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On spectral partitioning of signed graphs∗

Andrew Knyazev†

Abstract

We argue that the standard graph Laplacian is preferable for

spectral partitioning of signed graphs compared to the signed

Laplacian. Simple examples demonstrate that partitioning

based on signs of components of the leading eigenvectors

of the signed Laplacian may be meaningless, in contrast

to partitioning based on the Fiedler vector of the standard

graph Laplacian for signed graphs. We observe that negative

eigenvalues are beneficial for spectral partitioning of signed

graphs, making the Fiedler vector easier to compute.

1 Background and Motivation

Spectral clustering groups together related data points
and separates unrelated data points, using spectral
properties of matrices associated with the weighted
graph, such as graph adjacency and Laplacian matrices;
see, e.g., [2, 22, 23, 24, 25, 28, 30, 32]. The graph
Laplacian matrix is obtained from the graph adjacency
matrix that represents graph edge weights describing
similarities of graph vertices. The graph weights are
commonly defined using a function measuring distances
between data points, where the graph vertices represent
the data points and the graph edges are drawn between
pairs of vertices, e.g., if the distance between the
corresponding data points has been measured.

Classical spectral clustering bisections the graph
according to the signs of the components of the Fiedler
vector defined as the eigenvector of the graph Laplacian,
constrained to be orthogonal to the vector of ones, and
corresponding to the smallest eigenvalue; see [6].

Some important applications, e.g., Slashdot Zoo [19]
and correlation [1] clustering, naturally lead to signed
graphs, i.e., with both positive and negative weights.
Negative values in the graph adjacency matrix result in
more difficult spectral graph theory; see, e.g., [3].

Applying the original definition of the graph Lapla-
cian to signed graphs breaks many useful properties of
the graph Laplacian, e.g., leading to negative eigenval-
ues, making the definition of the Fiedler vector ambiva-
lent. The row-sums of the adjacency matrix may vanish,
invalidating the definition of the normalized Laplacian.
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These difficulties can be avoided in the signed Laplacian,
e.g., [8, 18, 20], defined similarly to the graph Laplacian,
but with the diagonal entries positive and large enough
to make the signed Laplacian positive semi-definite.

We argue that the original graph Laplacian is a
more natural and beneficial choice, compared to the
popular signed Laplacian, for spectral partitioning of
signed graphs. We explain why the definition of the
Fiedler vector should be based on the smallest eigen-
value, no matter whether it is positive or negative, mo-
tivated by the classical model of transversal vibrations
of a mass-spring system, e.g., [5, 10], but with some
springs having negative stiffness, cf. [14].

Inclusions with negative stiffness can occur in me-
chanics if the inclusion is stored with energy [21], e.g.,
pre-stressed and constrained. We design inclusions with
negative stiffness by pre-tensing the spring to be repul-
sive [4]. Allowing only the transversal movement of the
masses, as in [5], gives the necessary constraints.

The resulting eigenvalue problem for the vibrations
remains mathematically the same, for the original graph
Laplacian, no matter if some entries in the adjacency
matrix of the graph are negative. In contrast, to mo-
tivate the signed Laplacian, the “inverting amplifier”
model in [20, Sec. 7] uses a questionable argument,
where the sign of negative edges changes in the denom-
inator of the potential, but not in its numerator

Turning to justification of spectral clustering via
relaxation, we compare the standard “ratio cut,” e.g.,
[24, 25], and “signed ratio cut” of [20], noting that
minimizing the signed ratio cut may amplify cutting
positive edges. We illustrate the behavior of the Fiedler
vector for an intuitively trivial case of partitioning
a linear graph modelled by vibrations of a string.
We demonstrate numerically and analyze deficiencies of
the signed Laplacian vs. the standard Laplacian for
spectral clustering on a few simple examples.

Graph-based signal processing introduces eigenvec-
tors of the graph Laplacian as natural substitutions for
the Fourier basis. The construction of the graph Lapla-
cian of [16] is extended in [15] to the case of some nega-
tive weights, leading to edge enhancing denoising of an
image that can be used as a precursor for image segmen-
tation along the edges. We extend the use of negative
weights to graph partitioning in the present paper.
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The rest of the paper is organized as follows. We in-
troduce spectral clustering in Section 2 via eigendecom-
position of the graph Laplacian. Section 3 deals with a
simple, but representative, example—a linear graph,—
and motivates spectral clustering by utilizing properties
of low frequency mechanical vibration eigenmodes of a
discrete string, as an example of a mass-spring model.
Negative edge weights are then naturally introduced in
Section 4 as corresponding to repulsive springs, and the
effects of negative weights on the eigenvectors of the
Laplacian are informally predicted by the repulsion of
the masses connected by the repulsive spring. In Section
5, we present simple motivating examples, discuss how
the original and signed Laplacians are introduced via
relaxation of combinatorial optimization, and numeri-
cally compare their eigenvectors and gaps in the spec-
tra. Possible future research directions are spotlighted
in Section 6.

2 Brief introduction to spectral clustering

Let entries of the real symmetric N -by-N data similar-
ity matrix W be called weighs and the matrix D be
diagonal, made of row-sums of the matrix W . The ma-
trix W may be viewed as a matrix of scores that digitize
similarities of pairs of N data points. Similarity matri-
ces are commonly determined from their counterparts,
distance matrices, which consist of pairwise distances
between the data points. The similarity is small if the
distance is large, and vice versa. Traditionally, all the
weighs/entries in W are assumed to be non-negative,
which is automatically satisfied for distance-based simi-
larities. We are interested in clustering in a more general
case of both positive and negative weighs, e.g., associ-
ated with pairwise correlations of the data vectors.

