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Abstract
A graph is chordal if every cycle of length at least four contains a chord, that is, an edge
connecting two nonconsecutive vertices of the cycle. Several classical applications in sparse
linear systems, database management, computer vision, and semidefinite programming can
be reduced to finding the minimum number of edges to add to a graph so that it becomes
chordal, known as the minimum chordal completion problem (MCCP). We propose a new
formulation for the MCCP that does not rely on finding perfect elimination orderings of
the graph, as has been considered in previous work. We introduce several families of facet-
defining inequalities for cycle subgraphs and investigate the underlying separation problems,
showing that some key inequalities are NP-Hard to separate. We also identify conditions
through which facets and inequalities associated with the polytope of a certain graph can be
adapted in order to become facet defining for some of its subgraphs or supergraphs. Numerical
studies combining heuristic separation methods and lazy-constraint generation indicate that
our approach substantially outperforms existing methods for the MCCP.
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A graph is chordal if every cycle of length at least four contains a chord, that is, an edge connecting

two nonconsecutive vertices of the cycle. Several classical applications in sparse linear systems, database

management, computer vision, and semidefinite programming can be reduced to finding the minimum number

of edges to add to a graph so that it becomes chordal, known as the minimum chordal completion problem

(MCCP). We propose a new formulation for the MCCP that does not rely on finding perfect elimination

orderings of the graph, as has been considered in previous work. We introduce several families of facet-defining

inequalities for cycle subgraphs and investigate the underlying separation problems, showing that some key

inequalities are NP-Hard to separate. We also identify conditions through which facets and inequalities

associated with the polytope of a certain graph can be adapted in order to become facet defining for some of

its subgraphs or supergraphs. Numerical studies combining heuristic separation methods and lazy-constraint

generation indicate that our approach substantially outperforms existing methods for the MCCP.
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1. Introduction

Given a simple graph G= (V,E), the minimum chordal completion problem (MCCP) asks for the

minimum number of edges to add to E so that the graph becomes chordal ; that is, every cycle of

length at least four in G has an edge connecting two non-consecutive vertices (i.e., a chord). Figure
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1(b) depicts an example of a minimum chordal completion of the graph in Figure 1(a), where a

chord {v1, v3} is added because of the chordless cycle (v0, v1, v4, v3). The problem is also referred

to as the minimum triangulation problem or the minimum fill-in problem.

The MCCP is a classical combinatorial optimization problem with a variety of applications span-

ning both the operations research and the computer science literature. Initially motivated by prob-

lems arising in Gaussian elimination of sparse linear equality systems (Parter 1961), chordalization

methods have established an active research field, with applications in database management (Beeri

et al. 1983, Tarjan and Yannakakis 1984), sparse matrix computation (Grone et al. 1984, Fomin

et al. 2013), artificial intelligence (Lauritzen and Spiegelhalter 1990), computer vision (Chung and

Mumford 1994), and in several other contexts (Heggernes 2006). Most recently, heuristic solution

methods for the MCCP have gained a central role in semidefinite and nonlinear optimization, in

particular for exploiting sparsity of nonlinear constraint matrices (Nakata et al. 2003, Kim et al.

2011, Vandenberghe and Andersen 2015).

The literature on exact computational approaches for the MCCP is, however, surprisingly scarce.

To the best of our knowledge, the first mathematical programming model for the MCCP is derived

from a simple modification of the formulation by Feremans et al. (2002) for determining the tree-

widths of graphs. That model is based on a result by Fulkerson and Gross (1965), stating that a

graph is chordal if and only it has a perfect elimination ordering, which is an ordering of vertices such

that any vertex v forms a clique with its succeeding neighbours in the ordering. Yüceoğlu (2015)
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Figure 1 (a) An example graph by Heggernes (2006). (b) A minimum chordal completion of the graph. (c) A

minimal, non-optimal chordal completion of the graph.
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has recently provided the first polyhedral analysis and computational testing of this formulation,

deriving facets and other valid inequalities for specific classes of graphs. Alternatively, Bergman

and Raghunathan (2015) introduced a Benders approach to the MCCP that relies on a simple class

of valid inequalities, outperforming a backtracking search algorithm. In all such cases, theoretical

results have focused on specific families of graphs, and several benchmark graphs with fewer than

30 vertices were still not solved to optimality within reasonable computational times.

Our Contributions. In this paper we investigate a novel mathematical programming model for

the MCCP that extends the preliminary work of Bergman and Raghunathan (2015). Our formu-

lation is composed of exponentially many constraints – the chordal inequalities – that are defined

directly on the edge space of the graph and do not depend on the perfect elimination ordering

property, as opposed to earlier formulations. We investigate the polyhedral structure of such a

model, which reveals that the proposed inequalities are part of a special class of constraints that

induce exponentially many facets for cycle subgraphs. This technique can be generalized to lift

other inequalities and strengthen the corresponding linear programming relaxation. In particular,

we propose three additional families of valid inequalities and provide a study on the computational

complexity of the associated separation problems.

Building on these theoretical results, we propose a hybrid solution method for the MCCP

that alternates a lazy-constraint generation with a heuristic separation procedure. The resulting

approach is compared to the current state-of-the-art models in the literature, and it is empirically

shown to improve solution times and known optimality gaps for standard graph benchmarks, often

by orders of magnitude. Our numerical results also indicate that the optimal completions can be

significantly smaller than the ones provided by state-of-the-art heuristic methods.

