of the
ME-VCS outputs y(t). The transformations Φy∞ and Φz on the references y∞

and performance outputs z(t), respectively, are given by

Φy∞ =

[
1 0
0 Φ

]
, Φz =

1 0 0
0 Φ 0
0 0 Φ

 (19)

where Φ was defined in (15). The transformation Φy∞ splits the references y∞

into r channels. The first reference channel ŷ∞1 (t) is comprised of the reference
discharge temperature y∞0 and the average reference temperatures for each of
the rooms

ŷ∞1 (t) =

[
y∞0 (t)

1
r

∑r
i=1 y

∞
i

]
. (20a)

For i = 2, . . . , r, the reference channel ŷ∞i (t) is the deviation of the (i−1)-
th reference temperature y∞i−1 from the average of the last r− i+1 reference
temperatures

ŷ∞i (t) = y∞i−1(t)− 1
r−i+1

∑r
j=i y

∞
j (t). (20b)

The i-th transformed reference ŷ∞i (t) = ŷ∞i corresponds to an equilibrium state
x̂∞i = Φ∗x,ix

∞.
The transformation Φz in (19) splits the performances outputs z(t) into r

channels. The first performance channel ẑ1(t) is comprised of the discharge
temperature error z0(t), the average room temperature error, and the average
integrated room temperature error

ẑ1(t) =

 z0(t)
1
r

∑r
i=1ei(t)

1
r

∑r
i=1ξi(t)

 . (21a)

For i = 2, . . . , r, the performance channel ẑi(t) is comprised of the deviation
of temperature error ei−1(t) of the (i−1)-th room from the average of the last
r−i+1 temperature errors, and the deviation of integrated temperature error
ξi−1(t) of the (i−1)-th room from the average of the last r−i+1 integrated errors

ẑi(t) =

[
ei−1(t)
ξi−1(t)

]
− 1

r−i+1

r∑
j=i

[
ej(t)
ξj(t)

]
(21b)

for i = 2, . . . , r.
The following proposition characterizes the subsystems Ŵ out

y,ii = Φ∗z,iW
out
y Φy,i

and Ŵ out
y∞,ii = Φz,iW

out
y∞ Φy∞,i that model the response of the i-th performance

output channels (21) to the i-th measured output (16) and i-th reference (20)

11



channel.

Proposition 1. The system Ŵ out has block-diagonal structure (13) with diag-
onal subsystems

Ŵ out
11 =

 1 B̂outy −B̂outy∞

0 D̂outy −D̂outy∞

0 B̂outy −B̂outy∞

1 0 0

 Ŵ out
ii =

[
1 1 −1
0 1 −1
1 0 0

]
(22a)

for i = 2, . . . , r where B̂outy = [0, 1] and B̂outy∞ = [0, 1] select the average room
temperature and average room temperature reference from the output channel (16a)
and reference channel (20a) respectively, and D̂out

y = [1,0] and D̂out
y∞ = [1, 0] se-

lect the discharge temperature and discharge temperature reference.

Proof. From the definitions (14) of Φy and (19) of Φz and Φy∞ , and the defini-
tion (2a) of W out we have

Ŵ out
ij =

[
I (0, Φj) (0,−Φj)

0 (1, 0) (1, 0)
0 (0, Φ∗i Φj) (0,−Φ∗i Φj)

Φ∗i 0 0

]
.

The result (22a) follows from applying the state-space transformation T = Φ =
[Φ1, . . . ,Φr] and removing the unobservable and uncontrollable states where
Φ∗iΦi = I and Φ∗iΦj = 0 for i 6= j.

The decomposed output filter (22a) operates on the transformed output (16)
and reference (20) channels independently. This means that we can obtain the
performance outputs z(t) by independently filtering each output ŷi(t) and refer-
ence ŷ∞i (t) channel and inverse-transforming the results z(t) =

∑r
i=1 Φz,iẑi(t).

Note that a similar decomposition is possible for any output-filter W out that
shares the symmetric structure (9) of the ME-VCS.

The input performance filter (2b) can be similarly decomposed. Since Θδu =
Θu, the input-filter (2b) is decomposed by the input transformation Φu in (14)
i.e. Ŵ in = Φ∗uW

inΦu. The decomposed input filter has the form

Ŵ in
11 =

[
I3 I3
I3 I3

]
Ŵ in
ii =

[
1 1
1 1

]
(22b)

for i = 2, . . . , r. The derivation of the input sub-filters (22b) is similar to the
derivation of the output sub-filters (22a).

In the next section, we will exploit the decomposed structure of the ME-
VCS model (18) and performance filters (22) to reduced the complexity of both
control design and implementation.