Data clustering is commonly formulated as graph
partitioning, defined on data represented in the form
of a graph G = (V, E, W ), with N vertices in V and
M edges in E, where entries of the N -by-N graph
adjacency matrix W are weights of the corresponding
edges. The graph is called signed if some edge weighs
are negative. A partition of the vertex set V into subsets
generates subgraphs of G with desired properties.

A partition in the classical case of non-weighted
graphs minimizes the number of edges between sepa-
rated sub-graphs, while maximizes the number of edges
within each of the sub-graphs. The goal of partitioning
of signed graphs, e.g., into two vertex subsets V1 and V2,
can be to minimize the total weight of the positive cut
edges, while at the same time to maximize the absolute
total weight of the negative cut edges. For uniform par-
titioning, one also needs to well-balance sizes/volumes
of V1 and V2. Traditional approaches to graph parti-
tioning are combinatorial and naturally fall under the

category of NP-hard problems, solved using heuristics,
such as relaxing the combinatorial constraints.

Data clustering via graph spectral partitioning is
a state-of-the-art tool, which is known to produce high
quality clusters at reasonable costs of numerical solution
of an eigenvalue problem for a matrix associated with
the graph, e.g., Lx = λx for the graph Laplacian matrix
L = D −W , where the scalar λ denotes the eigenvalue
corresponding to the eigenvector x. To simplify our
presentation for the signed graphs, we mostly avoid the
normalized Laplacian D−1L = I − D−1W , where I is
the identity matrix, e.g., since D may be singular.

The Laplacian matrix L always has the number
0 as an eigenvalue; and the column-vector of ones is
always a trivial eigenvector of L corresponding to the
zero eigenvalue. Since the graph adjacency matrix
W is symmetric, the graph Laplacian matrix is also
symmetric, so all eigenvalues of L are real and the
various eigenvectors can be chosen to be mutually
orthogonal. All eigenvalues are non-negative if the
graph weights are all non-negative.

A nontrivial eigenvector of the matrix L correspond-
ing to smallest eigenvalue λ of L, commonly called the
Fiedler vector after the author of [6], bisects the graph
G into only two parts, according to the signs of the en-
tries of the eigenvector. Since the Fiedler vector, as any
other nontrivial eigenvector, is orthogonal to the vector
of ones, it must have entries of opposite signs, thus, the
sign-based bisection always generates a non-trivial two-
way graph partitioning. We explain in Section 3, why
such a partitioning method is intuitively meaningful.

A multiway spectral partitioning is obtained from
“low frequency eigenmodes,” i.e., eigenvectors corre-
sponding to a cluster of smallest eigenvalues, of the
Laplacian matrix L. The cluster of (nearly)-multiple
eigenvalues naturally leads to the need of considering
a Fiedler invariant subspace of L, spanned by the cor-
responding eigenvectors, extending the Fiedler vector,
since the latter may be not unique or well defined nu-
merically in this case. The Fiedler invariant subspace
provides a geometric embedding of graph’s vertices, re-
ducing the graph partitioning problem to the problem of
clustering of a point cloud of embedded graph vertices in
a low-dimensional Euclidean space. However, the sim-
ple sign-based partitioning from the Fiedler vector has
no evident extension to the Fiedler invariant subspace.

Practical multiway spectral partitioning can be
performed using various competing heuristic algorithms,
greatly affecting the results. While these same heuristic
algorithms can as well be used in our context of signed
graphs, for clarity of presentation we restrict ourselves
in this work only to two-way partitioning using the
component signs of the Fiedler vector.
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The presence of negative weights in signed graphs
brings new challenges to spectral graph partitioning:

• negative eigenvalues of the graph Laplacian make
the definition of the Fiedler vector ambiguous,
e.g., whether the smallest negative or positive
eigenvalues, or may be the smallest by absolute
value eigenvalue, should be used in the definition;

• difficult spectral graph theory, cf. [8] and [23];

• possible zero diagonal entries of the degree matrix
D in the normalized Laplacian D−1L, cf. [30];

• violating the maximum principle—the cornerstone
of a theory of connectivity of clusters [6];

• breaking the connection of spectral clustering to
random walks and Markov chains, cf. [24];

• the quadratic form xTLx is not “energy,” e.g., in
the heat (diffusion) equation; cf. a forward-and-
backward diffusion in [9, 31];

• the graph Laplacian can no longer be viewed as
a discrete analog of the Laplace-Beltrami operator
on a Riemannian manifold that motivates spectral
manifold learning; e.g., [11, 29].

Some of these challenges can be addressed by defin-
ing a signed Laplacian as follows. Let the matrix D̄
be diagonal, made of row-sums of the absolute values of
the entries of the matrix W , which thus are positive, so
that D̄−1 is well-defined. We define the signed Lapla-
cian L̄ = D̄ −W following, e.g., [8, 18, 20]. The signed
Laplacian is positive semi-definite, with all eigenvalues
non-negative. The Fiedler vector of the signed Lapla-
cian is defined in [8, 18, 20] as an eigenvector corre-
sponding to the smallest eigenvalue and different from
the trivial constant vector. We finally note recent work
[7], although it is not a part of our current investigation.

In the rest of the paper, we justify spectral parti-
tioning of signed graphs using the original definition of
the graph Laplacian L, and argue that better quality
clusters can generally be expected from eigenvectors of
the original L, rather than from the signed Laplacian L̄.
We use the intuitive mass-spring model to explain novel
effects of negative stiffness or spring repulsion on eigen-
modes of the standard Laplacian, but we are unaware
of a physical model for the signed Laplacian.