Organization of the paper. We start by discussing previous works related to the MCCP in Sec-

tion 2 and introducing our notation in Section 3. In Section 4 we describe a new integer pro-

gramming (IP) formulation for the MCCP and characterize its polytope in Section 5, also proving

dimensionality results and simple upper bound facets. Section 6 provides an in-depth analysis of
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the polyhedral structure of cycle graphs, introducing four classes of facet-defining inequalities. In

Section 7 we prove general properties of the polytope, including results concerning lifting of facets.

Finally, in Section 8 we propose a hybrid solution technique that considers both a lazy-constraint

generation and a heuristic-separation method based on a threshold-rounding procedure, and also

present a simple primal heuristic for the problem. We provide a numerical study in Section 9, indi-

cating that our approach substantially outperforms existing methods, in particular solving many

benchmark graphs to optimality for the first time.

2. Previous Works.

The first graph-theoretical aspects of the MCCP were introduced by Parter (1961) and Rose (1973)

in the context of sparse matrix computations. The authors simulated the Gaussian elimination

process of a linear system of equations as an elimination game in a graph constructed according

to the coefficient matrix of the system. In such a game, vertices are removed one at a time and,

for each removed vertex v, edges are added so that v forms a clique with its neighbors in the

remaining graph. Each new edge corresponds with adding a non-zero entry (i.e., a fill-in) to the

original matrix, which impacts the total time and storage requirements of the Gaussian elimination

process. The total number of edges added, in turn, was shown to be heavily dependent on the order

in which vertices are removed during the elimination game.

The MCCP was then formally proposed by Rose et al. (1976), Ohtsuki (1976), and Ohtsuki et al.

(1976) simultaneously. This formalization builds on a result by Fulkerson and Gross (1965), which

indicates that the family of chordal graphs coincides with the graphs produced by the elimination

game. That is, finding an ordering with minimum fill-in corresponds to adding the minimum number

of edges so that the graph becomes chordal. Rose et al. (1976) and Ohtsuki (1976) also proposed

the first algorithms for finding minimal chordalizations in linear time on the size of the graph.

A follow-up work by Rose and Tarjan (1978) proved that the MCCP was NP-Hard for directed

graphs, but the undirected case was only stated as a conjecture. Later, Garey and Johnson (1979)

posed the MCCP as problem #4 among the 12 major open problems in computational complexity,
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sparking new studies on both theoretical and computational aspects of the problem. The complexity

question was settled by Yannakakis (1981), who showed that the MCCP was NP-hard using a

reduction from the optimal linear arrangement problem.

In regards to the theoretical aspects of the problem, a large stream of research has focused on

alternative characterizations based on graph separators as opposed to vertex orderings. A (u, v)-

graph separator is a vertex subset that disconnects vertices u and v when removed. Kloks et al.

(1993) showed that, if the set of minimal separators of a graph G can be enumerated efficiently, the

MCCP and the related tree-width problem are solvable in polynomial time. This includes a large

variety of graph classes such as permutation graphs, trapezoid graphs, and circle graphs, to name

a few. Parra and Scheffler (1995, 1997) and Kloks et al. (1999), with results later completed by

Kratsch and Müller (2009), demonstrated that one could obtain a minimal chordal completion by

obtaining a maximal set of parallel (i.e., non-crossing) separators and completing them into cliques.

Finally, the influential work by Bouchitté and Todinca (2001) provided key results concerning

these questions. Namely, it showed that the MCCP is tractable in polynomial time if the set of

potential maximal cliques, i.e., vertex subsets that induce cliques in some minimal chordalization,

could be listed in polynomial time. The result also answers a conjecture posed by Kloks et al.

(1993), showing that the MCCP is solvable efficiently for weakly triangulated graphs, i.e., graphs

with a polynomial number of separators (not necessarily minimal), which generalizes previous work

considering specialized graphs (Chang 1996, Kloks et al. 1998).

There also has been an extensive literature on approximation algorithms and fixed-parameter

tractable (FPT) procedures for the MCCP. Agrawal et al. (1993) presented the first polynomial-

time algorithm with a guaranteed approximation ratio specifically dependent on the size of the

graph and on the maximum number of edges k that can be added. Natanzon et al. (2000) later

proposed a new algorithm with an approximation ratio of O(8k2), i.e., at most 8k from the opti-

mal solution. The first FPT algorithm was proposed by Kaplan et al. (1999), with complexity

exponential on k. Fomin and Villanger (2012) later proposed a substantially faster FPT that was
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subexponential on k and based on the results by Bouchitté and Todinca (2001). Most recently,

Bliznets et al. (2016) prove lower bounds on the complexity of FPTs under the Exponential Time

Hypothesis. Cao and Sandeep (2016) and Cao and Marx (2016) extend these results by producing

new parameterized lower bounds, while also excluding possible approximation schemes through a

new reduction from vertex cover.

For computational approaches, the primary focus has been on heuristic methodologies with no

optimality guarantees, including techniques by Mezzini and Moscarini (2010), Rollon and Larrosa

(2011), and Berry et al. (2006, 2003). The state-of-the-art heuristic, proposed by George and Liu

(1989), is a simple and efficient algorithm based on ordering the vertices by their degree. Previous

articles have also developed methodologies for finding a minimal chordal completion. Note that

a minimal chordal completion is not necessarily minimum, as depicted in Figure 1(c), but does

provide a heuristic solution to the MCCP.

