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Abstract
This paper addresses the continuous-discrete time nonlinear filtering problem for stochastic
dynamical systems using the feedback particle filter (FPF). The FPF updates each particle
using feedback from the measurements, where the gain function that controls the particles
is the solution of a Poisson equation. The main difficulty in the FPF is to approximate
this solution using the particles that approximate the probability distribution. We develop a
novel Galerkin-based method inspired by high-dimensional data-analysis techniques. Based
on the time evolution of the particle cloud we determine basis functions for the gain function
and compute values of it for each individual particle. Our method is completely adapted to
the recorded history of the particles and the update of the particles do not require further
intermediate approximations or assumptions. We provide an extensive numerical evaluation
of the proposed approach and show that it compares favorably compared to baseline FPF
and particle filters based on the importancesampling paradigm.
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Feedback Particle Filter with Data-Driven
Gain-Function Approximation

Karl Berntorp1 and Piyush Grover1

Abstract—This paper addresses the continuous-discrete time
nonlinear filtering problem for stochastic dynamical systems
using the feedback particle filter (FPF). The FPF updates each
particle using feedback from the measurements, where the gain
function that controls the particles is the solution of a Poisson
equation. The main difficulty in the FPF is to approximate this
solution using the particles that approximate the probability
distribution. We develop a novel Galerkin-based method inspired
by high-dimensional data-analysis techniques. Based on the time
evolution of the particle cloud we determine basis functions for
the gain function and compute values of it for each individual
particle. Our method is completely adapted to the recorded
history of the particles and the update of the particles do not
require further intermediate approximations or assumptions.
We provide an extensive numerical evaluation of the proposed
approach and show that it compares favorably compared to
baseline FPF and particle filters based on the importance-
sampling paradigm.

I. INTRODUCTION

Particle filters (PFs) [1]–[3] are popular for estimation of
nonlinear systems. Traditional PFs based on importance sam-
pling generate random state trajectories and assign a weight
to each state trajectory according to how well it predicts the
observations. PFs have been successful in numerous applica-
tions, see [4]–[8] for some examples, and PFs have also been
shown to be an integral part in nonlinear system identification
[9], [10]. One problem with traditional PFs is the inevitable
particle degeneracy [11] (i.e., only a few particles, or even
one, have nonzero weight). Degeneracy leads to decreased
performance, or even filter divergence. To mitigate this, PFs
include a resampling step where trajectories are either kept
or discarded, depending on their weight. The resampling step
makes PFs practically useful, but introduces other negative
effects, such as sample impoverishment and increased variance
[2].

The feedback particle filter (FPF) has been introduced
in a series of papers as a control-oriented, resampling-free,
variant of the PF [12]–[15]. The FPF applies a feedback
structure to each particle, visualized in Fig. 1. It can be
viewed as a generalization of the Kalman filter to PFs. The
measurement update is implemented as a gradual transition
from prior to posterior, instead of the one-step multiplication
of Bayes’ rule in conventional importance-sampling based PFs.
Numerical studies in [16], [17] have demonstrated significant
performance improvements over conventional PFs. The gain
function that is present in the feedback structure is in general
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nonlinearly dependent on the state and found as a solution to
a constrained Poisson’s equation [18]. Usually, approximate
solutions are necessary, because closed-form expressions can
only be computed in certain special cases.

The contribution in this paper is a data-driven approach
for computation of the gain function in the FPF, which is
applicable to a range of estimation problems. Our approach is
motivated by the following observation: the ensemble of parti-
cles accumulated over time describes how the system evolves,
and therefore gives information about how the particles should
be controlled to explain the measurements. Inspired by proper
orthogonal decomposition (POD) as a high-dimensional data-
analysis technique, we approximate the gain function based
on a series expansion of basis functions that are extracted
from the time evolution of the particle cloud. We leverage
the Galerkin approach [14], which is a method for converting
problems involving continuous operators (such as boundary
value problems) to the discrete domain, by converting the
equation to the weak domain and characterize the solution by
a set of basis functions.

A. Related Work

Several papers have addressed gradual transitioning of the
prior to posterior. In [19], a framework for gradual transition
from prior to posterior was introduced—see also [20], [21].
The particle-flow filter has been introduced and improved
in a series of papers, see, for example, [22]–[24], and [25],
[26] consider particle flow in an importance-sampling based
framework.

There are few papers addressing the control-gain approxi-
mation in the FPF. In [16], we demonstrated how a sensible
approximation of the gain function can increase performance
compared with baseline FPF for a specific system. Gain
computation for an artificial, scalar example was considered
in [14], and [27] reported on an initial study using a kernel-
based approach for gain function approximation, which does
not use basis functions. Furthermore, [28] makes a connection
between the FPF and optimal transport, although restricted to
linear systems.

A preliminary version of this work was presented in [29].
This paper contains several extensions. Specifically, we give
a more detailed and rigorous exposition of the proposed
method, and we provide additional numerical examples to
illustrate the efficiency of the approach. In particular, using a
linear Gaussian example, we show that our gain-computation
method approaches the optimal gain as the number of particles
N →∞.
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Fig. 1. Simplified block diagram of the FPF. It uses feedback gains {Ki}Ni=1
to control the particles {xi}Ni=1. This is in contrast to the conventional PF,
where only the particles’ weights are changed in the measurement update.

