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Abstract
This paper evaluates the utility of the feedback particle filter (FPF) for state estimation
of SE(2)-configured dynamics in a real-time context. The filter is implemented in discrete
time to fuse gyroscopic- and accelerometer measurements with Ultra-Wideband (UWB) and
camera measurements. With this state information, the FPF is compared to other common
filters in terms of the estimate mean square error (MSE) and robustness to initial conditions.
An analysis is done on how these metrics scale with utilization of computational resources,
concluding that the FPF should be considered for embedded applications with CPUs on par
with the Cortex M4 processor.

American Control Conference (ACC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139





Evaluation of the Discrete Time Feedback Particle Filter for
IMU-Driven Systems Configured on SE(2)∗

Marcus Greiff1 and Karl Berntorp2

Abstract— This paper evaluates the utility of the feedback
particle filter (FPF) for state estimation of SE(2)-configured
dynamics in a real-time context. The filter is implemented in dis-
crete time to fuse gyroscopic- and accelerometer measurements
with Ultra-Wideband (UWB) and camera measurements. With
this state information, the FPF is compared to other common
filters in terms of the estimate mean square error (MSE) and
robustness to initial conditions. An analysis is done on how
these metrics scale with utilization of computational resources,
concluding that the FPF should be considered for embedded
applications with CPUs on par with the Cortex M4 processor.

I. INTRODUCTION

In this paper, the feedback particle filter (FPF) is analyzed
in a real-time context for SE(2)-configured dynamics with
measurements from an inertial measurement unit (IMU).
The FPF was first developed for simpler continuous-discrete
filtering problems in [1], [2], where it was shown to out-
perform the bootstrap particle filter (PF). It has since been
the subject of various simulation studies [3]–[5], compared
to methods such as the extended Kalman filter (EKF) [6],
[7], unscented Kalman filter (UKF) [8], and marginalized
particle filter (RBPF) [9]–[11]. With encouraging results,
the FPF was further investigated in the context of matrix
Lie groups and used for continuous time attitude estimation
of SE(3) dynamics [12]. However, by the computational
nature of particle filters and their poor scaling with state-
space dimensionality, the FPF is rarely considered for real-
time implementations in general rigid-body robotics.

Consequently, it is of great interest to study (i) how the
FPF complexity scales with state-space and measurement
equation dimensionality, and particularly how it compares to
the above mentioned estimators in terms of (ii) accuracy and
(iii) robustness when subjected to computational constraints
entailed by a real-time implementation. The appeal of study-
ing the IMU-driven system on SE(2) lies its low state-space
dimensionality, relative independence of parameters and sub-
sequent generality. As such, the presented results apply to a
wide class of systems, including hovercraft vehicles (HV),
surface vessels (SV) and ground vehicles (GV).

The dynamical GV model and considered measurement
equations are presented in Section II, before giving a review
of the above mentioned filters and presenting the equations
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of the discrete-time FPF in Section III. Our main contribution
is then to answer the questions (i)-(iii) in Section IV.

To enable this analysis, we consider each algorithm as
a set of components A = {Ai}, with a corresponding Oi

operations on average taking t̄i seconds to execute. Letting
fi Hz denote the rates at which these components are run, a
metric of utilization and total complexity is defined as

U =

|A|∑
i

t̄ifi ∈ [0, 1], C =

|A|∑
i

Oifi > 0. (1)

The utilization metric allows for fair comparison of the
filters on specific processors, while the complexity metric
indicates how when filter may implemented on other CPUs.
Similarly to [2], [5], performance in estimating a sequence
of M + 1 states {x̂}Mi=0 from a set of underlying true states
{x}Mi=0, is done in a mean-square error (MSE) metric,

MSE =
1

M + 1

M∑
i=0

(xi − x̂i)
T (xi − x̂i). (2)

II. MODELS

In this section, a continuous time IMU-driven SE(2)
model is presented with its discrete time equivalent. We also
give the measurement models for linear camera-based mea-
surements and nonlinear radio-based UWB measurements.