Finally, exact computational methodologies for the MCCP have been limited, to the best of our

knowledge. A valid mathematical programming model for the MCCP can be obtained by modifying

the formulation by Feremans et al. (2002) for determining the tree-widths of graphs based on

perfect elimination orderings. Yüceoğlu (2015) has recently provided a first polyhedral analysis and

computational testing of this formulation, deriving facets and other valid inequalities for specific

classes of graphs. Alternatively, Bergman and Raghunathan (2015) introduced a Benders approach

to the MCCP, outperforming a simple constraint programming backtracking search algorithm.

We note in passing that the MCCP literature is extensive; we refer to the survey by Heggernes

(2006) for additional details and references. We contribute to this body of work by investigating

the polyhedral structure of a new mathematical programming formulation for the problem. Besides

the underlying structural results from this study, we derive a computational approach that has

been effective in providing new solutions and improved bounds for benchmark problems.

3. Notation and Terminology

For the remainder of the paper, we assume that each graph G= (V,E) is connected, undirected,

and does not contain self-loops or multi-edges. For any set S,
(
S
2

)
denotes the family of two-element
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subsets of S. Each edge e∈E ⊆
(
V
2

)
is a two-element subset of vertices in V . The complement edge

set (or fill edges) Ec of G is the set of edges missing from G; that is, Ec =
(
V
2

)
\E. We denote by

m and mc the cardinality of the edge set and of the complement edge set of G, respectively (i.e.,

m= |E| and mc = |Ec|). The graph induced by a set V ′ ⊆ V is the graph G[V ′] = (V ′,E′) whose

edge set is such that E′ =E∩
(
V ′

2

)
. If multiple graphs are considered in a context, we include “(G)”

in the notation to avoid ambiguity; e.g., V (G′) and E(G′) represent the vertex and edge set of a

graph G′, respectively. Moreover, for every integer k≥ 0, we let [k] := {1,2, . . . , k}.

For any ordered list C = (v0, v1, . . . , vk−1) of k distinct vertices of V , let V (C) = {v0, v1, . . . , vk−1}

be the set of vertices composing C, with |C|= |V (C)|. The exterior of C is the family

ξ(C) = {{vk−1, v0}}∪
⋃

i∈[k−1]

{{vi−1, vi}},

and the interior of C is the family of two-element subsets of V (C) that do not belong to ξ(C),

ι(C) =

(
V (C)

2

)
\ ξ(C).

An ordered list C is a cycle if ξ(C)⊆E. If C is a cycle, an element of ι(C) is referred to as a chord.

A cycle C for which the induced graph G[V (C)] contains no chords is a chordless cycle. G is said

to be chordal if the maximum size of any chordless cycle is three. A chordless cycle with k vertices

is denoted by k-chordless cycle.

Let G= (V,E). Any subset of fill edges F ⊆Ec is a completion of G, and G∪F represents the

graph that results from the addition of edges in F to E; that is, G ∪ F := (V,E ∪ F ). A chordal

completion of G is any set of fill edges F ⊆Ec for which the completion G∪F is chordal. A minimal

chordal completion F is a chordal completion such that, for any proper subset F ′ ⊂ F , F ′ is not

a chordal completion of G. A minimum chordal completion is a minimal chordal completion of

minimum cardinality, and the minimum chordal completion problem (MCCP) is concerned with

the identification of a minimum chordal completion.

Example 1. The graph in Figure 1(a) has three chordless cycles, C1 = (v0, v1, v2, v3), C2 =

(v1, v2, v3, v4) and C3 = (v0, v1, v4, v3). Figure 1(c) shows a chordal completion consisting of edges
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{v0, v2},{v2, v4}, and {v0, v4}. Removing any of these edges will result in a graph that is not chordal,

and hence this chordal completion is minimal. Figure 1(b) shows a a minimum chordal completion

consisting only of edge {v1, v3}.

4. IP Formulation for the MCCP

We now describe the IP formulation investigated in this paper. Given a graph G = (V,E), each

binary variable xf in our model indicates whether the fill edge f ∈Ec is part of a chordal completion

for G. That is, if we define the set E(x) := {f ∈Ec : xf = 1} for each vector x ∈ [0,1]m
c
, the set of

feasible solutions to our model is given by

X(G) :=
{
x∈ {0,1}m

c

:G∪E(x) is chordal
}
.

Thus, each x∈X(G) equivalently represents the characteristic vector of a chordal completion of G.

We use G(x) to denote G∪E(x), i.e., G(x) = (V,E∪E(x)), and x(F ) to represent the characteristic

vector of completion F ⊆Ec, i.e., x(F )f = 1 if f ∈ F and x(F )f = 0 otherwise.

Let C be the family of all possible ordered lists composed of distinct vertices of V , i.e., every C ∈ C

can be written as a sequence C = (v0, v1, . . . , vk−1) for some k ≤ |V |. Also, let FG(C) = F (C)⊆Ec

be the set of fill edges that are missing in ξ(C) for C to induce a cycle in G, that is,

F (C) := ξ(C) \E(G).

We propose the following model for the MCCP:

minimize
∑
f∈Ec

xf (IPC)

s.t.
∑
f∈ι(C)

xf − (|C| − 3)

 ∑
f∈F (C)

xf − |F (C)|+ 1

≥ 0, for all C ∈ C, (I1)

with ι(C)∩E = ∅

x∈ {0,1}m
c

.
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The set of inequalities (I1) will also be referred to as the chordal inequalities. Note that every

sequence C such that F (C) = ∅ and ι(C)∩E = ∅ describes a cycle in G, and its associated inequality

(I1) simplifies to ∑
f∈ι(C)

xf ≥ |C| − 3.

The following lemma is a reinstatement of Fact 2.1 in Natanzon et al. (2000). It shows that

inequalities (I1) are valid in this special case.