B. Notation

Vectors and matrices are denoted with bold-face letters
as x and A, respectively, where aj is the jth column of
A. The jth element of x is denoted by xj and Aij means
the element of A on row i, column j. The variables t and
k are reserved for continuous time and discrete time step,
respectively. With δ(x − y) we mean the Dirac delta mass,
which is one when x = y and zero elsewhere. The conditional
probability density function of x given y is denoted by p(x|y),
E(x) =

∫
xp(x)dx, and x̄ = 1/N

∑N
i=1 x

i for a finite
positive integer N . Let L2(Rn, p) mean the Hilbert space of
square-integrable functions with respect to p at a given time
and let X := L2(Rn). Furthermore, ∇f is the gradient of f
with respect to x. The notation H1(Rn, p) means the function
space where the function and its first derivative (defined in
expectation) are in L2(Rn, p). The inner product between
u := u(x) and v := v(x) is 〈u,v〉 :=

∫
uTv dx. The induced

norm is ‖u‖ :=
√
〈u,u〉. In Rn, ‖u‖2 :=

√
xTx. Finally,

0n×1 is the n× 1 zero matrix.

C. Outline

We state the problem scope in Sec. II and give a short
background on the FPF in Sec. III. Sec. IV outlines the
proposed method for gain computation, which is numerically
evaluated in Sec. V. Finally, Sec. VI summarizes and draws
conclusions.

II. PROBLEM FORMULATION

This paper is concerned with continuous-discrete time sys-
tems of the form

dx(t) = f(x(t))dt+ dβ(t), (1a)
yk = h(xk) + ek, (1b)

where x(t) ∈ Rn is the state at time t ∈ R; yk :=
y(tk) ∈ Rm is the discrete-time measurement at time tk;
f t := f(x(t)) and hk := h(xk) are the drift and mea-
surement function, respectively; and β(t) and ek are process
and measurement noise, respectively. The aim in continuous-
discrete time Bayesian filtering is to estimate the posterior
filtering density p(x(t)|Yk), or at least the relevant moments,
at each time t ≥ tk. Here, Yk := {y0, . . . ,yk} denotes the set
of measurements, obtained at discrete time steps. Throughout,
both process and measurement noise are assumed independent,
Gaussian distributed with zero mean and known covariance
matrices Q ∈ Rn×n and R ∈ Rm×m.

In this paper, we focus our efforts on the Bayesian filtering
problem using the FPF. More specifically, given the prior
p(xk|Yk−1) and a current measurement yk, our goal is to
determine the feedback gains Ki in Fig. 1 that control the
particles to approximate the posterior p(xk|Yk).

III. BACKGROUND: FEEDBACK PARTICLE FILTER
This section gives a brief overview of the main steps in

the FPF and a popular implementation of the FPF. For details
about the general formulation of the FPF, see [14], [15], and
[13] for the continuous-discrete formulation.

A. Feedback Particle Filter

The key step in Bayesian filtering is Bayes’ rule, which
states that

p(xk|Yk) ∝ p(yk|xk)p(xk|Yk−1). (2)

In conventional PFs, the measurement update is implemented
as a point-wise multiplication between likelihood and prior,
where the prior is represented by a set of N weighted
particles, where the weights are computed using the likelihood
conditioned on the respective particle. The FPF approximates
the posterior with N unweighted samples, or particles, xit as

p(xk|Yk) ≈ p̂(xk|Yk) =
1

N

N∑
i=1

δ(xk − xik). (3)

Note the difference to conventional PFs, where weights are
used to select the importance of the particles. The FPF treats
the evolution of the posterior distribution as a controlled
system, where the state evolves in two alternating steps. For
increasing k = 0, 1, . . . ,

1) the continuous-time dynamics (1a) govern the evolu-
tion of the state between two measurement times t ∈
[tk−1, tk).

2) the Bayesian update (2) is simulated using a closed-loop
system model at discrete time tk.

Fig. 1 provides the conceptual structure of the FPF, which is
similar to that of the Kalman filter. The main differences to
a Kalman filter are that N particles are controlled instead of
only the mean, that K in general is a nonlinear function of the
state, and that the error combines local and global information.

At time tk, a new observation yk arrives. To incorporate yk,
a particle flow {Sik(λ)}Ni=1 defined by differential equations
is introduced,

dSik(λ)

dλ
= K(Sik(λ), λ)Iik +

1

2
Ω(Sik(λ), λ), (4)

with initial condition Sik(0) = xik− , for i = 1, . . . , N , where

xk− := lim
t→tk

x(t), (5)

and where the limit approaches from below. The parameter
λ ∈ [0, 1] is the pseudo-time. The term Ω ∈ Rn is referred
to as the Wong-Zakai correction term [30] and is for each
element Ωs calculated as

Ωs(x, λ) =
1

2

n∑
d=1

m∑
j=1

Kdj(x, λ)
∂Ksj

∂xd
(x, λ), (6)
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p(xk− |Yk−1) p(xk|Yk)

log of Bayes’ rule︷ ︸︸ ︷
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k−(λ = 0) xi

k(λ = 1)

Simulation-based update︷ ︸︸ ︷
dSi

k
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= Ki

(
yk − 1

2
(h(Si

k) + E(h))
)

Fig. 2. Illustration of how the pseudo-time update corresponds to the prior
and posterior.