A. Torque-Controlled SE(2) Configured GV

Consider a differentially torque-driven two-wheeled GV,
defined by an axis length 2h m, a wheel radius r m, a
moment of inertia J kg·m2, and a mass m kg. The system is
controlled by two torques τ1(t), τ2(t) ∈ R generated by two
wheels. The rigid-body is configured on g(p, θ) ∈ SE(2),
where p = [pxG , p

y
G ]T defines the position of the body frame

origin {B} in the global frame {G}, and the rotation R{θ} ∈
SO(2) describes the rotation of {B} relative to the {G} [13]
(see Figure 1). The corresponding one-parametric group, ξ =
[ωB, v

x
B, v

y
B]T ∈ R3, is found as the body velocities, uniquely

defining the Lie algebra se(2). The governing equations are

θ̇(t) = ωB(t) (3a)
ṗxG(t) = vxB(t) cos(θ(t))− vyB(t) sin(θ(t)) (3b)
ṗyG(t) = vxB(t) sin(θ(t)) + vyB(t) cos(θ(t)) (3c)
ω̇(t) = (h/(Jr))(τ1(t)− τ2(t)) (3d)
v̇xB(t) = ω(t)vyB(t) + (r/m)(τ1(t) + τ2(t)) (3e)
v̇yB(t) = −ω(t)vxB(t) (3f)



as derived from first principles by the Newton-Euler equa-
tions. Note that by altering the actuation, the dynamics can
similarly be used to model the SV and HV systems.

Fig. 1. Left: An SE(2) rigid-body. Right: Wheel forces.

B. IMU-Driven Dynamics

Provided the system has an inertial measurement unit
(IMU) measuring body frame accelerations and angular rates,
{v̇xB(t), v̇yB(t), θ̇(t)}, we consider an equivalent system whose
inputs are these IMU measurements. The advantage of this
approach is its eliminatation of any parameter dependence
in (3), making the model applicable to the GV, SV and HV
systems regardless of their actuation. Clearly, if we know the
true body accelerations and rotational rate, {at(t), ωt(t)}, the
true system evolves according to

ṗt(t) = R{θt(t)}vt(t), v̇t(t) = at(t), θ̇t(t) = ωt(t) (4)

Let {axm(t), aym(t), ωm(t)} denote the IMU measurements,
corrupted by time-varying biases {axb (t), ayb (t), ωb(t)} and
noise wmn(t) , [axmn(t), aymn(t), ωmn(t)]T , experimentally
verified as correlated Gaussian noise (see Appendix VI-B).
Modeling the bias as first order Markov processes driven
by Gaussian noise wbn(t) , [axbn(t), aybn(t), ωbn(t)]T with
time constants Ta for the acceleration and Tω for the angular
rates, the continuous time model may be discretized using
an Explicit-Euler at a time step of t = hk, yielding

pt(k + 1) =pt(k) + hR{θt(k)}vt(k) + (h2/2)R{θt(k)}
· (am(k)− ab(k) + amn(k)) (5a)

vt(k + 1) =vt(k) + h(am(k)− ab(k) + amn(k)) (5b)
θt(k + 1) =θt(k) + h(ωm(k)− ωb(k) + ωmn(k)) (5c)

ab(k + 1) =ab(k) + h(T−1a ab(k) + abn(k)) (5d)

ωb(k + 1) =ωb(k) + h(T−1ω ωb(k) + ωbn(k)) (5e)

where aX(k) = [axX(k), ayX(k)]T for X = {m,mn, b, bn}.

C. Measurement Models

In many practical applications, the position of the system
is measured directly by a rigidly mounted camera system,
such as the VICON, Qualisys or Optitrack products. Con-
servatively, we assume centimetre-range precision and let

yc(k) = hc(x(k)) + ec(k) = pt(k) + ec(k) ∈ R2, (6)

where the noise is assumed to be Gaussian and zero mean,
ec(k) ∼ N (0,Rc) with Rc = diag(0.001, 0.001).