Lemma 1. If C is a chordless cycle of G such that |C| ≥ 4, then any chordal completion of G

contains at least |C| − 3 edges that belong to ι(C).

Based on the previous lemma, we show below that the set of inequalities (I1) is valid for all

sequences in C and, as a consequence, that (IPC) is a valid formulation for the MCCP.

Proposition 1. The model (IPC) is a valid formulation for the MCCP.

Proof. We first show that there is an one-to-one correspondence between X(G) and feasible

points of (IPC). Let x∗ be a feasible solution to (IPC) and suppose that the graphG∪E(x∗) contains

a chordless cycle C with more than 3 vertices. Then
∑

f∈ι(C) x
∗
f = 0< |C| − 3, thus contradicting

the feasibility of x∗.

Conversely, let E∗ ⊆ Ec be such that G ∪E∗ is chordal, and suppose x∗ = {x ∈ {0,1}mc
: xf =

1⇔ f ∈ E∗} is infeasible to (IPC), i.e., x∗ violates at least one inequality of type (I1). Let C∗

be a sequence associated with a violated inequality I(C∗). We can assume that |C∗| ≥ 4, as the

inequality would be trivially satisfied otherwise. If I(C∗) is violated, the expression multiplying

(|C∗|−3) in the inequality must be equal to 1; otherwise, the sum would be less than or equal to 0,

making the inequality trivially satisfied. Consequently, each edge in ξ(C∗) must belong to G∪E∗,

i.e., C∗ is a cycle in G∪E∗. Moreover, by the definition of (I1), ι(C∗)∩E = ∅, i.e., C∗ is chordless

in G+F (C∗). Finally, a violation of I(C∗) takes place if
∑

f∈ι(C∗) xf < |C∗| − 3, a condition that,

according to Lemma 1, cannot hold if G∪E∗ is chordal, so we have a contradiction. Finally, since

the one-to-one correspondence holds and the objective function of (IPC) minimizes the number of

added edges, the result follows. �
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5. MCCP Polytope Dimension and Simple Upper Bound Facets

This section begins our investigation of the convex hull of the feasible set of chordal completions

X(G), which will lead to special properties that can be exploited by computational methods for

the MCCP. We identify the dimension of the polytope and provide a proof that the simple upper

bound inequalities xf ≤ 1 are facet defining.

Theorem 1. If G= (V,E) is not a complete graph (and hence not trivially chordal),

a. conv(X(G)) is full-dimensional;

b. xf ≤ 1 is facet-defining for all f ∈Ec.

Proof. We first show (a). Let e∈ {0,1}mc
be the vector consisting only of ones and ej ∈ {0,1}mc

be the unit vector for coordinate j. By definition, G∪E(e) is the complete graph, which is trivially

chordal. By removing the edge associated with coordinate j, we obtain graph G∪E(e− ej), which

is also chordal. The set of mc + 1 vectors {e} ∪ {e− e1, e− e2, . . . , e− emc} is affinely independent

and contained in the set X(G), and so it follows that conv(X(G)) is a full-dimensional polytope.

For (b), let f ∈Ec, and notice that the set of mc vectors {e}∪ {e− ef ′ : f ′ ∈Ec \ {f}} is affinely

independent and satisfies xf = 1. �

6. Cycle Graph Facets

We restrict our attention now to cycle graphs, i.e., graphs consisting of a single cycle. Cycle graphs

are the building blocks of computational methodologies for the MCCP, since finding a chordal

completion of a graph naturally concerns identifying chordless cycles and eliminating them by

adding chords. We present four classes of facet-defining inequalities for cycle graphs in this section.

Let G= (V,E) be a cycle graph associated with a k-vertex chordless cycle C = (v0, . . . , vk−1), i.e.,

V = V (C) and E = ξ(C). Assume all additions and subtractions involving indices of vertices are

modulo-k. The proofs presented in this section show only the validity of the inequalities; arguments

proving that they are facet defining for cycle graphs are presented in Section EC.1.
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Proposition 2. Let G = (V,E) be a cycle graph associated with cycle C = (v0, . . . , vk−1), k ≥ 4.

The chordal inequality (I1) associated with C, which in this case simplifies to

∑
f∈ι(C)

xf ≥ |C| − 3,

is valid and facet defining for conv(X(G)). �

The proof of the validity of the inequality in Proposition 2 follows directly from Lemma 1.

Proposition 3. If k≥ 4, the inequality

x{vi−1,vi+1}+
∑

f :vi∈f,{vi−1,vi+1}∩f=∅

xf ≥ 1, for all i∈ {1, . . . , k} (I2)

is valid and facet defining for conv(X(G)).

Proof. Suppose that (I2) is violated by some x∈ conv(X(G)), i.e., that for some {vi−1, vi, vi+1} ⊂

V , x{vi−1,vi+1}+
∑

f :vi∈f,{vi−1,vi+1}∩f=∅ xf = 0. As k≥ 4, a shortest path P from vi−1 to vi+1 in G(x)

that does not include vi traverses at least two edges. The sequence defined by the concatenation

of P with (vi−1, vi, vi+1) thus defines a k′-chordless cycle of G(x) for k′ ≥ 4, a contradiction. �

For the next proposition, some additional notation is in order. For any two vertices vi and vj

with i < j, let dC(vi, vj) := min{j− i, k− j+ i} be the distance between vi and vj in C, and assume

dC(vi, vj) := dC(vj, vi) if i > j.

Proposition 4. If k≥ 5, the inequality

∑
f∈{{vi,vj}∈Ec :dC(vi,vj)=2}

xf ≥ 2 (I3)

is valid and facet defining for conv(X(G)).