3 Linear graph Laplacian and low frequency
eigenmodes of a string

Spectral clustering can be justified intuitively via a well-
known identification of the graph Laplacian matrix L
with a classical problem of vibrations of a mass-spring

Figure 1: Low frequency eigenmodes of a string (left)
and two disconnected pieces of the string (right).

system without boundary conditions, with N masses
and M springs, where the stiffness of the springs is
related to the weights of the graph; see, e.g., [26].
References [26, 27] consider lateral vibrations, where
[27] allows springs with negative stiffness. We prefer
the same model, but with transversal vibrations, as
in [5], although the linear eigenvalue problem is the
same, for the original graph Laplacian, no matter
whether the vibrations are lateral or transversal, under
the standard assumptions of infinitesimal displacements
from the equilibrium and no damping. The transversal
model allows relating the linear mass-spring system to
the discrete analog of an ideal string [10, Fig. 2] and
provides the necessary constraints for us to introduce
a specific physical realization of inclusions with the
negative stiffness by pre-tensing some springs to be
repulsive. We start with the simplest example, where
the mass-spring system is a discrete string.

3.1 All edges with unit weights Let wi−1 i =
wi i+1 = 1 with all other zero entries, so that the graph
Laplacian L = D −W is a tridiagonal matrix

(3.1) L =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


that has nonzero entries 1 and −1 in the first row,
−1 and 1 in the last row, and [−1 2 − 1] in every
other row—a standard finite-difference approximation
of the negative second derivative of functions with
vanishing first derivatives at the end points of the
interval. Its eigenvectors are the basis vectors of
the discrete cosine transform; see the first five low
frequency eigenmodes (the eigenvectors corresponding
to the smallest eigenvalues) of L displayed in the left
panel in Figure 1. Let us note that these eigenmodes all
turn flat at the end points of the interval.

The flatness is attributed to the vanishing first
derivatives, which manifests itself in the fact, e.g., that
the Laplacian row sums always vanish, including in the
first and last rows, corresponding to the “boundary.”
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Figure 2: Traditional linear mass-spring system.

Eigenvectors of matrix (3.1) are well-known in me-
chanics, as they represent shapes of transversal vibra-
tion modes of a discrete analog of a string—a linear
system of masses connected with springs. Figure 2 illus-
trates a system with N = 4 masses and M = 3 springs.

The frequencies squared ω2 of the vibration modes
x are the eigenvalues λ ≥ 0, e.g., [10, p. 15]. The eigen-
vectors x of the graph Laplacian can be called eigen-
modes because of this mechanical analogy. The small-
est eigenvalues λ = ω2 correspond to low frequencies ω,
explaining the terminology used in the caption in Fig-
ure 1. Our system of masses is not attached, thus there
is always a trivial eigenmode, where the whole system
goes up/down, i.e., the eigenvector x is constant with
the zero frequency/eigenvalue ω2 = λ = 0.

If the system consists of k completely separate
components, each component can independently move
up/down in zero frequency vibration, resulting in to-
tal k + 1 multiplicity of the zero frequency/eigenvalue,
where the corresponding eigenvectors are all piecewise
constant with discontinuities between the components.
Such a system represents a graph consisting of k com-
pletely separate sub-graphs and can be used to motivate
k-way spectral partitioning.

In our case k = 2, the Fiedler vector is chosen
orthogonal to the trivial constant eigenmode, and thus
is not only piecewise constant, but also has strictly
positive and negative components, determining the two-
way spectral partitioning.

Figure 2 shows transversal displacements of the
masses from the equilibrium plane for the first nontrivial
mode, which is the Fiedler vector, where the two masses
on the left side of the system move synchronously up,
while the two masses on the right side of the system
move synchronously down. This is the same eigenmode
as drawn in red color in Figure 1 left panel for a similar
linear system with a number of masses large enough
to visually appear as a continuous string. Performing
the spectral bisection (two-way partitioning) according

to the signs of the Fiedler vector, one puts the data
points corresponding to the masses in the left half of
the mass-spring system into one cluster and those in
the right half into the other. The Fiedler vector is not
piecewise constant, since the partitioned components
are not completely separate.

The amplitudes of the Fiedler vector components
are also very important. The amplitude of the compo-
nent squared after proper scaling can be interpreted as
a probability of the corresponding data point to belong
to the cluster determined according to the sign of the
component. For example, the Fiedler vector in Figure 2
has small absolute values of its components in the mid-
dle of the system. With the number of masses increased,
the components in the middle of the system approach
zero. Perturbations of the graph weights may lead to
the sign changes in the small components, putting the
corresponding data points into a different cluster.

3.2 A string with a single weak link (small
edge weight) Next, we set a very small value wi i+1 =
wi+1 i for some index i, keeping all other entries of the
matrix W the same as before. In terms of clustering,
this example represents a situation where there is an
intuitively evident bisection with one cluster containing
all data points with indexes 1, . . . , i and the other
with i + 1, . . . , N . In terms of our mass-spring system
interpretation, we have a discrete string with one weak
link, i.e., one spring with such a small stiffness that
makes two pieces of the string nearly disconnected.

Let us check how the low frequency eigenmodes
react to such a change. The first five vectors of the
corresponding Laplacian are shown in Figure 1, right
panel. We observe that all the eigenvectors plotted in
Figure 1 are aware of softness (small stiffness) of the
spring between the masses with the indexes i and i+ 1.
Moreover, their behavior around the soft spring is very
specific—they are all flat on both sides of the soft spring!