If Ultra-Wideband (UWB) measurements are available,
the vehicle position is determined with respect to a set
of Nd anchors at positions pi ∈ R3 in space. With the
common time-of-arrival approach and conventional SDS-
TWR protocol [14], a vector of transit times of data-packets
being sent between the UGV and the anchors is measured.
This vector of time-stamps is defined as [ti(k)] = t(k) ∈
RN

>0. Multiplication by the speed of light, c ≈ 3 · 108

m/s, yields a distance between the UGV and the ith anchor,
di(k) = ||pt(k)− pi||2, and the measurement equations are

yd(k) =

 ||pt(k)− p1||2
...

||pt(k)− pNd
||2

+ ed(k). (7)

The noise at each time step is assumed to be uncorrelated
between each anchor and approximately gaussian, such that
ed(k) ∼ N (0,Rd) where Rd = c2σ2

t I, with I denoting the
Nd×Nd identity matrix. For the Decawave UWB chip used
in the real-time implementation [15], the standard deviation
of the measurement noise has been experimentally verified
to be approximately σt ≈ 0.17 ns [16].

D. Modelling summary

To summarise, the dynamical IMU-driven model is written

xk+1 = f(xk,uk,wk) ∈ Rn (8a)
yk = h(xk) + ek ∈ Rm (8b)

where the assumptions on the process noise is given by

wk ,

[
wmn(k)
wbn(k)

]
∼ N

([
0
0

]
,

[
Qnn 0

0 Qbb

])
∈ R6. (9)

While dim(xk) = 8 is fixed, the measurement space dimen-
sionality, dim(yk) = m, may vary, combining camera- and
UWB measurements (6) (7) with ek containing the corre-
sponding measurement noise ec(k) and ed(k) respectively.

III. ESTIMATORS

Various filters may be considered in estimating the system
states given a sequence of Zk = {ui,yi}ki=0. A common
approach is to implement a recursive form of Bayes’ rule,

p(xk|Zk) ∝ p(xk|zk,Zk−1) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
,

(10)
to update a density function of the state distribution condi-
tioned by all prior measurements and control signals. This is
done comprehensively in the referenced literature [1]–[11],
with a brief summary provided here to aid the reader.

A. Nonlinear Kalman Filters

By assuming unbiasedness, E[xk − x̂k] = 0, and that the
posterior, p(xk|Zk), can be approximated with a Gaussian,

p(xk|Zk) ≈ N (E[xk],E[(xk − x̂k)(xk − x̂k)T ]), (11)

several Kalman-based filters may be derived from (10).
Two standard and widely used variants are the EKF [6],
[7] and the UKF proposed in [8]. The former linearizes



the nonlinear dynamics by a first order Taylor expansion,
computing the posterior so as to minimize the MSE of the
state estimate. The UKF instead computes a set of sigma-
points, propagating the estimate with an unscented transform
to directly approximate the conditional mean and covariance
of the posterior distribution. Neither the EKF nor the UKF
guarantee convergence and both suffer from the assumption
of a gaussian state error distribution, which is violated when
considering the nonlinear UWB measurements. However, the
assumptions make both algorithms computationally tractable,
and the filters serve as established benchmarks for the
FPF implementation. For IMU-driven systems in particular,
sequential scalar gain approximations can be leveraged to
reduce computational complexity [17], here referred to as
the scalar update extended Kalman filter (SUEKF). See [18]
for explicit definitions of the associated Jacobians.

B. Particle Filters

Common particle filters (PF) differ greatly from the
Kalman filters in that they are sampling based [19]. In the
PF, a set of hypothesis {xi

k}Ni=1 with corresponding weights
{wi

k|k−1}
N
i=1 approximate the true posterior by

p(xk|Zk) ≈ p̂(xk|Zk) =

N∑
i=1

wi
k|k−1x

i
kδ(xk − xi

k). (12)

The weight, wi
k, is a measure of the likelihood of each

particle, and as such the coarseness of the approximation (12)
scales poorly with the state-space dimensionality dim(xk).
PFs are consistent [20], with p(xk|Zk) = p̂(xk|Zk) as
N → ∞ provided p(x0|Z0) = p̂(x0|Z0), but performance
depends greatly on the magnitude of N due to the curse of
dimensionality. With dim(xk) = 8 in (8), the PFs become
computationally infeasible in an embedded systems context.