0.4 Symmetric Control for the ME-VCS

In this section we show how symmetry can be used to reduce the computa-
tional complexity of designing controllers for the ME-VCS. Our control design
methodology was inspired by [6].
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Symmetric Estimator and Control Design

Our symmetric control design relies on the following simple fact.

Theorem. A controller K̂ stabilizes the transformed system Ĝ = Φ∗yGΦu if and

only if the inverse-transformed controller K = ΦuK̂Φ∗y stabilizes the original
system G.

Proof. Closing the loop around the system Φ∗yGΦuK̂ is exactly the same as

closing the loop around the system GΦuK̂Φ∗y.

This theorem means that we can design a stabilizing controller K for a
system G by designing a controller K̂ for the transformed system Ĝ = Φ∗yGΦu.

For a symmetric system (7), the transformed system Ĝ is decomposed. Thus,
we can design the controller K̂ by independently designing sub-controllers K̂ii

that stabilize the decoupled subsystems Ĝii of Ĝ.
For the ME-VCS, we need to design a controller for the aggregate subsys-

tem (18a) and a controller K̂22 for the deviation subsystem (18b). The controller
for the aggregate subsystem (18a) will have the structure[

K̂00 K̂01

K̂10 K̂11

]
where K̂00 is the sub-controller for the outdoor unit, K̂11 is the sub-controller for
the average indoor unit dynamics, and K̂01 and K̂10 are the sub-controllers for
the coupling between the outdoor unit and average indoor unit. The deviation
subsystem controller K̂22 can then be repeated r−1 times to obtain a controller
K̂ for an ME-VCS with r indoor units. The controllers K̂ in the transformed
domain can then be inverse-transformed to obtain a controller K for the ME-
VCS (1) is the original domain

K = ΦuK̂Φ∗y = (23)

=


K̂00 0 · · · 0

K̂10 K̂22

...
. . .

K̂10 K̂22

+
1

r


0 K̂01 · · · K̂01

0 K̂11−K̂22 · · · K̂11−K̂22

..

.
..
.

. . .
...

0 K̂11−K̂22 . . . K̂11−K̂22

 .
Thus, we can build a controller for the ME-VCS with an arbitrary number r of
indoor units by designing two small controllers for the aggregate subsystem (18a)
and the deviation subsystem (18b). In practice, the dimension of the models of
the outdoor unit G00, a single indoor unit G11 and their interactions G01, G01,
and G12 do not depend on the total number of indoor units r. Thus, the dimen-
sion of the two ME-VCS subsystems (18) is typically constant. Therefore, the
computational complexity of synthesizing the symmetric controller (23) remains
constant, regardless of the number r of indoor units.

The design of the decoupled controllers K̂ for the ME-VCS subsystems (18)
follows a procedure analogous to the design of the baseline controller (6). The
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controllers for the ME-VCS subsystems (18) have the form

K̂ii=

 I 0 0 B̂outy,i B̂outy∞,i

B̂iF̂
ξ
i Âi+L̂iĈi+B̂iF̂i B̂i(I+F̂ui ) −Li Li

F̂ ξii F̂i I+F̂ui 0 0

F̂ ξi F̂i I+F̂ui 0 Ĝ†
i

 (24)

for i = 1, 2 where the state x̂i(t) = [ξ̂i(t), x̂i(t)− x̂∞i , ûi(t−1) − û∞i ]ᵀ of the

i-th controller is comprised of the state ξ̂i(t) of the i-th output filter (22a), the
estimated shifted state x̂i(t)−x̂∞i of the i-th ME-VCS subsystem (18), and the
shifted state ûi(t−1)− û∞i of the i-th input filter (22b).

The feedback gain F̂ i = [F̂ ξi , F̂i, F̂
u
i ] is chosen to satisfy the decomposed

Lyapunov equation(
Âii + B̂iF̂ i

)ᵀ
P̂ i

(
Âi + B̂iF̂ i

)
− P̂ i � −ĈiQ̂iĈi − F̂

ᵀ
i R̂iF̂ i (25)

where the weighting matrices Q̂ii � 0 and R̂ii � 0 penalize the performance
outputs ẑi(t) and incremental inputs δûi(t) for the i-th ME-VCS subsystem (18)

respectively. The matrices Âi, B̂i, Ĉi, and D̂i are the state-space matrices of
a minimal realization of the augmented subsystem

Ŵ out
y,ii ĜiiŴ

in
ii =



I B̂outy,iiĈii 0 0

0 Âii B̂ii B̂ii
0 0 I I

0 D̂y,iioutĈii D̂y,iioutD̂ii D̂y,iioutD̂ii
0 B̂y,iioutĈii D̂y,iioutD̂ii B̂y,iioutD̂ii
I 0 0 0


︸ ︷︷ ︸[

Ai Bi

Ci Di

]

(26)

for i = 1, 2. The state of the augmented subsystem (26) is estimated using a
reduced-order observer where only the offset state x̂i(t) − x̂∞i of the ME-VCS

subsystem (18) is estimated. The observer gain L̂i = ÂiΣ̂iĈi
(
V̂i + ĈiΣ̂iĈ

ᵀ
i

)−1

for the i-th controller (24) is obtained by solving the discrete-time algebraic
Riccati equation (5) with the state-space matrices from the i-th ME-VCS sub-
system (18) and noise covariance matrices V̂i and Ŵi.