The presence of the flatness in the low frequency
modes of the graph Laplacian L on both sides of the
soft spring is easy to explain mathematically. When the
value wi i+1 = wi+1 i is small relative to other entries,
the matrix L becomes nearly block diagonal, with two
blocks that approximate the graph Laplacian matrices
on sub-strings to the left and right of the soft spring.
The low frequency eigenmodes of the graph Laplacian
L thus approximate combinations of the low frequency
eigenmodes of the graph Laplacians on the sub-intervals.

However, each of the low frequency eigenmodes of
the graph Laplacian on the sub-interval is flat on both
ends of the sub-interval, as explained above. Combined,
it results in the flatness in the low frequency modes of
the graph Laplacian L on both sides of the soft spring.
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The flatness is also easy to explain in terms of me-
chanical vibrations. The soft spring between the masses
with the indexes i and i+1 makes the masses nearly dis-
connected, so the system can be well approximated by
two independent disconnected discrete strings with free
boundary conditions, on the left and on the right to the
soft spring. Thus, the low frequency vibration modes of
the system are visually discontinuous at the soft spring,
and nearly flat on both sides of the soft spring.

Can we do better and make the flat ends bend
in the opposite directions, making it easier to deter-
mine the bisection, e.g., using low-accuracy computa-
tions of the eigenvectors? In [15], where graph-based
edge-preserving signal denoising is analyzed, we have
suggested to enhance the edges of the signal by intro-
ducing negative edge weights in the graph, cf. [9]. In the
next section, we put a spring which separates the masses
by repulsing them and see how the repulsive spring af-
fects the low-frequency vibration modes.

4 Negative weights for spectral clustering

In our mechanical vibration model of a spring-mass
system, the masses that are tightly connected have a
tendency to move synchronically in low-frequency free
vibrations. Analyzing the signs of the components
corresponding to different masses of the low-frequency
vibration modes determines the clusters.

The mechanical vibration model describes conven-
tional clustering when all the springs are pre-tensed to
create attracting forces between the masses, where the
mass-spring system is subject to transverse vibrations,
i.e., the masses are constrained to move only in a trans-
verse direction, perpendicular to a plane of the mass-
spring system. However, one can also pre-tense some of
the springs to create repulsive forces between some pairs
of masses, as illustrated in Figure 3. For example, the
second mass is connected by the attractive spring to the
first mass, but by the repulsive spring to the third mass
in Figure 3. The repulsion has no effect in the equilib-
rium, since the masses are constrained to displacements
only in the transversal direction, i.e. perpendicular to
the equilibrium plane. When the second mass deviates,
shown in white circle in Figure 3, from its equilibrium
position, shown in back circle in Figure 3, the transver-
sal component of the attractive force from the attractive
spring on the left is oriented toward the equilibrium po-
sition, while the transversal component of the repulsive
force from the repulsive spring on the right is in the op-
posite direction, resulting in opposite signs in the equa-
tion of the balance of the two forces. Since the stiffness
is the ratio of the force and the displacement, the at-
tractive spring on the left has effective positive stiffness,
but the repulsive spring represents the inclusion with ef-

attractive 

+ 

- 

First cluster 

Second cluster  displacement 

equilibrium state 

attractive 

repulsive 

Figure 3: Linear mass-spring system with repulsion.

fective negative stiffness, due to the opposite directions
of the corresponding forces.

In the context of data clustering formulated as
graph partitioning, that corresponds to negative entries
in the adjacency matrix. The negative entries in
the adjacency matrix are not allowed in conventional
spectral graph partitioning. However, the model of
mechanical vibrations of the spring-mass system with
repulsive springs is still valid, allowing us to extend the
conventional approach to the case of negative weights.

The masses which are attracted move together in
the same direction in low-frequency free vibrations,
while the masses which are repulsed have the tendency
to move in the opposite direction. Moreover, the
eigenmode vibrations of the spring-mass system relate
to the corresponding wave equation, where the repulsive
phenomenon makes it possible for the time-dependent
solutions of the wave equation to exponentially grow in
time, if they correspond to negative eigenvalues.

Figure 3 shows the same linear mass-spring system
as Figure 2, except that the middle spring is repulsive,
bending the shape of the Fiedler vector in the oppo-
site directions on different sides of the repulsive spring.
The clusters in Figure 2 and Figure 3 are the same,
based on the signs of the Fiedler vectors. However, the
data points corresponding to the middle masses being
repulsed more clearly belong to different clusters in Fig-
ure 3, compared to Figure 2, because the corresponding
components in the Fiedler vector are larger by absolute
value in Figure 3 vs. Figure 2. Determination of the
clusters using the signs of the Fiedler vector is easier for
larger components, since they are less likely to be com-
puted with a wrong sign due to data noise or inaccuracy
of computations, e.g., small number of iterations.
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Figure 4: The same eigenmodes, but negative weights,
original (left) and signed (right) Laplacians.

Figure 4 left panel displays the five eigenvectors, in-
cluding the trivial one, for the five smallest eigenvalues
of the same tridiagonal graph Laplacian as that corre-
sponding to the right panel in Figure 1 except that the
small positive entry of the weights wi i+1 = wi+1 i for
the same i is substituted by −0.05 in Figure 4. Fig-
ure 4 right panel displays the five leading eigenvectors
of the corresponding signed Laplacian. The left panel
of Figure 4 illustrates the predicted phenomenon of the
repulsion, in contrast to the right panel. The Fiedler
vector of the Laplacian, displayed in blue color in the
left panel of Figure 4, is most affected by the repulsion
compared to higher frequency vibration modes. This
effect gets more pronounced if the negative weight in-
creases by absolute value, as we observe in other tests
not shown here.