where Ksj is element sj of K. The term Iik is the innovation
error and equals

Iik = yk −
1

2

(
h(Sik(λ)) + E(h(Sk(λ))

)
, (7)

where

E(h(Sk(λ)) ≈ h̄k =
1

N

N∑
i=1

h(Sik(λ)). (8)

The innovation process (7) includes the predicted measurement
of particle i and the average of all particles in the particle flow.
Corresponding to the particle flow, a density function ρk(x, λ)
that defines the distribution of {Sik(λ)}Ni=1 is also introduced.
The particle-flow update (4) is made possible by a log-
homotopy transformation [13], which transforms the discrete-
time Bayesian measurement update to a continuously evolving
process. Fig. 2 illustrates how the homotopy transformation
enables continuously moving from prior to posterior. It was
shown in [13] that the gain function is a solution to a certain
Euler-Lagrange boundary-value problem. Specifically, for each
fixed λ ∈ [0, 1], the gain function

K =
[
∇φ1(x, λ) · · · ∇φm(x, λ)

]
(9)

is obtained as the solution to

∇T(ρ∇φj) = − 1

Rjj
(hj − h̄j)ρ,∫

φj(x, λ)ρ(x, λ) dx = 0,

(10)

for j = 1, . . . ,m, where Rjj is the variance of the jth element
in yk, hj is the jth element of h, and similarly for h̄j .
Note that a diagonal covariance for the measurement noise is
assumed. The following consistency result holds for the FPF.

Theorem 1: Suppose that K is obtained according to (10)
and that the particle flow is updated as (4), initiated as
{Sik(0)}Ni=1 = {xik−}

N
i=1, ρ(x, 0) = p̂(xk− |Yk−1). If the esti-

mated and true posterior are equal at time t−k , p̂(xk− ,Yk−1) =
p(xk− ,Yk−1), at λ = 1, it holds that ρ(x, 1) = p(xk|Yk).

Proof 1: See [13]. �
From Theorem 1, it follows that the measurement update is
exact and that the FPF provides the true posterior for an infinite
number of particles and for a consistent initialization of the
filter. In particular, for linear and Gaussian systems, the gain
function in the FPF becomes the Kalman gain and the Wong-
Zakai term vanished [13]. The two-step process of the FPF is
illustrated in Fig. 3.

The main difficulty in the FPF is to find K, and only
in limited cases can an exact solution be computed. In the

ttk−1

λ

tk

λ

x(t−k ) x(tk)x(t−k−1) x(tk−1)

Fig. 3. Illustration of the measurement update in the FPF [13]. The state
x is predicted up to tk−1. When yk−1 arrives, the predicted state estimate
is corrected using a simulation-based update, going from λ = 0 to λ = 1,
yielding x(tk−1). The process is similar for tk .

remainder of this section, we will discuss a Galerkin-type
method based on the weak formulation of (10) [31] that has
been developed in [14].

B. Galerkin Approximation of Gain Function

The consistency result in Theorem 1 only holds for an exact
expression of the feedback gain. In fact, the main difficulty in
the implementation of the FPF is to find solutions to (10).
This equation can only be solved exactly for restricted types
of systems, such as when (1) is linear and Gaussian. In other
cases, numerical techniques are required.

Approximations of varying complexity can be computed
based on the weak formulation of (10) [31], leading to a
Galerkin-based approximation. A function ∇φj is said to be
a weak solution to (10) if

E((∇φj)T∇ψ) = E
(

1

Rjj
(hj − h̄j)ψ

)
(11)

for all test functions ψ belonging to H1(Rn, p) [14]. By
restricting ψ to belong to the subspace of H1(Rn, p) spanned
by {ψl}Ll=1, φj is approximated as

φj =

L∑
l=1

κj,lψl, (12)

that is, (12) is a weighted finite sum of L basis functions
{ψl}Ll=1, where {κj,l}Ll=1 are constants for a fixed tk. This
implies that the gain function for each column becomes

kj =

L∑
l=1

κj,l∇ψl. (13)

Eq. (13) leads to a finite-dimensional approximation of (11):

L∑
l=1

κj,lE
(
(∇ψl)T∇ψ

)
= E

(
1

Rjj
(hj − h̄)ψ

)
. (14)

In practical implementations, by substituting ψ with each
ψl and approximating the expectation using the particle dis-
tribution, (14) becomes a linear matrix equation for each
j = 1, . . . ,m,

Aκj = bj , (15)

where
κj =

[
κj,1 · · · κj,L

]T
. (16)
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Fig. 4. An illustration of the constant-gain approximation in the one-
dimensional case, corresponding to (18). The nonlinear gain function is
approximated by a weighted expected value over the particles.

Note that the equation system is the same for all particles. In
(15), element sl of A, Asl, and element s of bj , bj,s, are

Asl =
1

N

N∑
i=1

(∇ψil)T∇ψis,

bj,s =
1

RjjN

N∑
i=1

(hij − h̄j)ψis.

1) Constant-Gain Approximation: A computationally sim-
ple approximation of the gain function is found by choosing
the coordinates in the Galerkin approach as basis functions,
that is, {ψl}Ll=1 = {xl}nl=1. Fig. 4 gives an illustration in the
scalar case; if the states are chosen as test functions, we have

∇ψl =
[
01×l−1 1 01×L−l+1

]T
. (17)

Hence, A in (15) becomes the identity matrix, and we end up
with an approximation that is the same for all particles, the
constant-gain approximation:

K ≈
[
c1 · · · cm

]
R−1,

cj :=
1

N

N∑
i=1

(
hij − h̄j

)
Sik(λ).