Symmetric Estimator and Control Analysis

In this section we examine the conditions under which the symmetrically de-
signed controller (23) is identical to the baseline controller (6). We begin by

inverse-transforming the symmetric feedback F̂ i and observer L̂i gains into the
original domain. The inverse-transformation of the feedback gains F̂ i and Lya-
punov matrices P̂ i is given by

F =
∑r
i=1Φ∗u,iF̂ iΦx,i (27a)

P =
∑r
i=1Φ∗x,iP̂ iΦx,i (27b)

where Φ∗x,i = [Φ∗y,i,Φ
∗
x,i,Φ

∗
u,i] is the state-space transformations that maps the

state [ξ(t), x(t), u(t−1)] of the augmented system (3) to the state [ξ̂(t), x̂(t), û(t−
1)] of the transformed augmented system (26).
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Similarly, the observer gains L̂i and estimation error covariance matrices Σ̂i
can be inverse-transformed to obtain an observer gain L and covariance matrix
Σ for the ME-VCS (1) in the original domain

L =
∑r
i=1Φ∗x,iL̂iΦy,i (28a)

Σ =
∑r
i=1Φ∗x,iΣ̂iΦx,i (28b)

where Φx is the state-space transformation that such that ΦxAΦ−1
x = Â.

The following proposition shows that the observer gain and covariance ma-
trix (28) are the identical to the baseline designs if temperature sensors and
heat loads for each room have the same second-order statistics.

Proposition 2. Let the covariance matrices V = Θ∗yVΘy and W = Θ∗uWΘu

be symmetric. Then the observer gain and covariance matrix (28) are identical
to those produced by the baseline design procedure in Section 0.2.

Proof. Let L̂ and Σ̂ � 0 be the block-diagonalization of the matrices L̂ii and
Σ̂ii respectively. Then Σ̂ satisfies the Riccati equation

Σ̂=ÂΣ̂Âᵀ+B̂Ŵ B̂ᵀ−ÂΣ̂Ĉᵀ
(
V̂ + ĈΣ̂Ĉᵀ

)−1
ĈΣÂᵀ

where Ŵ = Φ∗xWΦx and V̂ = Φ∗yV Φi are block-diagonal since V = Θ∗yVΘy and
W = Θ∗uWΘu. Pre-multiplying by Φ∗x and post-multiplying by Φx shows that
covariance matrix Σ = Φ∗xΣ̂Φ � 0 is the unique positive definite solution of the
Riccati equation (5) in the original domain since Φ∗xÂΦx = A, Φ∗xB̂Φu = B,
and ΦyĈΦ∗x = C and ΦxΦ∗x = I, ΦuΦ∗u = I, and ΦyΦ∗y = I. Furthermore, the
observer gain (28a) is identical to the original

L = Φ∗xL̂Φy = Φ∗xÂΣ̂Ĉᵀ
(
V̂ + ĈΣ̂Ĉ

)−1
Φy

= AΣCᵀ
(
V + CΣCᵀ)−1

since Φ∗xÂΦx = A and ΦyĈΦ∗x = C, and ΦxΦ∗x = I and ΦyΦ∗y = I. �

A similar results does not necessarily hold for the feedback gain and Lya-
punov matrix (27) even when the weighting matrices Q = Θ∗zQΘz and R =
Θ∗uRΘu place the same penalty on the tracking errors and integrated tracking
errors for each room temperature. This is because the Lyapunov equation (4)
can have multiple solutions, some of which may be non-symmetric. However, if
the inequalities in the original (4) and decomposed (25) Lyapunov equations are
replaced with equality (i.e. they become Riccati equations), then the feedback
gain and Lyapunov matrix (27) are identical to those obtained using the base-
line approach. Similarly, if the Lyapunov equations are combined with a cost
function that is convex and symmetric, then the feedback gain and Lyapunov
matrix (27) will be identical to the baseline design [6]. In either of these cases, it
can be shown that the baseline (6) and symmetric (23) controllers are identical.

0.5 Modeling and Design Validation

In this section we validate the analysis and design results presented in this paper.
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Validation of the Model Decomposition

In this section we demonstrate the validity of model decomposition presented
in Section 0.3.