The Fiedler vector of the signed Laplacian with the
negative weight displayed in blue color in the right panel
of Figure 4 looks piecewise constant, just the same as the
Fiedler vector of the Laplacian with nearly zero weight
shown in red color in Figure 1 right panel. We now prove
that this is not a coincidence. Let us consider a linear
graph corresponding to Laplacian (3.1). We first remove
one of the middle edges and define the corresponding
graph Laplacian L0. Second, we put this edge back
but with the negative unit weight −1 and define the
corresponding signed Laplacian L̄. It is easy to verify

(4.2) L̄− L0 =


· · · · · · · · · · · ·
· · · 1 1 · · ·
· · · 1 1 · · ·
· · · · · · · · · · · ·

 ,

where all dotted entries are zeros.
The Fiedler vector of L0 is evidently piece-wise

constant with one discontinuity at the missing edge,
since the graph Laplacian L0 corresponds to the two
disconnected discrete string pieces. Let x0 denote the
Fiedler vector of L0 shifted by the vector of ones and
scaled so that its components with the opposite sign
are simply +1 and −1, while still L0x0 = 0. We get
(L̄−L0)x0 = 0 from (4.2), thus, also L̄x0 = 0, i.e., x0 is
the Fiedler vector of both matrices L̄ and L0, where in
the latter our only negative weight is simply nullified.

2 4 6 8 10 12
-0.5

0

0.5

2 4 6 8 10 12

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5: Laplacian eigenmodes, original (left) and
signed (right), a “noisy” 12-mass string with a negative
weight at one edge between vertices 8 and 9.

5 Comparing the original vs. signed Laplacians

We present a few simple motivating examples, discuss
how the original and signed Laplacians are introduced
via relaxation of combinatorial optimization, and com-
pare their eigenvectors and gaps in the spectra, com-
puted numerically for these examples.

5.1 Linear graph with noise We consider another
standard linear mass-spring system with 12 masses and
one repulsive spring, w89 = w98 = −1/2 between masses
8 and 9, but add to the graph adjacency an extra
full random matrix with entries uniformly distributed
between 0 and 10−2, modelling noise in the data.
It turns out that in this example the two smallest
eigenvalues of the signed Laplacian form a cluster,
making individual eigenvectors unstable with respect
to the additive noise, leading to meaningless spectral
clustering, if based on the signs on the components
of any of the two eigenvectors. Specifically, the exact
Laplacian eigenmodes are shown in Figure 5: the
original Fiedler (left panel) and both eigenvectors of the
signed Laplacian (right panel). The Fiedler vector of
the original Laplacian clearly suggests the perfect cut.
Neither the first nor the second (giving it a benefit of a
doubt) exact eigenvectors of the signed Laplacian result
in meaningful clusters, using the signs of the eigenvector
components as suggested in [20].

5.2 “Cobra” graph Let us consider the mass-spring
system in Figure 6, assuming all springs of the same
strength, except for the weak spring connecting masses
4 and 5, and where one of the springs repulses masses 1
and 3. Intuition suggests two alternative partitionings:
(a) cutting the weak spring, thus separating the “‘tail”
consisting of masses 5 and 6, and (b) cutting the
repulsive spring and one of the attracting springs,
linking mass 3 or mass 1 (and 2) to the rest of the
system. Partitioning (a) cuts the weak, but attractive
spring; while partitioning (b) cuts one repulsive and
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Figure 6: Mass-spring system with repulsive springs.

one attracting springs of the same absolute strength
“canceling” each other influence. If the cost function
minimized by the partitioning were the total sum of
the removed edges, partitioning (a) would be costlier
than (b). Within the variants of the partition (b), the
most balanced partitioning is the one separating masses
1 and 2 from the rest of the system. Let us now examine
the Fiedler vectors of the spectral clustering approaches
under our consideration.

The graph corresponding to the mass-spring system
in Figure 6, assuming all edges have unit weights, except
for the weight 0.2 of the (4−5) edge, and with −1 weight
of the (1− 3) edge, has the adjacency matrix

(5.3) A =


0 1 −1 0 0 0
1 0 0 1 0 0
−1 0 0 1 0 0
0 1 1 0 .2 0
0 0 0 .2 0 1
0 0 0 0 1 0

 .

Let us also consider a graph like the one correspond-
ing to the mass-spring system in Figure 6, but with
the repulsive spring eliminated. We nullify the neg-
ative weight in the graph adjacency matrix by A0 =
max(A, 0) and denote the corresponding to A0 graph
Laplacian matrix by L0.

Figure 7 displays the corresponding Fiedler vectors
of original L (top left), original with negative weights
nullified L0 (top right), and both main modes of the
signed Laplacian L̄ (bottom). The original Laplacian
(top left) suggests meaningful clustering of vertices 1
and 2 vs. 3 and 4. Dropping the negative weight results
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Figure 7: Laplacian eigenvectors: the original L (top
left), the original with negative weights nullified L0

(top right), and the signed Laplacian L̄ first (bottom
right) and second (bottom left) eigenvectors, for a 6-
mass string with a negative weight at one edge between
vertices 1 and 3.
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Figure 8: Dumbbell graph, with two negative edges,
(1, 7) and (2, 8), marked thick red.

in cutting the weakly connected tail of the cobra, see
Figure 7 top right. The first eigenvector of the signed
Laplacian in Figure 7 bottom right appears meaningless
for clustering, even though it is far from looking as
a constant. The second eigenvector of the signed
Laplacian in Figure 7 bottom left suggests cutting off
vertex 3 from 1 and 2, which is not well balanced.