(18)

Using (18) for gain approximation is so far the most common
way to find an expression of the gain function. The resulting
FPF is hereafter denoted by FPF. The constant-gain approxi-
mation is the best constant approximation of K in the mean-
square sense, but it is not individualized for each particle.

The FPF using the constant-gain approximation has com-
plexity O(N) and is summarized in Algorithm 1 for a dis-
cretization of the pseudo-time with step size ∆λ. Note that
the term Ω as defined by (6) is zero in Algorithm 1.

IV. DATA-DRIVEN GAIN COMPUTATION

In this section, we outline our proposed data-driven ap-
proach for gain-function computation. We start from the
Galerkin-based approximation outlined in Sec. III-B. Hence,
we can formulate the problem we seek to solve as follows.

Problem 1: Find L basis functions∇ψl that for each column
kj in K approximates the gain function according to (13).

How to choose the basis functions and thereby solve Prob-
lem 1 is nontrivial. We propose an approach for choosing the

Algorithm 1 FPF with constaint-gain approximation
Initialize: Set {xi0}Ni=1 ∼ p0(x0)

1: for k ← 1 to T do
2: Set t = tk−1
3: while t < tk do
4: Simulate dxi = f idt+ dβ, for i ∈ {1, . . . , N}
5: Set t = t+ ∆t
6: end while
7: Set {Sik}Ni=1 = {xik}Ni=1 and λ = 0.
8: while λ ≤ 1 do
9: Compute K from (18).

10: Compute Iik from (7), (8), for i ∈ {1, . . . , N}.
11: Compute Sik using (4), for i ∈ {1, . . . , N}.
12: Set λ = λ+ ∆λ.
13: end while
14: Set {xik}Ni=1 = {Sik}Ni=1

15: end for

basis functions from observed data. Specifically, our method
relies on the observation that the time evolution of the parti-
cle cloud and previous corrections due to the measurements
describes the global system behavior. As a consequence, the
particle cloud contains information about how to locally adjust
the particles. We adapt POD [32] to find basis functions
for the weak formulation in Sec. III-B. POD is widely used
in computational fluid dynamics and structural vibrations, to
mention two applications. In image processing it is known
as principal component analysis, and is extensively used as a
data-extraction method.

A. Proper Orthogonal Decomposition

In this section we describe the background on POD neces-
sary to understand our approach and the intuition behind it.
The objective in POD is to obtain compact representations
of high-dimensional data, such as in large-scale dynamical
systems. Suppose the goal is to approximate a vector field
θ(x, t). The field is decomposed as

θ(x, t) = θ̄(x) + θ′(x, t),

where θ̄ is a steady-state flow and θ′ is the time-varying part.
The goal is to represent θ′ as a sum of orthonormal basis
functions, that is,

θ′ =

∞∑
j=1

aj(t)ϕj(x),

where aj are time-dependent coefficients and {ϕj}∞j=1 ∈ X
is the basis. The coefficients are uncorrelated and computed
as aj = 〈θ′,ϕj〉. In POD, we seek an optimal basis in the
sense that if θ′ is projected onto {ϕj}Lj=1, the average energy
content retained is greater than if projected onto any other set
of L basis functions. This can be formulated as

maximize
ϕ∈X

|〈θ′,ϕ〉|2
‖ϕ‖2

. (19)
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Using a first-order variation of the cost function, it can
be shown that solving (19) amounts to solving the integral
eigenvalue problem∫

R(x,x′)ϕ(x′) dx′ = αϕ(x), (20)

where R is the auto-correlation function and α is the eigen-
value. Typically, discretization is performed both in space and
time. The discretized version of R̄ in (20) is the covariance
matrix Σ, and (20) amounts to solve a matrix eigenvalue prob-
lem. For sufficiently many discretization points, the sample
covariance matrix is a reliable approximation of Σ. Assuming
a subtracted mean, the sample covariance matrix is given by

Σ =
1

M − 1
XXT, (21)

where X is the matrix containing the data and M is the
number of time-discretization points. For further details, see
[32] and references therein.

An interpretation of POD is that the proper orthogonal
modes (POMs, the eigenvectors) define the direction of op-
timal distribution of energy or power, and the corresponding
proper orthogonal values (POVs, the eigenvalues) represent
the power associated with each of the POMs [33]. The mass
distribution of the particle cloud is corrected whenever a
measurement arrives. Consequently, the intuition behind our
approach is that if the basis functions are chosen based on
the POMs of the time evolution of the particle cloud, the gain
function will move the particles according to the directions of
most mass concentration of the posterior distribution.

The remainder of this section explains how to incorporate
POD for the gain computation.

B. POD for Finding Dominant Modes of the Particles

As mentioned, our approach relies on the observation that
the set of particles, when simulated forward in time, gives
information about the time evolution of the system. Hence,
it is intuitive to suggest that particles that do not follow the
behavior of the particle cloud are less likely to be a significant
contributor to the posterior estimate and should be corrected
accordingly to be consistent with the mass distribution of the
particle cloud. To this end, we want to determine how each
particle relates to the POMs of the particle cloud.