Proof. Inequality (I3) states that at least two out of the |C| pairs of vertices of distance 2 must

appear in any chordal completion of G. Given completion F of G, without loss of generality, let

f ′ = {v0, vj1} be the edge of ι(C) that connects the “closest” vertices with respect to dC . If j1 ≥ 3,

then C ′ = (v0, v1, . . . , vj1) is a chordless cycle in G∪F , a contradiction; therefore, j1 = 2.
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As k≥ 5, C ′ = (v0, v2, v3, . . . , vk−1) is a cycle in G∪F with at least 4 vertices, so at least one edge

of ι(C ′) must be present in G∪F . Let f ′′ = {v′i, v′j2} be the edge of ι(C ′) that connects the “closest”

vertices with respect to dC′ . An argument similar to the one used to show j1 = 2 shows that f ′′

connects two vertices of distance 2 in C ′, so we have two cases to analyze. First, if f ′′ 6= {v0, v3}, the

result follows directly. Otherwise, we either have |C ′|= 4, in which case dC′(v0, v3) = dC(v0, v3) = 2,

as desired, or we have a chordless cycle C ′′ = (v0, v3, . . . , vk−1) in G∪F with at least 4 vertices, on

which we can apply the same arguments; as a sequence of cycles emerging from this construction

will lead to a cycle of length 4, the result holds. �

Proposition 5. If k≥ 5, the inequality∑
f∈ι(C) \{{vj−1,vj+1},{vj ,vi}}

xf ≥ |C| − 4, for all i, j ∈ {1, . . . , k}, dC(vj, vi)≥ 2 (I4)

is valid and facet defining for conv(X(G)).

Proof. Given vertices vi and vj such that dC(vj, vi)≥ 2, inequality (I4) enforces the inclusion

of at least |C| − 4 edges of ι(C) \ {{vj−1, vj+1},{vj, vi}} in any chordal completion of G. Without

loss of generality, let j = 0 and let i be any value in [2, k− 3]. Suppose by contradiction that there

exists x0 ∈X(G) such that ∑
f∈ι(C) \{{vk−1,v1},{v0,vi}}

x0
f < |C| − 4. (1)

By Lemma 1, we have that ∑
f∈ι(C)

x0
f ≥ |C| − 3.

This implies that x0
vk−1,v1

= x0
v0,vi

= 1, for otherwise inequality 1 would be violated. Thus, the

sequences C1 = (v0, v1, . . . , vi) and C2 = (v0, vi, vi+1, . . . , vk−1) are cycles in G(x0). Again, by

Lemma 1, at least
∣∣C`
∣∣− 3 fill edges must be present in ι(C`), ` = 1,2. This is only possible if

at least i− 2 edges of ι(C1) and at least |C| − i− 2 edges of ι(C2) belong to the set of fill edges

described by x0. As ι(C1)∩ ι(C2) = ∅ and ι(C1)∪ ι(C2)⊆ ι(C), we have that∑
f∈ι(C) \{{vi−1,vi+1},{v0,vi}}

x0
f ≥

∑
f∈int(C1)

x0
f +

∑
f∈int(C2)

x0
f ≥ |C| − 4,

thus contradicting inequality (1).
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Example 2. LetG be a cycle graph associated with 6-cycle C = (v0, v1, v2, v3, v4, v5). An example of

inequality (I2) with i= 1 is x{v0,v2}+
(
x{v1,v3}+x{v1,v4}+x{v1,v5}

)
≥ 1, which enforces the inclusion

of at least one edge f = {v1, vk}, k ∈ {3,4,5}, for every chordal completion without edge (v0, v2).

Inequality (I3) translates to x{v5,v1} + x{v0,v2} + x{v1,v3} + x{v2,v4} + x{v3,v5} + x{v4,v0} ≥ 2, which

enforces that at least 2 of the 6 pairs of vertices that are separated by one vertex must appear in

any chordal completion of G. Finally, inequality (I4) for i= 4 and j = 1 is given by

x{v0,v3}+x{v0,v4}+x{v1,v3}+x{v1,v5}+x{v2,v4}+x{v2,v5}+x{v3,v5} ≥ 2,

which enforces that at least 2 of the edges in ι(C) \ {{v0, v2},{v1, v4}} must be included in any

chordal completion of G.

7. General Polyhedral Properties

This section provides theoretical insights into the polyhedral structure of the MCCP polytope. The

first result, provided in Theorem 2, shows that any inequality proven to be valid on an induced

subgraph can be extended into a valid inequality for the original graph. This result is relevant since

it shows that finding valid inequalities/facets on particular substructures, such as cycles, helps in

the generation of valid inequalities for larger graphs containing these substructures. Theorem 3

shows how facets for a cycle graph can be lifted to inequalities that, in turn, are facets for its

subgraphs. This leads to the result in Corollary 1 concerning when the inequalities (I1) in their

general form are facet defining. The final result of the section, Theorem 4, proves and describes

how facets for small cycles can be lifted to facets of larger cycles.

First, we show a lemma that will be used in the proof of Theorem 2.

Lemma 2. If G= (V,E) is chordal, then G[W ] is chordal for any W ⊆ V .