5.3 “Dumbbell” graph Our final example is the
“Dumbbell” graph, displayed in Figure 8, consisting
of two complete sub-graphs of slightly unequal sizes, 6
and 7, to break the symmetry, attracted by two edges
with positive weights, (3, 9) and (4, 10), and at the same
time repelled by two other edges, (1, 7) and (2, 8), with
negative weights, where all weights are unit by absolute
value. Since the weights of the 4 edges between the two
complete sub-graphs average to zero, intuition suggests
cutting all these 4 edges, separating the two complete
sub-graphs.
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Figure 9: Dumbbell graph, eigenvectors of the original
Laplacian L (left) and the signed Laplacian L̄ (right)

Figure 9 displays the corresponding eigenvectors of
the original L (left) and the signed Laplacian L̄ (right).
The signs of the components of the Fiedler vector in
the left panel clearly point to the intuitively expected
bisection, keeping the two complete sub-graphs intact.
The eigenvector of the signed Laplacian L̄ in Figure 9
(right) is quite different and suggest clustering vertices
1 and 2, cutting off not only the edges (1, 7) and (2, 8)
with negative weights, but also a large number of edges
with positive weights connecting vertices 1 and 2 within
the first complete sub-graph. The positive components
3 and 4 suggest counter-intuitive cutting off vertices
3 and 4 from the first complete sub-graph vertex set
1, . . . , 6 and cluster them with the vertices 7, . . . , 13 of
the second complete sub-graph, due to the presence of
two edges with positive weights, (3, 9) and (4, 10).

5.4 Spectral clustering via relaxation A common
approach to formulate spectral graph partitioning is
via relaxation of combinatorial minimization problems,
even though it is difficult to mathematically analyze how
different cost functions in the combinatorial formulation
affect clustering determined via their relaxed versions.

Let us compare the standard “ratio cut,” e.g.,
[24, 25], leading to the traditional graph Laplacian, and
“signed ratio cut” of [20], used to justify the defini-
tion of the signed Laplacian. Let a graph with the
set of vertices V be cut into two sub-graphs induced
by X and V \ X. The cut value Cut(X,V \ X) is de-
fined as the number of cut edges for unweighted graphs
and the sum of the weights of cut edges for weighted
graphs. In signed graphs, thus, Cut(X,V \ X) =
Cut+(X,V \X)−Cut−(X,V \X), where Cut+(X,V \
X) (Cut−(X,V \X)) denotes the sum of the absolute
values of the weights of positive (negative) cut edges.
The combinatorial balanced graph partitioning is mini-
mizing the ratio of Cut(X,V \X) and the sizes of the
partitions; its relaxation gives the spectral partitioning
using the Fiedler vector of the graph Laplacian.

The signed ratio cut of [20] is defined by substitut-
ing the “signed cut” SignedCut(X,V \ X) defined as
2Cut+(X,V \X) +Cut−(X,X) +Cut−(V \X,V \X)
for the “cut”. However, the value of all negative edges
Cut−(X,V \ X) + Cut−(X,X) + Cut−(V \ X,V \ X)
in the signed graph remains constant, no matter what
X is. We notice that, up to this constant value,
SignedCut(X,V \X) is equal to

2Cut+(X,V \X)− Cut−(X,V \X).

This expression is similar to that of Cut(X,V \X), but
the term Cut+(X,V \ X) appears with the multiplier
2, which suggests that the cuts minimizing quantities
involving SignedCut(X,V \X) could tend to ignore the
edges with negative weights, focusing instead on cutting
the edges with small positive weights. In deep contrast,
the positive and negative weights play equal roles in the
definition of Cut(X,V \X).

5.5 Comparing the eigenvectors It is challenging
to directly quantitatively compare various spectral clus-
tering formulations where the clusters are determined
from eigenvectors, since the eigenvectors depend on ma-
trix coefficients in a complex way. We have to rely on
simple examples, where we can visualize shapes of the
eigenvectors and informally argue which kinds of shapes
are beneficial for clustering.

To add to the trouble, there is apparently still no
algorithm universally accepted by experts for an ulti-
mate determination of multiway clusters from several
eigenvectors. With this in mind, we restrict ourselves
to determining the clusters from the component signs
of only one eigenvector—the Fiedler vector for the tra-
ditional Laplacian, assuming the corresponding eigen-
values are simple. For the signed Laplacian, the analog
of the Fiedler vector is defined in [20] as corresponding
to the smallest, or second smallest, eigenvalue of the
signed Laplacian, depending on if the trivial constant
eigenvector is absent.

In practice, however, this single eigenvector that
determines clustering is computed only approximately,
typically being mostly contaminated by other eigenvec-
tors, corresponding to the nearby eigenvalues, especially
clustered, so one needs to take into account these other
eigenvectors. Our first goal is to check the shapes of
several exact eigenmodes already displayed in Figures 1
and 4 and to argue which shapes can be more suitable
for automatic partitioning.

Figure 4 right panel displays the eigenmodes of the
signed Laplacian for the same weights as in the left panel
for the original Laplacian. We observe that, indeed, as
we have proved above, one of the eigenvectors is piece-
wise constant, as in Figure 1 right panel.
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Figure 10: Approximate Laplacian eigenmode, unit (a:
top left), zero (b: top right), and negative weight at
one edge for the original (c: bottom left) and signed (d:
bottom right) Laplacians.