Assume that we predict N particles {xi}Ni=1 using the
dynamical system (1a) in open loop up to time t−k , when
a measurement arrives. At each simulation step (i.e., time-
discretization point), the particles are stacked in a column
matrix as

x′ :=
[
(x1)T · · · (xN )T

]T ∈ RnN . (22)

Eq. (22) is a snapshot of the state space using the particle
cloud from the FPF. We store the M latest snapshots of the
particle cloud, that is, M snapshots in the form of (22). In
accordance with the POD approach for generating the data X
in (21), we subtract the average from (22) for each snapshot.

This ensures that the point cloud is centered at its origin. Then
we stack the resulting data column wise, leading to

X =

x
1
1 · · · x1

M
...

...
xN1 · · · xNM

 ∈ RnN×M . (23)

To find the principal directions of the set of particle clouds
in (23), we employ singular value decomposition (SVD) [34].
Hence, X is decomposed as

X = USV T, (24)

where U ∈ RnN×nN is an orthonormal matrix containing
the left singular vectors of X , S ∈ RnN×M consists of
min(nN,M) nonnegative singular values σj in decreasing
order on the diagonal, and V ∈ RM×M is orthonormal and
contains the right singular vectors. Only the POMs correspond-
ing to the most significant singular values are used. Thus, we
extract the first r ≤ min(nN,M) columns from U to form
Û and decompose it as

Û =

u
1
1 · · · u1

r
...

...
uN1 · · · uNr

 ∈ RnN×r, (25)

where the matrix S containing the singular values is truncated
similarly. The decomposition (25) gives r orthonormal eigen-
vectors of the data. Multiplying Q = Û Ŝ results in

Q =

σ1u
1
1 · · · σru

1
r

...
...

σ1u
N
1 · · · σru

N
r

 =

q
1
1 · · · q1r
...

...
qN1 · · · qNr

 . (26)

The interpretation of V in POD is that column m, vm,
determines the time modulation of eigenvector m; that is,
element j in vm is the time modulation of uim at time index
k −M + j, and the last (M th) element, vmM , of vm gives
the time modulation at time step k, that is, the current time.
Hence, the product qimvmM indicates how much each POM
affects the direction of motion of the ith particle. We choose
the dominant mode to represent the direction of motion, that
is,

q̄i = qi1v1M (27)

denotes the direction of the dominant POM for the ith particle.
Note that in general the direction of motion could also be
chosen as an average of the POMs. However, in our results
we have not seen any major performance differences. The
directional vector (27) is in the next section used to choose
the basis functions for approximating the gain function.

C. Gain Computation with POD in Feedback Particle Filter

In the constant-gain approximation, the test functions are
chosen as the n state coordinates. This implies through (17)
that the lth basis function is a unit step along the lth coordinate
axis. On the other hand, the vector (27) obtained from POD
represents how the particles are moving in the particle cloud.
Hence, to adjust in what direction the measurements should
move the particles, we can use (27). Motivated by this, we
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add q̄i to the unit step for each particle. In this way, each
particle is adjusted locally based on global information from
the ensemble of particles. Thus, for particle i, the lth basis
function equals

∇ψil =
[
01×l−1 1 01×L−l+1

]T
+ q̄i, (28)

where the first term on the right-hand side corresponds to
the constant-gain approximation (17). The test function ψil
corresponds to the integration of (28) and equals

ψil = xil + (q̄i)Txi, (29)

where xil is the lth element of xi. Note that because the test
function (29) is expressed per particle, the test function is in
general a nonlinear function of the state. The coefficients κj
in (13) are found by inserting (28) and (29) into (15), which
for each measurement yj , j = 1, . . . ,m, in yk results in

Asl =
1

N

N∑
i=1

(
‖q̄i‖22 + q̄is + q̄il + δ(s− l)

)
,

bs =
1

RjjN

N∑
i=1

(hij − h̄j)
(
xis + (q̄i)Txi

)
,

(30)

where Asl is the element of A on row s, column l. and where
bs is element s of bj . The resulting gain function becomes

Ki
k =

[
ki1 · · · kim

]
, (31)

where kij is computed using (28) as

kij =

n∑
l=1

κj,l

([
01×l−1 1 01×n−l+1

]T
+ q̄i

)
. (32)

From (4) and (32), it follows that the correction for particle
xi consists of a feedforward term and a feedback term that
is nonlinear in particle xi and where the gain function Ki

k

is adjusted individually for each of the particles through (28).
However, the adjustment is also based on global information,
both through the term (8) in the innovation error (7) and
through the POD-based gain function.

The rationale for why choosing POD for computing the
basis functions in the Galerkin approach is that POD acts
directly on the system response to extract basis functions,
often for subsequent use in Galerkin projections [35]. The goal
of the feedback gain K is to drive the particles towards the
response of the system given by the measurements. Thus, when
using a Galerkin approach for approximating the gain function,
there is a close connection to the interpretation of POD.
Fig. 5 provides a geometric interpretation of our approach.
The filter formulation is summarized in Algorithm 2. Similar
to the constant-gain approximation, in this paper for simplicity
we ignore the term Ω defined by (6), essentially assuming
that it is negligible compared to the feedback correction
term. This assumption is expected to be reasonable when
the system dynamics and measurements behave sufficiently
smooth. However, analysis is required for determining whether
this assumption is valid for a given problem.