As a remedy, Rao-Blackwellized particle-filters (RBPF)
may be considered. Assuming a mixed Gaussian state-space
(MGSS) partitioning, the RBPF runs an optimal Kalman-
filter for the linear states and a PF for the nonlinear
states [9]–[11]. If only considering camera measurements
and the IMU-driven dynamics, this partition is may be done
with angle of rotation, θt(t), as the only nonlinear state.
However, when introducing the UWB measurements, the
position must also be included as a nonlinear state, see [18]
for the explicit definitions. Just as the standard particle filters,
the RBPF suffers from weight degeneracy, which in our
implementation is handled by systematic resampling [21].

C. The Feedback Particle Filter

The final considered filter is the feedback particle fil-
ter [1]–[5], where in contrast to standard PFs, the posterior
is represented with unweighted samples wi

k|k−1 = N−1 ∀k
in (12). Another fundamental difference is that the FPF
implements Bayes’ rule (10) by simulating the the particles
as a controlled system on pseudo time, λ ∈ [0, 1], each time
a measurement, yk, is received. Letting

dxi = f(xi(t), t)dt+ dβ + Ui
k (13)

and assuming a Wiener distribution β, the feedback Ui
k can

be chosen so as to minimize the Kullback-Leibler divergence,
KL(p||p̂) at λ = 1 [4]. In practice, this is done by defining
a flow of particles, Si

k(λ), with Si
k(0) = xi

k−1. Letting

dSi
k(λ)

dλ
= Ui

k(λ), (14)

the inclusion of measurements is reduced to an optimal con-
trol problem of synthesising a feedback law, done by solving
an associated Euler-Lagrange boundary value problem. By
the solution presented in [2], an innovation process is defined

Iik := yk −
1

2

(
h(xi

k) + E[h(xk)]
)
∈ Rm×N , (15)

where

E[h(x)] :=

∫
p(xk|Zk)h(xk)dx ≈ 1

N

N∑
i=1

h(xi
k) (16)

due to the equal weights. The feedback law is formed as

Ui
k(λ) := Ki

k(Si
k, λ)Iik(Si

k) +
1

2
Ωi

k(Si
k, λ) (17)

with Kk = [κ1 · · ·κm] being a time-varying gain, and Ωi
k

denoting the Wong-Zakai correction term [4]. The problem is
then to compute the gains κi, which in it’s simplest form can
implemented with a constant gain approximation [3], where

εi := h(xi
k)− E[h(xk)] ∈ Rm, (18a)

cj :=
1

N

N∑
i=1

εijS
i
k ∈ Rn, (18b)

Kk ≈ [c1 · · · cm]R−1 ∈ Rn×m, (18c)

With this approximation, the two parameters defining filter
performance and computational effort in the FPF are the
number of particles N and the discretisation of λ in sim-
ulating the time evolution of the particle flow, here done in
λ/∆λ equidistant steps. While retaining the property of con-
sistency [2] as N → ∞, the FPF requires significantly less
particles to achieve results comparable to the PF [5], [12],
making it a strong candidate for a real-time implementation.

IV. EVALUATION

In this section, we consider the two main algorithmic
components in each estimator, the prediction step, Ap, and
the measurement update step, Au. These components are run
at rates fp ∈ (0, 500] Hz and fu ∈ (0, 100] Hz respectively,
constrained by limitations of sampling rates in the IMU
sensor and UWB systems respectively. Yet another constraint
in any the real-time implementation is the computational
power. The CPU clock frequency, instruction set and number
of cores give hard constraints in a complexity, C, in terms of
a number of FLOP per second. This implies a constraint in
terms of the utilization metric (1), with U < Umax ∈ [0, 1]
depending on the CPU. To relate results on asymptotic com-
plexity to computational time and the metric of utilization,
real-time implementations of selected algorithms are done on
a Cortex M4, commonly used for embedded applications. All



algorithms are optimized to minimize computational time,
running FreeRTOS in combination with the standardized
CMSIS DSP ARM math library [22]. Evaluation of the
filters, {Ap,Au}, is done on a set of problems, P = {Pi},
defined in the next section, using Monte-Carlo simulations
at rates approximately solving