The symmetric transformations (9) were applied to an empirically identified
model of a r = 2 indoor unit ME-VCS. Figure 2 shows the frequency-dependent
maximum singular values of the transformed subsystems Ĝij = Φ∗y,iGΦu,j for
i, j = 1, 2. According to the theoretical results presented in Section 0.3 the off-
diagonal subsystems Ĝ12 and Ĝ21 should be exactly zero. Since the empirically
identified ME-VCS model G is only approximately symmetric, these subsystems
Ĝ12 and Ĝ21 are non-zero as shown in Figure 2(b) and Figure 2(c). However,
these subsystems Ĝ12 and Ĝ21 are stable and nearly zero O

(
‖Ĝ12‖∞

)
= 10−16

and O
(
‖Ĝ21‖∞

)
= 10−17. In contrast, the frequency responses of the diagonal

subsystems Ĝ11 and Ĝ22 are 16 orders of magnitude larger O(‖Ĝ11‖∞) = 1 and
O(‖Ĝ22‖∞) = 1. Thus, we expect the asymmetry of the ME-VCS dynamics to
have negligible effect on the control design.
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Figure 2: Bode magnitude plots for the decomposed ME-VCS subsystems (18).

Validation of the Control Design

In this section we demonstrate the validity of decomposed control design method-
ology presented in Section 0.4.

We designed a controllers for the r = 2 indoor unit ME-VCS from the
previous section using the baseline procedure (6) and the symmetry exploit-
ing procedure (23). For the baseline controller (6) the observer gain Lbase was
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obtained by solving the Riccati equation (5) and the feedback gain F base was
obtained by solving the Lyapunov equation (4) with equality. For the symmetric
controller (23) the observer gain Lsym was assembled (28a) from the sub-gains

L̂ii obtained by solving the Riccati equation (5) for each of the ME-VCS sub-
systems (18). The feedback gain F sym was assembled (27a) from the sub-gains

F̂ ii obtained by solving the decomposed Lyapunov equation (25) with equal-
ity. The difference between the feedback and observer gains obtained using
these two different procedures is minuscule O

(
‖Lbase − Lsym‖F

)
= 10−14 and

O
(
‖F base − F sym‖F

)
= 10−8 where ‖ · ‖F is the Frobenius-norm of a matrix.

Figure 3 shows the bode magnitude plots of the discharge and room temper-
ature tracking errors in response to the changes in the discharge and room tem-
perature references for both the baseline (6) and symmetric (23) controllers. Fig-
ure 3 shows that the closed-loop behavior CL(G,Kbase) and CL(G,Ksym) pro-
duced by the baseline and symmetric controller are nearly identicalO

(
‖CL(G,Kbase)−

CL(G,Ksym)‖∞
)

= 10−7.
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(f) T1,rf → T2−T2,rf
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Figure 3: Closed-loop response of the discharge temperature Td and room tem-
peratures T1 and T2 tracking errors to changes in the references Td,rf , T1,rf , and
T2,rf . Solid blue-line is the baseline closed-loop response and dashed red-line is
the symmetric closed-loop response.

Since the baseline (6) and symmetric (23) controllers produce identical closed-
loop behavior, either can be used to design a controller for the ME-VCS. The
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advantage of the symmetric control design is that the number and size of the
Riccati equations or linear matrix inequalities that need to be solved to obtain
the feedback F and observer L gains is constant regardless of the number of
indoor units r. On the other hand, the baseline procedure becomes increasingly
complex as the number of indoor units r increase. We used the baseline and
symmetric control design procedures to design a controller for an ME-VCS with
r = 50 indoor units. The resulting baseline augmented plant (3) is very large,
having 52 inputs, 101 outputs, 155 states, and 51 references. On the other hand,
the decomposed augmented subsystems (26) are much smaller. The aggregate
augmented subsystem (26) has 3 inputs, 3 outputs, 8 states, and 2 references.
The r− 1 = 49 augmented deviation subsystems (26) each have 1 input, 2
outputs, 3 states and 1 reference. Furthermore, we only need to design a sin-
gle controller K̂22 for each of these r−1 = 49 identical subsystems. Thus, the
symmetric design procedure is significantly faster than the baseline procedure.
The symmetry design procedure required less than 1 second, while the baseline
design procedure required 41 hours to compute an identical controller.

0.6 Conclusions

This paper presented a controller synthesis procedure for ME-VCS systems.
This procedure exploits the symmetry often observed in ME-VCS systems to
reduce the computational complexity of designing controllers. To facilitate this
control design procedure, we described a group of symmetries commonly found
in ME-VCS systems and showed how these symmetries can be used to decom-
pose an ME-VCS model and the performance filter used in the control design.
This method was applied to a 50 unit ME-VCS resulting in a significant reduc-
tion in computation time.
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