Remark 1: The left singular vectors in POD are optimal in
the sense that they capture more energy in the L2 sense for the
data along a given direction than any other fixed number of

x1
1

x2
1

xi
1

x1
2

x2
2

xi
2

Time

E(K)

E(K)

q̄i Ki

Fig. 5. Schematic of the POD-based gain-function approximation for il-
lustration purposes when M = 2. The POD can be interpreted as adding
a correction term to the constant-gain approximation. The constant-gain
approximation gives the expected value of K. Then, the POD adjusts each
particle by adding a correction vector q̄i to each particle, resulting in a
corrected Ki for each particle.

vectors [32]. In other words, the first r columns of U (i.e., Û
in (25)) give an optimal orthonormal basis for approximating
the data contained in X .

D. Computational Complexity

The main computational burden of Algorithm 2 lies in
the measurement update, corresponding to lines 7–17. When
computing q̄i for i ∈ {1, . . . , N} using (24)–(26) on
Line 8, we need to compute an SVD, which has complexity
O((nN)2 + M3) ≈ O((nN)2) since typically N � M .
The gain computation (32) results in the same number of
test functions as the dimension of the state vector. Hence,
A in (15) has dimension n × n and finding the coefficient
vector κ is independent on N so the SVD on Line 8 is for
a reasonably small n where most time is spent. The basis
functions should ideally be updated in the measurement update
as the pseudo-time increases. However, this would imply an
SVD for each time step in the measurement update, which
would be computationally prohibitive.

The quadratic complexity mostly renders the approach suit-
able for a relatively small number of particles. However, when
compared to the constant-gain approximation, which is O(N),
the number of particles can often be drastically decreased
while still achieving better performance. In a practical imple-
mentation, the relative importance between performance and
computational resources will decide which algorithm to use.

V. NUMERICAL STUDY
We evaluate the proposed method for gain computation in

the FPF on three different examples and compare it against
several different nonlinear filters. All filters are implemented
in MATLAB and we have performed Monte-Carlo simulations
for all examples. We will highlight different aspects in the
different examples. We will sometimes make use of the (time-
averaged) root-mean-square error (RMSE) to compare perfor-
mance. The different methods used throughout this section are:

FPF: FPF with the constant-gain approximation, see
Sec. III-B1 and Algorithm 1.
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Algorithm 2 FPF with POD-Based Gain Computation
Initialize: Set {xi0}Ni=1 ∼ p0(x0)

1: for k ← 1 to T do
2: Set t = tk−1.
3: while t < tk do
4: Simulate dxi = f idt+ dβ, for i ∈ {1, . . . , N}.
5: Set t = t+ ∆t.
6: end while
7: Construct X according to (22), (23).
8: Compute q̄i for i ∈ {1, . . . , N} using (24)–(27).
9: Set {Sik}Ni=1 = {xik}Ni=1 and λ = 0.

10: while λ ≤ 1 do
11: Compute n

l=1{∇ψil , ψil}Ni=1 using (28) and (29).
12: Compute A, bj using (30), for j ∈ {1, . . . ,m}.
13: Compute κj using (15), for j ∈ {1, . . . ,m}.
14: Compute Ki

k using (31)–(32) for i ∈ {1, . . . , N}.
15: Simulate Sik using (4) for i ∈ {1, . . . , N}.
16: Set λ = λ+ ∆λ.
17: end while
18: Set {xik}Ni=1 = {Sik}Ni=1.
19: end for

ALG2: The proposed FPF in Algorithm 2.
RBPF: A Rao-Blackwellized particle filter (RBPF) based on

importance sampling [36].
PF: A particle filter based on importance sampling with

optimal proposal [37].
UKF: The continuous-discrete time UKF in [38].

A. Linear Scalar Example

This example has previously been used in [13]. Consider
the system

dx(t) = ax(t)dt+ σβdβ(t),

yk = hxt + σeek,
(33)

where a = −0.5, h = 3, σβ = 1, σe = 2. The measurements
arrive at time instants tk = 0.5, 1.0, 1.5, . . . , 10. In [13], it was
shown that the solution to the boundary value problem (10),
which for linear systems with Gaussian noise can be expressed
in closed form, equals the Kalman gain. We denote this filter
with FPFKF. In this example we set the discretization of the
particle flow to ∆λ = 0.05, which according to the results
in [13] offers a good compromise between performance and
computational complexity. Furthermore, the dynamics (33) is
discretized with a sampling time ∆t = 0.005.

Fig. 6 shows the true mean µt and the conditional means
obtained using the proposed POD-based FPF (ALG2) and
the FPF with exact gain computation (FPFKF) for N = 50
particles. Our proposed FPF performs well compared to the
FPF with exact gain computation, implying that our approach
is close to optimal for linear systems.

Fig. 7 illustrates the gain computation as a function of the
particles for a snapshot taken at t = 15 s at the last step
of the homotopy when using N = 50, 500, 5000 particles,
respectively. It is seen that our approach computes gains that
are very similar to the Kalman gain and the exact formulation.

0 1 2 3 4 5 6 7

−2.5

−1.5

−0.5

0.5

1.5

Time [s]

µ
KF

ALG2
FPFKF

Fig. 6. Comparison of the Kalman filter (KF), the FPF with exact gain com-
putation (FPFKF), and our proposed POD-based gain function approximation
(ALG2) for the linear system (33).