Proof. It follows since a chordless cycle C in G[W ] must be a chordless cycle in G. �

Theorem 2. Let G= (V,E) be an arbitrary graph and W ⊆ V be any subset of vertices. If a′x≥ b

is a valid inequality for X(G[W ]), then ax ≥ b is a valid inequality for X(G), where af = a′f if

f ∈Ec(G[W ]) and af = 0 otherwise.
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(a)
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v3

v4

(b)

Figure 2 (a) A graph G with V = {v0, v1, v2, v3, v4} and E = {{v0, v1},{v3, v4}}. Solid lines represent graph edges

and dashed lines are fill edges whose addition to G makes a chordless cycle of length 5. (b) Cycle graph

with 5 vertices.

Proof. By way of contradiction, suppose that a′x ≥ b is valid for X(G[W ]) and let F be a

chordal completion of G such that ax(F )< b. From the construction of a, we have ax(F ) = a′x(F ∩

Ec(G[W ]))< b. By Lemma 2, G[W ] +F ∩Ec(G[W ]) must be chordal and, consequently, we must

have a′x(F ∩Ec(G[W ]))≥ b, establishing thus a contradiction. �

We now present a result that goes in the opposite direction of Theorem 2. Namely, it shows how

facet-defining inequalities for a cycle graph G can be transformed into facet-defining inequalities

for subgraphs of G; note that subgraphs of cycle graphs consist of collections of paths. This result

allows us to show that inequality (I1) is facet defining for subgraphs of cycle graphs.

Theorem 3. Let G′ = (V,E′) be a cycle graph associated with the cycle C = (v0, v1, . . . , vk−1) ∈ C

and G= (V,E) be a subgraph of G′ such that G′ =G∪FG(C), FG(C) =E′ \E. If ax≥ b is facet

defining for conv(X(G′)), a≥ 0, and a′ ∈R|Ec|, with a′f = af if f ∈Ec\FG(C) and a′f = 0 otherwise,

the inequality

a′x≥ b

 ∑
f∈FG(C)

xf − |FG(C)|+ 1


is facet defining for conv(X(G)). �

Theorem 3 (proved in Section EC.2) immediately leads to the following result:

Corollary 1. For any graph G= (V,E), and for any sequence C ∈ C such that ι(C)∩E = ∅, the

chordal inequality (I1) is facet defining for the MCCP polytope of G[V (C)].

Example 3. Consider the graph G in Figure 2(a); solid lines represent graph edges in

this example. As in the statement of Theorem 3, we have C = (v0, v1, v2, v3, v4) , E(G) =
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{{v0, v1},{v3, v4}} , and FG(C) = {{v1, v2},{v2, v3},{v4, v0}} . Graph G∪F (C) is 5-chordless cycle.

One facet-defining inequality for this cycle, according to Proposition 2, is the simplified version

of the chordal inequality, given by x{v0,v2} + x{v0,v3} + x{v1,v3} + x{v1,v4} + x{v2,v4} ≥ 2. Corollary 1

stipulates that the inequality below is facet defining for G:

x{v0,v2}+x{v0,v3}+x{v1,v3}+x{v1,v4}+x{v2,v4} ≥ 2 ·
(
x{v1,v2}+x{v2,v3}+x{v4,v0}− 3 + 1

)
.

By Theorem 2, these inequalities will also be valid even if G is a subgraph of a larger graph.

We now define a method for lifting facet-defining inequalities defined on smaller cycles into

facet-defining inequalities for large cycles. This is done by considering the inclusion of chords into

the inequalities, which reveals a lifting property of MCCPs that can be used to strengthen known

inequalities. We present this result in Theorem 4, which is proved in Section EC.2.

Theorem 4. Let G= (V,E) be a cycle graph associated with the cycle C = (v0, v1, . . . , vk−1) and

let f∗ = {vs, vt} ∈ Ec, 0 ≤ s < t ≤ k − 1, be any chord of C. If the inequality ax ≥ b, a ≥ 0, is

facet-defining for the MCCP polytope of cycle graph G′ = (V ′,E′) associated with the cycle C ′ =

(vs, vs+1, . . . , vt) (i.e., G′ =G[V (C ′)] + {f∗}), then

a′x≥ b ·xf∗

is facet defining for conv(X(G)), where a′f = af if f ∈ ι(C ′) and a′f = 0 otherwise. �

If ax≥ b is facet defining for any induced subcycle obtained by adding edge f∗, then ax≥ b ·xf∗

will be facet defining for the original cycle graph.

Example 4. Consider the graph in Figure 2(b), and let G′ = G[{v1, v2, v3, v4}] + {{v1, v4}} be a

cycle graph associated with cycle C ′ = (v1, v2, v3, v4). From Proposition 2, we have that the following

chordal inequality is facet defining for conv(X(G′)):

∑
f∈ι(C′)

xf = x{v1,v3}+x{v2,v4} ≥ |C
′| − 3 = 1.

This inequality can be modified in order to become facet defining for conv(X(G)) through Theo-

rem 4, yielding x{v1,v3}+x{v2,v4} ≥ x{v1,v4} =⇒ x{v1,v3}+x{v2,v4}−x{v1,v4} ≥ 0.
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8. Solution Method for the MCCP

We now describe a procedure to solve formulation (IPC) for general graphs based on the structural

results showed in the previous sections. Since the model has exponentially many constraints, our

solution technique is based on a hybrid branch-and-bound procedure that applies separation, lazy-

constraint generation, and a primal heuristic to the problem.