Moreover, the shapes of the other eigenmodes of the
signed Laplacian in Figure 4 right panel also look more
similar to those in Figure 1 right panel, corresponding
to zero weight, than Figure 4 left panel, corresponding
to the original graph Laplacian with the same weights.

The displayed eigenvectors of both the original and
signed Laplacian exhibit jumps in the same location of
the negative weight in Figure 4. However, the jumps
are more pronounced in Figure 4 left panel (original
Laplacian) due to sharp edges, compared to those in
Figure 4 right panel (signed Laplacian), making the
location of the former jumps potentially easier to detect
automatically than the latter ones, if the eigenvectors
are perturbed due to, e.g., numerical inaccuracies.

Now we turn our attention to the single eigen-
vector, but approximated using an iterative eigen-
value/eigenvector solver (eigensolver); e.g., [13, 33]. To
set up a direct numerical comparison for our string ex-
ample, we need to choose a practical eigensolver, so let
us briefly discuss computational aspects of spectral clus-
tering. The Fiedler vector, or a group of the eigen-
vectors, corresponding to the left-most eigenvalues of
a symmetric eigenvalue problem needs to be computed
iteratively. The size of the Laplacian matrix is equal
to the number of data points, which in modern appli-
cations is often extremely large. Most textbook eigen-
solvers, especially based on matrix transformations, be-
come impractical for large scale problems, where in some
cases the Laplacian matrix itself cannot be easily stored,
even if it is sparse. We follow [13] advocating the Lo-
cally Optimal Block Preconditioned Conjugate Gradi-

ent (LOBPCG) method; see [12]. LOBPCG does not
need to store the matrix L in memory, but requires only
the result of multiplying the matrix L by a given vec-
tor, or a block of vectors. This characteristic makes
LOBPCG applicable to eigenvalue analysis problems of
very high dimensions, and results in good parallel scal-
ability to large matrix sizes processed on many par-
allel processors; e.g., see reference [17], describing our
open source and publicly available implementation of
LOBPCG. We refer to [33] for performance and timing.

Available convergence theory of LOBPCG in [12]
requires the matrix be symmetric, but not necessarily
with all non-negative eigenvalues, i.e., a possible pres-
ence of negative eigenvalues still satisfies the conver-
gence assumptions. The calculation of the product of
the matrix L by a vector is the main cost per iteration,
no matter if the weights are positive or negative.

We perform 30 iterations of LOBPCG, without
preconditioning and starting from a random initial
approximation—the same for various choices of the
weights and for different Laplacians for our discrete
string example. The number of iterations is chosen
small enough to amplify the influence of inaccuracy in
approximating the eigenvector iteratively. We display
a representative case in Figure 10 showing the approx-
imately computed Laplacian eigenmodes with the unit
(a), zero (b), and negative (c) weight at one edge, as well
as the signed Laplacian (d), corresponding to the exact
eigenfunctions in Figures 1 and 4. Initial large contribu-
tions from other eigenmodes, shown in Figures 1 and 4,
remain unresolved, as anticipated. Two-way partition-
ing according to the signs of the components of the
computed eigenmode of the Laplacian with the negative
weight nullified, Figure 10 (b), or the signed Laplacian,
Figure 10 (d), would result in wrong clusters.

In a sharp contrast, the exact eigenmode (the blue
line in Figure 4 left panel) of the original Laplacian with
the negative weight −0.05 demonstrates a sharp edge
with a large jump between its components of the oppo-
site signs at the correct location of the negative edge,
between the 37 and 38 vertices. This large jump is in-
herited by the corresponding approximate eigenmode in
Figure 10 (c), differentiating it from all other approx-
imate eigenmodes in Figure 10. The opposite signs of
the components of the eigenmode in Figure 10 (c) allow
determining the correct bisection. Large amplitudes of
the absolute values of the components around the jump
location in Figure 10 (c) make such a determination ro-
bust with respect to perturbations and data noise.

There are two reasons why the computed eigenmode
in Figure 10 (c) visually much better approximates
the exact Fiedler vector compared to other cases in
Figure 10. The first one is that the shape of the
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exact Fiedler eigenmode (the blue line in Figure 4 left
panel) is pronounced and quite different from those of
other eigenfunctions in Figure 4 left panel. The second
reason is related to condition numbers of eigenvectors,
primarily determined by gaps in the matrix spectrum.

The convergence speed of iterative approximation
to an eigenvector, as well as eigenvector sensitivity
with respect to perturbations in the matrix entries,
e.g., due to noise in the data, is mostly determined
by a quantity, called the condition number of the
eigenvector, defined for symmetric matrices as the ratio
of the spread of the matrix spectrum to the gap in the
eigenvalues. The larger the condition number is, the
slower the typical convergence is and more sensitive to
the perturbations the eigenvector becomes. The trivial
zero eigenvalue of the original Laplacian can be excluded
from the spectrum, if the influence the corresponding
trivial eigenvector, made of ones, may be ignored. For
the eigenvector corresponding to the smallest nontrivial
eigenvalue, the gap is simply the difference between this
eigenvalue and the nearest eigenvalue.