This is further illustrated by Fig. 8, which shows the time-
averaged RMSE as function of particles taken over 500 Monte-
Carlo simulations.

B. Coordinated Turn Problem

This example has been used previously in different contexts
[39]–[42]. A target moves in a plan according to a clockwise
coordinated turn [41] of radius 500 m with constant velocity
200 km/h. The initial position is p0 = [−500 500]T, starting
in the y-direction. The geometric path forms a circle of
radius 500 m. The target motion is modeled by a five-state
coordinated turn model with unknown constant turn rate and
velocity. The continuous-time model of the coordinated turn
is 

ṗX

ṗY

v̇X

v̇Y

ω̇

 =


0 0 1 0 0
0 0 0 1 0
0 0 0 −ω 0
0 0 ω 0 0
0 0 0 0 0



pX

pY

vX

vY

ω

+w, (34)

where p, v, ω denote the position, velocity, and turn rate,
respectively. By introducing

xk =
[
pXk pYk vXk vYk ω̇k

]T
,

the corresponding discrete-time model [42] can be written as

xk+1 =




1 0 sin (ω̇k∆t)
ω̇k

− 1−cos (ω̇k∆t)
ω̇k

0

0 1 1−cos (ω̇k∆t)
ω̇k

sin (ω̇k∆t)
ω̇k

0

0 0 cos (ω̇k∆t) − sin (ω̇k∆t) 0
0 0 sin (ω̇k∆t) cos (ω̇k∆t) 0
0 0 0 0 1



xk + ∆twk.

where ∆t = 0.01 is the sampling time. The FPFs FPF
and ALG2 use ∆λ = 0.01 in the measurement updates
and ALG2 uses the last 40 data points for basis compu-
tation (see Algorithm 1 and Algorithm 2). These choices
are set somewhat arbitrarily, and especially the discretization
length heavily influences the computational demands [13].
The process noise w is zero mean Gaussian with covari-
ance Q = diag([302, 302, 0.12, 102, 102]). We set the initial



8
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0.12
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0.2
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−2.5 −2 −1.5 −1 −0.5 0 0.5 1

0.12

0.16

0.2

x

K

Fig. 7. Comparison of the computed gains from the Kalman filter (KF), the
FPF with exact gain computation (FPFKF), and our proposed POD-based gain
function approximation (ALG2) for the linear system (33). The number of
particles in the respective plot from top to bottom are N = 50, 500, 5000.

estimate for all filters to x0 = 0, with initial covariance
P 0 = diag([2502, 2502, 0.12, 302, 302]), that is, we know very
little about the initial state of the target. Two sensors measure
the bearing of the target with sampling time Ts = 1 s. The
sensors are located at S1 = (200, 0) and S2 = (−750, 750).
The geometric path for a simulation and the sensor locations
are shown in Fig. 9. The measurement model is

hk,j = arctan

(
pYk − SYj
pXk − SXj

)
, j = 1, 2.

The measurement noise for each sensor is Gaussian zero mean
with standard deviation σj = 0.1.

1) Results: We use the RMSE as performance mea-
sure, and the results are for 5000 Monte-Carlo simulations.

101 102 103
10−2

10−1

N

RMSE
KF

ALG2
FPFKF

Fig. 8. Time-averaged RMSE for the Kalman filter (KF), the FPF with
exact gain computation (FPFKF), and our proposed POD-based gain function
approximation (ALG2) for the linear system (33).

−800 −400 0 200

−200

200

600

1000

S2

S1

X [m]

Y [m]

Fig. 9. The geometric path and the sensor locations (red +) used in the
simulation example. The path is taken from a 40 s simulation.

Figs. 10 and 11 show the time-averaged RMSE of the position
and velocity, respectively, as the number of particles varies.
ALG2 again clearly outperforms the other particle filters. The
unscented Kalman filter is competitive for small N , but as
the number of particles increase, the proposed FPF performs
much better.

In Fig. 12, we display the mean execution time (per update
step) for each filter when varying the number of particles. The
O(N) and O(N2) lines are included for comparison. We see
that ALG2 has a larger computational cost than the others, but
that the difference is small for small N , which is also where
our approach has the largest error improvements. In a practical
implementation, the error improvements obviously have to be
related to the available computational power.

C. Two-Body Problem

Here we assess the performance of Algorithm 2 using
a planar two-body problem, which involves estimating the
motion of a satellite that orbits around earth, and compare
against a Rao-Blackwellized particle filter (RBPF) [36]. A
more detailed comparison of baseline FPF against several PFs
and the UKF is found in [16]. Simplified two-dimensional
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]
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200

300

N

E
p
Y

[m
]

FPF

ALG2
RBPF
UKF

Fig. 10. Time-averaged RMSEs for the position for varying number of
particles for the coordinated turn problem. The RMSE values are computed
for N = 20, 50, 100.

equations of motion relative to the earth-fixed, earth-centered,
inertial frame are given by

ṗX = vX ,

ṗY = vY ,

v̇X = −µpX
r3

+
1

m
FX + w3,

v̇Y = −µpY
r3

+
1

m
FY + w4,

(35)

where pX , pY are the longitudinal and lateral positions in
the earth-fixed frame, respectively, and vX , vY are the cor-
responding velocities. FX and FY are the external forces
applied to the satellite to correct for the perturbation accel-
erations w3 and w4, r =