8.1. Separation complexity

The problem of separating inequalities (I1)-(I4) over an integer point x∗ is equivalent to finding

a chordless cycle on the graph completion G′ = (V,E′) =G∪E(x∗). In our computational experi-

ments, we employed an adapted version of the O(|V |+ |E′|2) procedure proposed by Nikolopoulos

and Palios (2007) for this task. Namely, we removed the condition which forces the algorithm to

stop as soon as a first cycle is detected, thereby enabling the procedure to potentially identify

several cycles every time it is executed. This change does not impact the worst-case complexity of

the algorithm. We also note in passing that the recent work by Uno and Satoh (2014) enumerates

all chordless cycles of G′ in time O(|E′|) per cycle. Nonetheless, the execution of such procedure

at every integer node was far too computationally expensive in our analysis.

The separation problem of (I1)-(I4) over fractional points is, however, much more challenging.

We state the results below concerning this question.

Theorem 5. Given a fractional point x∗ ∈ [0,1]m
c
:

a. The separation problem of (I1) is NP-Complete.

b. Inequalities (I2) can be separated in O(|V |5).

c. Inequalities (I3) can be separated in O(|V |8).

d. The separation problem of (I4) is NP-Complete.

Proof. Due to space limitations, we present below only proof sketches for these results. The full

version of each proof is presented in Section EC.3 of the online supplement.

a. The proof reduces the quadratic assignment problem (QAP), a classical and well-studied

NP-hard problem, to the α-quadratic shortest cycle problem (α-QSCP), introduced in this paper.
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In the QSCP, we are given a graph G= (V,E) and a quadratic cost function q : V ×V → [0,1], with

q(u, v) = 0 if (u, v)∈E. A feasible solution of QSCP is a simple chordless cycle C = (v1, v2, . . . , v|C|)

whose cost is p(C) =
∑
{u,v}∈E(G[C])C q(u, v)− |C|. The α-QSCP is the decision version of QSCP

in which the goal is to decide whether G has a simple chordless cycle C such that p(C)< α. We

employ a reduction of the quadratic assignment problem to (−3)-QSCP that resembles the ones

used by Rostami et al. (2015) for the quadratic shortest path problem. Finally, the −3-QSCP is

reduced to the problem of separating the inequality (I1), completing the proof.

b. An auxiliary graph G′, a complete digraph on |V (G)| nodes, is constructed for which the

separation problem is reduced to finding, for every triple of vertices (v1, v2, v3), the shortest path

from v1 to v3 that does not include v2. The number of sequences for which this verification needs to

be performed is O(|V (G)|3), and the identification of such a path can be made in time O(|V (G)|)2.

c. As in b, an auxiliary graph G′, specifically a complete digraph on |V (G)|2 nodes, is con-

structed for which the separation problem is reduced to finding at most O(|V (G)|4) shortest paths,

each of which can be performed in polynomial time.

d. The proof is similar to that of a, except that we use a reduction from −4-QSCP*, a slight

variant of −3-QSCP. �

8.2. Heuristic separation algorithms

In view of Theorem 5, we tackle model (IPC) by applying a branch-and-bound procedure that

alternates between heuristic separation and lazy-constraint generation.

For the lazy constraint generation part, at every integer node of the branching tree we apply

the procedure presented in Section 8.1 to separate at least one violated inequality (I1)-(I4), similar

to a combinatorial Benders methodology (Codato and Fischetti 2006). Proposition 1 ensures that

this approach yields an optimal (and feasible) solution to (IPC), since a violated inequality is not

found if and only if the resulting graph is chordal.

Nonetheless, adding violated inequalities only at integer points typically yield weak bounds at

intermediate nodes of the branching tree. Since a complete separation of fractional points is not
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viable due to Theorem 5, we consider a heuristic threshold procedure. Given a point x∗ ∈ [0,1]m
c

and a threshold δ ∈ (0,1), let Eδ(x) := {f ∈Ec : xf ≥ δ} , we can use the procedure from Section

8.1 to find violating inequalities for the graph G∪Eδ(x∗). Such inequalities may not be necessarily

violated by x∗, and thus require a (simple) extra verification testing step. The threshold policy

does not guarantee that at least one violated inequality is found, but it can be performed efficiently

and, as our numerical experiments indicate, it is a fundamental component for good performance.

8.3. Primal Heuristic

We have also incorporated a primal heuristic to be applied at infeasible integer nodes of the

branching tree. The method is based on the state-of-the-art heuristic for the problem, designed

by George and Liu (1989). Specifically, the vertices of the graph are sorted in ascending order

according to their degree, thereby defining a sequence S = (v1, v2, . . . , v|V |). The vertices are then

picked one at a time, in the order indicated by S. For each vertex vi, edges are added to G so

that S defines a perfect elimination ordering, i.e., vi and its neighbours on set {vi+1, vi+2, . . . , v|V |}

induce a clique, which makes G chordal. This procedure has complexity O(|V |2 |E|).

For any integer point x ∈ {0,1}mc
found during the branch-and-bound procedure, if G′ :=G ∪

E(x) is not chordal, we can apply George and Liu (1989)’s heuristic in order to chordalize G′

and obtain a feasible solution to the problem. The application of this procedure at the root node

ensures we can identify solutions which are at least as good as those provided by the heuristic.

9. Numerical Experiments

In this section we present an experimental evaluation of the solution methods introduced in this

paper. The experiments ran on an Intel(R) Xeon(R) CPU E5-2640 v2 at 2.80GHz with 100 GB

RAM. We used the integer programming solver IBM ILOG CPLEX 12.7.1 (IBM ILOG 2017) in all

experiments, which were limited to one thread and 3,600 seconds of execution. Experiments that

exceeded the memory limit had their time limits reduced by 5 or 10 minutes in order to enable the

extraction of an optimality gap.
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Instances. We considered five families of instances for the experimental evaluation: four struc-

tured benchmarks (relaxed caveman graphs, grid graphs, queen graphs, and DIMACS), and one

new family derived from an application in knowledge-based systems (RCC-8).