What happens in our example, as we see numer-
ically, is that the largest eigenvalue remains basically
the same for all variants, so we only need to check the
gap. It turns out that the gap for the signed Lapla-
cian is about 3 times smaller, for all tested values of
the negative weight, compared to the gap for the case
of the zero weight, explaining why we see no improve-
ment in Figures 10 (b) and (d), compared to (a). In
contrast, introducing the negative weight in the origi-
nal Laplacian tends to make the target smallest eigen-
value smaller, even negative, in our test for the dis-
crete string, while barely changing the other eigenvalues
nearby. As a result, the gap with the negative weight
−0.05 is 4 times larger compared to the baseline case
of the zero weight. We conclude that the eigenvector
condition number for the signed Laplacian is about 3
times larger, while for the original Laplacian is 4 times
smaller, depending on the negative weight −0.05, com-
pared to the baseline eigenvector condition number for
the Laplacian with zero weight. We conclude that in
this example the signed Laplacian gives 12 times larger
condition number of the eigenvector of interest and thus
is numerically inferior for spectral clustering compared
to the original Laplacian.

6 Possible extensions for future work

We concentrate on the model of the system of masses
connected with springs only because it directly leads to
the standard definition of the graph Laplacian, giving
us a simple way to justify our introduction of negative
weights. Similarly, we restrict the vibrations to be
transversal, since then we can use the classical two-

way partitioning definition based on the signs of the
components of the Fiedler vector. The negative weights
can as well be introduced in other models for spectral
clustering—we describe two examples below; cf. [14].

The first model is based on vibration modes of a
wave equation of a system of interacting quasi-particles
subjected to vibrations. Each quasi-particle of the vi-
bration model corresponds to one of the data points.
Interaction coefficients of the vibration model are deter-
mined by pair-wise comparison of the data points. The
interaction is attractive/absent/repulsive and the inter-
action coefficient is positive/zero/negative if the data
points in the pair are similar/not comparable/disparate,
respectively. The strength of the interaction and the
amplitude of the corresponding interaction coefficient
represent the level of similarity or disparity.

The eigenmodes are defined as eigenvectors of an
eigenvalue problem resulting from the usual separation
of the time and spatial variables. In low-frequency
or unstable vibration modes, the quasi-particles are
expected to move synchronically in the same direction if
they are tightly connected by the attractive interactions,
but in the opposite directions if the interactions are
repulsive, or in the complementary directions (where
available) if the interaction is absent.

Compared to the transversal vibrations already
considered, where the masses can only move up or down,
on the one hand determining the clusters by analyzing
the shapes of the vibrations is less straightforward than
simply using the signs of the components, but, on the
other hand may allow reliable detection of more than
two clusters from a single eigenmode. For example,
a quasi-particle representing an elementary volume of
an elastic body in three-dimensional space has six
degrees of freedom, which may allow definition of up to
twelve clusters from a single vibration mode. Multiway
algorithms of spectral graph partitioning have to be
adapted to this case, where a quasi-particle associated
with a graph vertex has multiple degrees of freedom.

A second, alternative, model is a system of in-
teracting quasi-particles subjected to concentration or
diffusion, described by concentration-diffusion equa-
tions. Every quasi-particle of the concentration-
diffusion model corresponds to a point in the data.
Conductivity coefficients of interactions of the quasi-
particles are determined by pair-wise comparison of
data points. The interaction is diffusive and the in-
teraction conductivity coefficient is positive if the data
points in the pair are similar. The interaction is absent
and the interaction conductivity coefficient is zero if the
data points in the pair are not comparable. Finally,
the interaction is concentrative and the interaction con-
ductivity coefficient is negative if the data points in the
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pair are disparate. The strength of the interaction and
the amplitude of the interaction coefficient represent the
level of similarity or disparity.

As in the first model, the eigenvalue problem is
obtained by the separation of the time and spatial
variables in the time dependent diffusion equation.
The clusters are defined by the quasi-particles that
concentrate together in unstable or slowest eigenmodes,
corresponding to the left part of the spectrum.

A forward-and-backward diffusion in [9, 31] pro-
vides a different interpretation of a similar diffusion
equation, but the negative sign in the conductivity co-
efficient is moved to the time derivative, reversing the
time direction. Here, the time is going forward (back-
ward) on the graph edges with the positive (negative)
weights. Having the time forward and backward in dif-
ferent parts of the same model seems unnatural.

Finally, our approach allows reversing the signs
of all weights, thus treating the minimum cut and
the maximum cut problems in the same manner, e.g.,
applying the same spectral clustering techniques to the
original Laplacian, in contrast to the signed Laplacian.

7 Conclusions

Spectral clustering has been successful in many applica-
tions, ranging from traditional resource allocation, im-
age segmentation, and information retrieval to more re-
cent bio- and material-informatics, providing good re-
sults at a reasonable cost. Improvements of cluster qual-
ity and algorithm performance are important, e.g., for
big data or real-time clustering. We introduce negative
weights in the graph adjacency matrix for incorporating
disparities in data via spectral clustering that tradition-
ally only handles data with similarities.

Incorporating the disparities in the data into spec-
tral clustering is expected to be of significance and have
impact in any application domain where the data dis-
parities naturally appear, e.g., if the data comparison
involves correlation or covariance. If data features are
represented by elements of a vector space equipped with
a vector scalar product, the scalar product can be used
for determining the pair-wise comparison function hav-
ing both negative and non-negative values.

Traditional spectral clustering, with only non-
negative weights, remains largely intact when nega-
tive weights are introduced. Eigenvectors correspond-
ing to the algebraically smallest eigenvalues (that can
be negative) of the graph Laplacian define clusters of
higher quality, compared to those obtained via the
signed Laplacian. The mass-spring system with repul-
sive springs justifies well the use of the standard Lapla-
cian for clustering, in contrast to the signed Laplacian
that may result in counter-intuitive partitions.
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