√
p2X + p2Y , µ = 398601.2 is the

earth’s gravitational constant, and m is the satellite mass. For
simplicity, FX = FY = 0 in what follows. The perturbations
w3 and w4 are both Gaussian distributed with zero mean
and standard deviation 0.1 m/s2. The initial conditions are
x0 = [7000 0 0 − 7.54]T, in km and km/s, respectively,
corresponding to a low-earth orbit with period time around

20 50 100
20

30

40

N

E
v
X

[m
/s

]

20 50 100
30

40

50

N

E
v
Y

[m
/s

]
FPF

ALG2
RBPF
UKF

Fig. 11. Time-averaged RMSEs for the velocity for varying number of
particles for the coordinated turn problem. The RMSE values are computed
for N = 20, 50, 100.
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100

101

102
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e
[m

s]

FPF

ALG2
RBPF
UKF

O(N)

O(N2)

Fig. 12. Execution times in MATLAB for varying number of particles.
The time is for one measurement update and the predictions between two
measurements and averaged over 50 Monte-Carlo simulations.
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−7000 0 7000

−7000

0

7000

X [km]

Y [km]

Fig. 13. The two-body problem with two bearing sensors (crosses) that
measure the respective angle to the satellite from the earth-fixed X-axis. The
earth surface is indicated with the dash-dotted circle and the small solid circle
indicates the earth center. The true satellite path for one orbit realization is
the gray circle.

97 min. The initial orbit is assumed uncertain for all filters,
with covariance matrix P 0 = diag([4, 4, 0.04, 0.04]), where
diag(·) is the diagonal matrix.

Two bearing sensors measure the angle of the satellite
relative to the earth-fixed inertial frame. The sensors are
located at S1 = (r0, 0), S2 = (−r0, 0), where r0 = 6374 km.
The measurement model is

yk =

[
θ1
θ2

]
=

arctan

(
pY

pX − r0

)
arctan

(
pY

pX + r0

)
+ ek,

and both sensors have Gaussian distributed, independent noise,
with zero mean and standard deviation 1 deg. Each sensor is
only able to track objects that reside in a cone with 40 deg
opening angle. When the satellite is within the respective
X-axis aligned cone, the sensor provides measurements at
0.1 Hz. Fig. 13 shows a schematic of the setup. Note that the
sensors never provide measurements simultaneously. Further-
more, because the measurements are infrequent, there can be
a severe mismatch between actual measurement and predicted
measurement.

The simulated data is generated by propagating (35) using
the Euler-Maruyama scheme with step size ∆t = 0.01 s. The
filters are discretized with step size ∆t = 0.1 s (Line 5 in Al-
gorithm 2), and each simulation lasts for 500 min, correspond-
ing to approximately 5.5 orbits. In the FPFs, ∆λ = 0.001
(Line 16 in Algorithm 2).

1) Results: The mean-square error is often a useful mea-
sure, but does not necessarily describe how well the posterior
is estimated. In this problem, the dynamics is governed by
an approximately circular orbit; hence, combined with the
measurements, we conclude that the posterior should be ap-
proximately directed along the orbit. Fig. 14 displays particle
clouds for FPF and ALG2 at two time instants. The first

snapshot is during prediction phase (when no measurements
are available), after roughly 450 min (left part of the figure).
The second snapshot is after five orbits, when the satellite is
within the visibility cone of the first sensor (right part of the
figure). The actual position and estimated mean, respectively,
are also shown. We use N = 100 in this simulation. The mean
estimate of the POD-based FPF is close to the actual position,
and the particle cloud aligns along the true orbit during both
time instants. The constant-gain FPF predicts a skewed particle
cloud during prediction phase, and it is also more scattered.
When measurements are available, FPF accurately predicts
the posterior to be located along the orbit. However, the
particle cloud covers almost a quarter of the orbit, whereas
the estimated posterior for ALG2 is more concentrated around
the true mean.

To validate against ground truth, Fig. 15 compares the
particle clouds after five orbits for ALG2 (N = 100) with
a Rao-Blackwellized particle filter (RBPF) using N = 1000
particles. The posteriors are similar in size and shape. In this
particular realization, the mean is slightly more accurate with
the RBPF. This can partly be explained by the resulting coarse
discretization when only using 100 particles in ALG2. Note
that in [16], we showed that the RBPF with N = 100 was
severely biased, but for 1000 particles it performed well.

VI. CONCLUSION

We proposed a data-driven approach based on POD for
choosing basis functions that approximate the gain function
present in the FPF, which is the main difficulty when im-
plementing the FPF. The key idea is that the evolution of
the particle cloud gives information about how to locally
adjust the particles. Because the method is data driven, it is
applicable to a range of estimation problems. To verify this,
we applied the proposed method to a linear scalar example and
three different benchmark problems, and the proposed method
compared favorably in the examples when comparing against
other filters from the literature.

The results also indicate that the FPF can be used as an
off-the-shelf algorithm for performing parameter estimation.
Particle filters based on importance sampling often resort to
either roughening of the process noise or rely on marginaliza-
tion to being able to perform successful parameter estimation.
To the contrary, our findings indicate that the FPF, similar to
the Kalman filter, can estimate parameters by adding them to
the state vector. It is future work to further explore this finding.
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