(f∗p , f
∗
u) = min

(fp,fu)

|P|∑
i=1

MSE(fp, fu,Ap,Au,Pi) (19)

such that
U < Umax, fp < 500, fu < 100. (20)

A. Problem Definitions

The considered problems Pi are defined by periodic se-
quences of time-varying torques τ (t) =

[
τ1(t), τ2(t)

]T
to

the GV system (3) with parameters and anchor placement
given in Appendix VI-B. The first input sequence (A),

τA1 (t) = 0.15 sin(4t) + 0.1 sin(0.1t)

τA2 (t) = 0.3 sin(2t) + 0.1 sin(0.1t)

causes an excitation of all states in (3) and movement
outside of the convex hull of the UWB anchors where the
Cramer-Rao lower bound of the position estimate increases
significantly [23]. The second sequence (B) is defined with
the Heaviside function H(t), with a pulse s(a, b, t) = H(t−
a)−H(t− b), for some scalar a, b ∈ R. The wheel torques

τB1 (t) = 0.5[s(0, 1, t)− s(1, 2, t)] + [s(4, 5, t)− s(5, 6, t)]
τB2 (t) = 0.5[s(0, 1, t)− s(1, 2, t)]− [s(4, 5, t)− s(5, 6, t)]

with t ∈ [0, 6) are repeated over the simulation time ts.
This second sequence causes positional movement within
the convex hull of the anchors, but the symmetry makes
the GV stand completely still on t ∈ [2, 4] yielding peri-
odic deadlock drift of the estimates. Both inputs give rise
to a volatile velocity response on (vT

BvB)1/2 . 1 m/s
and multiple revolutions in θt(t) over the simulation time.
Combining the wheel torque sequences with, applied biases,
dimensionality of the UWB measurements, dim(yd), and
camera measurements, dim(yc), six problems of interest are
defined in Table IV-A.

TABLE I
MATRIX OPERATIONS AND ASSOCIATED COMPLEXITY

Problem Input dim(yd) dim(yc) ts (axbt, a
y
bt, ωbt)

P1 τA(t) 0 2 30 0
P2 τB(t) 0 2 30 0
P3 τA(t) 6 0 30 0
P4 τB(t) 6 0 30 0
P5 τA(t) 6 2 60 (0.2,-0.2,0.1)
P6 τB(t) 6 2 60 (0.2,-0.2,0.1)

B. MSE Performance at Fixed Frequencies

To motivate the use of the FPF based on estimator ac-
curacy, a simulation study is done with 100 Monte-Carlo
executions for the problem P3 where dim(yk) = 6 and τA(t)

is applied to the GV system (3). The utilization constraint
is disregarded in (19), with prediction and update steps
executed at fp = fu = 100 Hz. The MSE of the state
estimate is plotted as a function of the number of particles
with a 99% confidence interval (see Figure 2).

Fig. 2. State estimate MSE as a function of the number of particles in 100
Monte-Carlo simulations with a 99 % confidence interval on problem P3.

Clearly, the Monte-Carlo simulations yield a relatively
low and repeatable MSE for the Kalman filters, with the
SUEKF performing marginally worse than the regular EKF
and UKF. The UKF propagates a total of 17 samples in the
unscented transform, but despite this, the performance of the
FPF in this experiment is unparalleled already at N = 10
particles for low particle counts. The RBPF gives satisfactory
performance first at N > 400, with performance rivalling the
FPF first at N ≈ 3 · 103. The reason for not showing higher
particle counts in Figure 2 is that the problem becomes
computationally intractable, with single FPF/RBPF runs at
N = 4000 taking several hours to complete. An explanation
for this given in the complexity analysis in the next section.

C. Complexity and Measurement Dimensionality

Consider next how the complexity of the two algorithmic
components, Op and Ou, scale with measurement dimen-
sionality in the considered filters. With dim(yk) ∈ [2, 10]
UWB measurements, the complexity is shown in Figure 3.

Fig. 3. Complexity of the update and prediction steps in the EKF, SUEKF,
UKF, FPF and RBPF as a function of the number of UWB measurements.

From this result we note some fundamental differences
in the filters. The complexity of the prediction per particle
is small in the FPF, which with a number of particles
N = 10 is less complex than the UKF prediction, but still



less so than the EKF predictions due to its dependence on
matrix operations. While scaling of complexity in the FPF
prediction step, Ap, is linear with dim(yk), the complexity
of the update step, Au, scales super-linearly. The complexity
of the update step of the FPF is greater than the Kalman-type
filters at a particle count of N = 3, increasing with both N
and the number of measurements. To rival and supersede the
FPF at N ≈ 20 in terms of accuracy, the RBPF has to be run
N ≈ 3 · 103 as shown in the previous section. However, the
complexity per particle in both RBPF is slightly higher than
that of the FPF, due to the high cost of the prediction step. As
such, the a computational complexity of the RBPF is large
enough to disqualify it from further analysis on the embedded
system, while the FPF at N ≈ 20 may be implementable.

D. Computational Time

The general trends in complexity of the algorithm com-
ponents is seen in their mean execution time (see Figure 4),
with some notable deviations. Firstly, the predictive step in
the FPF requires more computational effort than indicated
by the complexity analysis, largely due to the need for
realising the Gaussian noise on each iteration, here done
by the Multiply-With-Carry algorithm and a Box-Muller
transform [24]. Secondly, there is a significant difference in
computational time between the UKF and EKF implementa-
tions, but both can still be run at the maximum rates of each
algorithmic component, with (fp, fu) = (500, 100) [Hz].

Fig. 4. Mean computational time of the prediction step (top) and the update
step (bottom) as a function of the number of particles with dim(yk) = 6.

The margins for fp and fu are clearly visible if the
CPU utilization U ∈ [0, 1] is known (see Figure 4). For
instance, we wish to run the measurement update with
in the FPF N = 20 particles and utilise approximately
fpt̄p = 0.1 of the CPU, the update rate should be set to
fp ≈ ∆2/t̄p+1 ≈ 21 Hz. Note that the EKF update step can
be run a factor 10 faster at this utilisation. In general, there
are many algorithmic components at work in the real-time
system, such as communication tasks and sensory control. In
total, these components take up a utilization corresponding

to Uother ≈ 0.06. If some margin is allocated to an idle task
to prevent watchdog timeouts, a maximum utilization of the
state estimator is set to 0.8. The prediction that (f∗p , f

∗
u) =

(500, 100) [Hz] can then be used for the EKF/SUEKF/UKF,
constrained only by the sensor sampling rates. For FPF run
with N = 20 particles and dλ = 0.1, the rates approximately
solving (19) are found as (f∗p , f

∗
u) = (210, 100). With these

rates, the task load of the CPU (see Figure 5) makes it clear
that the Kalman filters reach their potential far before all
computational resources have been utilised on the processor.

Fig. 5. CPU utilization U of the Cortex M4 with dim(yk) = 6 running
the EKF at (f∗p , f

∗
u) = (500, 100) [Hz] (left) and the FPF with N = 20

particles and dλ = 0.1 at (f∗p , f
∗
u) = (210, 100) Hz (right).

E. MSE with Utilization Constraints

Next, we consider the estimate MSE when running the
filters at rates found as the approximate solution to (19) on
the defined problems P in 100 Monte-Carlo runs with

x0 − E[x̂0] = 0. (21)

This is done for the EKF/SUEKF/UKF/FPF, as these are the
only filters implemented on the Cortex M4, and therefore the
only filters for which (f∗p , f

∗
u) are known (see Table IV-E).

TABLE II
MSE OF THE ESTIMATE AT (f∗p , f

∗
u), WHERE ENTRIES MARKED †

CONVERGE TO AN MSE> 1 IN 95% OF THE MC-EXECUTIONS.

EKF SUEKF UKF FPF

P1 4.14 · 10−3 4.15 · 10−3 4.89 · 10−3 2.50 · 10−3

P2 1.55 · 10−2 1.55 · 10−2 1.63 · 10−2 5.62 · 10−3

P3 1.53 · 10−2 1.54 · 10−2 1.52 · 10−2 5.69 · 10−3

P4 3.15 † 3.16 † 1.07 † 9.12 · 10−3

P5 4.17 · 10−3 4.18 · 10−3 4.83 · 10−3 2.40 · 10−3

P6 1.52 · 10−2 1.52 · 10−2 1.68 · 10−2 5.67 · 10−3

Note that the EKF and SUEKF show no significant differ-
ence on any problem, as the sequential update mainly affects
computational time and not the estimate accuracy [17]. The
result in the highlighted column conclusively shows that the
FPF with N = 20 and dλ = 0.1 can and should be imple-
mented on the Cortex M4 for the considered dynamics (5)
based on its superior MSE performance. The FPF is reliable
across all tested combinations of camera measurements and
UWB measurements, and it notably outperforms the Kalman
filters for the highly difficult problem P4 with the torque
sequence causing intermediary deadlock drift, for which at
least 5% of the Kalman filter MC-executions diverge in the



sense that the total estimate MSE > 1 at t = ts. This
divergence in the Kalman filters motivates further tests of
filter robustness to poor initial estimates.

F. Robustness To Initial Conditions

As shown in the previous section, the nonlinear Kalman
filters suffer from potential robustness issues for problems
reminiscent of P4. This is due to the inaccurate assump-
tions of a Gaussian state distribution when using UWB
measurements, and the approximation nonlinear dynamics
using the first order Taylor expansion in the EKF and the
unscented transform in the UKF. As such, the estimates may
diverge if the state distribution is volatile and multimodal,
and especially if the nonlinear states estimates such as the
rotation at any time differ greatly from the true system states.

When considering a real-time implementation, diverging
estimates will cause a filter reset from which the filter must
recover and converge. To study the robustness of the filters
in this respect, let U ∼ U(−1, 1) ∈ R8 denote a uniformly
distributed random variable and introduce an estimate error

x0 − E[x̂0] = [1, 1, 1, 1, π, 1, 1, 0.1]T ·U.

In this example, problems P3 and P4 are studied with 100
MC-executions with the filters run at their corresponding
rates (f∗p , f

∗
u) (see Table IV-F). An estimate is considered to

have converged in t = ts = hNs if ||xNs
− x̂Ns

||2 < 10−1,
with the limit set based on MSE results with perfect estimate
initialization in Section IV-E.

TABLE III
PERCENTAGE OF CONVERGED MONTE-CARLO EXECUTIONS

Problem EKF SUEKF UKF FPF
P3 46% 45% 48% 56%
P4 33% 33% 37% 70%

This demonstrates that the FPF is more robust to pertur-
bations in the initial estimate in the considered problems.
Upon closer inspection, the divergence in both filters depend
greatly on the error in the initial rotational estimate (see
Figure 6). When visualizing the FPF and EKF run on P3,
both filters converge from an initial error of |θ(0)− θ̂(0)| <
0.4 rad in all MC-executions, and convergence is highly
improbable when cos(θ(0) − θ̂(0)) < 0. The skew seen in
the interval of θ̂(0) from which convergence is more likely
may be caused by the shape state trajectory and the geometry
of the anchor placement (see Appendix VI-B).

A typical simulation of divergence in problem P3 is
demonstrated in Figure 7, where the FPF state estimate
converges and the EKF diverges due to the rotational estimate
error increasing linearly with time, by consequence of the
gyroscopic bias having drifted to approximately −1 rad/s.

V. CONCLUSIONS

In this paper, the utility of the FPF has been analyzed for
embedded real-time implementations in IMU-driven dynam-
ics configured on SE(2). Constraining the systems compu-
tational power and sampling rates of the IMU, camera and

Fig. 6. Terminal estimation error for problem P3 as a function of the
initial rotational estimate in the EKF (left) and the FPF (right).

Fig. 7. True and estimated states in one of the MC-executions of problem
P3 using the EKF (blue) and FPF (red) with a poor initial state estimate
with an added bias step change at t = 20 s for demonstrative purposes.

UWB sensors, a comparative analysis was done with the
EKF, SUEKF, UKF, RBPF and FPF to determine the scaling
of performance with computational complexity for a set of
standard problems (see Table IV-A). An initial analysis of
estimate MSE for problem P3 indicated the FPFs utility,
where it outperformed the Kalman based filters with N & 10,
rivalled by the RBPF only at N & 1000 particles (see
Figure 2). In terms of complexity, the FPF introduces a sig-
nificant computational effort which scales super-linearly with
the number of measurements and particles (see Figure 3), but
the estimator was nonetheless run efficiently on the Cortex
M4 with N = 20 and dλ = 0.1 using (f∗p , f

∗
u) = (210, 100)

(see Figure 5). At these rates, the FPF was compared to the
EKF, SUEKF and UKF for a wide range of problems. As
indicated in the initial MSE analysis, the FPF outperformed
the rivals with any combination of 6 UWB measurements



and 2 camera measurements for realistic input torque and
bias sequences (see Table IV-E). Furthermore, the robustness
of the FPF to perturbations in the initial filter estimate
was shown to be superior to that of the Kalman filters
(see Table 7). This analysis also showed that all considered
estimators work reliably if initialised with a rotation such
that cos(θ(0)− θ̂(0)) & 0 for the considered problems.

In conclusion, the FPF is a good and robust alterna-
tive to standard non-linear Kalman filters and readily im-
plementable in an embedded applications for IMU-driven
SE(2)-configured dynamics (5). In addition, it is likely
a good candidate of systems with a similar state-space
dimensionality. If the CPU has less processing power than the
Cortex M4 or if the utilization constraint is greatly decreased,
the SUEKF should be considered as an alternative due to
its performance being similar to the EKF and UKF with
a slightly reduced complexity in the update step. However,
if computational resources are is significantly increased, the
RBPF should be reconsidered.

VI. APPENDIX
A. Asymptotic Complexity

Conservative asymptotic complexity of floating point op-
erations (FLOP) are given in the Table VI-A. The † indicates
the number of FLOP required to evaluate an operation as-
suming nominal state-space dimensionality of dim(xk) = 8,
dim(yk) = 6. Furthermore, the ‡ indicates FLOPs required
to evaluate the Jacobians of the prediction and update steps.

TABLE IV
MATRIX OPERATIONS AND ASSOCIATED COMPLEXITY

Operation Input Complexity
Matrix add. Rnm,Rnm nm
Matrix mult. Rnm,Rmp nmp

QR Rnn 2n3

LU Rnn (2/3)n3

Cholesky Rnn (1/3)n3

Ax = b (QR) Rnn,Rn 2n3 + 3n2

Ax = b (LU) Rnn,Rn (2/3)n3 + 2n2

f(x(k))† R8,R3 44

yc(x(k))† R8 0

yd(x(k), Nd)
† R8, Nd 8Nd

Pred. Jac.‡ R8,R3 42

Update Jac.‡ R8 8m+ 4

B. Nominal Parameters

The model parameters used in all simulations are h = 0.1
m, r = 0.1 m, J = 0.1, kg/m2 and m = 0.1 kg, with

P = [p1, · · · ,p6] =

1.5 1.5 1.5 −1.5 −1.5 −1.5
3 0 −3 −3 0 3
3 0 3 0 3 0


at all times, with the zero-mean Gaussian process noise terms
wmn(t) ∼ N (0,Qnn) and wbn(t) ∼ N (0,Qbb) defined by

Qnn = 0.1·

 1 0.05 0.01
0.05 1 0.01
0.01 0.01 0.1

 , Qbb = 10−2·

5 0 0
0 5 0
0 0 5

 .
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