• Relaxed caveman graphs (Judd et al. 2011) are used in the analysis of social network models,

where small pockets of individuals are tightly connected and have sporadic connections to individ-

uals in other groups. Each instance is randomly generated based on three parameters, α,β ∈ Z+,

and γ ∈ (0,1). Starting from a set of β disjoint cliques each of size α, each edge is examined and,

with probability γ, one of its endpoints is uniformly at random switched to a vertex belonging to

another clique. The structure of relaxed caveman graphs is particularly useful for evaluating algo-

rithms for chordal completions. Namely, the endpoint switches lead to large chordless cycles, thus

enforcing the inclusion of several edges in chordal completions. For our experiments, ten instances

of each configuration of α,β ∈ {4,5,6,7,8} and γ = 0.30 were generated. This set of graphs will be

henceforth be referred to as caveman instances.

• Grid graphs are graphs whose vertex sets can be partitioned into a set of r rows R1, . . . ,Rr and

c columns C1, . . . ,Cc. Each pair (r′, c′) in [r]× [c] is associated with a single vertex vr′,c′ ∈Rr′ ∩Cc′ .

Vertices vi,j and vk,l are adjacent if and only if either i= k and |j− l|= 1, or j = l and |i− k|= 1.

These graphs have been used in previous computational studies of the MCCP because they contain

large chordless cycles (Yüceoğlu 2015).

• Queen graphs are extensions of grid graphs with additional edges representing longer hops as

well as diagonal movements. More precisely, there exists an edge connecting vi,j to vi′,j′ if and only

if one of the three following conditions is satisfied for some k: (1) i= i′±k and j = j′±k, (2) i= i′

and j = j′± k, or (3) i= i′± k and j = j′. The configurations of grid graphs and of queen graphs

used in our experiments are equivalent to those used by Yüceoğlu (2015).

• DIMACS is a classical graph coloring benchmark frequently used in computational evaluations

of graph algorithms. The dataset can be downloaded from http://dimacs.rutgers.edu/Challenges/.

• RCC-8 are graphs derived from real-world region-connection calculus networks (Renz 2002).

RCC-8 is the state-of-the-art approach for qualitative topological reasoning with applications, e.g.,
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in the Semantic Web (Zhang et al. 2015). In an RCC-8 network, nodes correspond to regions (in

some topology) and a connection between nodes represents a relationship the regions share. For

instance, regions could be associated with countries and connections with trade agreements.

The main use of RCC-8 networks is to answer qualitative queries, e.g., what countries may be

involved with a particular type of trade. To perform these queries, the networks must be modified

by enforcing a notion of consistency (i.e., path-consistency), which is achieved by chordalizing the

graph. The size of the chordal completion plays a critical role on the efficiency of the consistency

methods for RCC-8 (Sioutis and Koubarakis 2012, Sioutis 2014).

For our experiments, we extracted subgraphs of an RCC-8 network associated with administra-

tive regions of the United Kingdom. The graph that must be subjected to path consistency was

obtained from Nikolaou and Koubarakis (2014) (adm1). For each n ∈ {25,50,75,100,125,150}, we

chose n vertices by picking a vertex v uniformly at random, setting S = {v}, and increasing S by

picking vertices that are adjacent to at least one vertex in S uniformly at random until |S|= n.

Finally, we generated the graph induced by S for our tests. This was repeated 10 times per n.

Other Approaches. The state-of-the-art techniques to the MCCP reported in the literature are a

branch-and-cut approach by Yüceoğlu (2015) and a Benders decomposition approach by Bergman

and Raghunathan (2015), henceforth denoted by YUC and BEN, respectively. The complete branch-

and-cut algorithm proposed in this paper will be denoted by BC.

YUC employs a branch-and-cut approach based on a polyhedral analysis of a perfect elimination

ordering (PEO) model for the MCCP. The PEO model is presented in Section EC.4. YUC incorpo-

rates valid inequalities for grid and queen graphs. BEN is the precursor of the approach described

in the present work, in that it solves a formulation consisting only of inequalities (I1) with a pure

Benders decomposition approach; i.e., BEN solves to optimality an MILP using the current set of

inequalities (I1) found up to the current iteration. If the solution contains no chordless cycles, then

it is optimal. Otherwise, a collection of chordless cycles is found, new inequalities (I1) are added

to the model, and the procedure repeats.
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Also of interest is to compare our approach with state-of-the-art heuristics in terms of solution

quality, thus assessing how significant the differences between exact and heuristic solutions are. We

consider the state-of-the-art heuristic developed by George and Liu (1989) (described in Section

8.3), which will henceforth be denoted by MDO.

9.1. Algorithmic Enhancements

We first evaluate the impact of individual algorithmic enhancements on BEN. The following enhance-

ments are considered: (1) using all inequalities (I1)-(I4); (2) separating the inequalities at fractional

nodes based on our polyhedral results; and (3) invoking MDO as a primal heuristic. BC is an imple-

mentation where all enhancements are applied, i.e., BEN+(1)+(2)+(3).

Figure 3 presents a cumulative distribution plot of performance considering all instances classes.

The horizontal axis is divided into two areas: the left portion denotes solution time (in seconds),

and the right portion denotes relative optimality gap (in this case, computed as ub−lb/ub+10−8, where

ub and lb represent the resulting upper and lower bounds, respectively). The vertical axis denotes

the number of solutions with that solution time or relative gap. Note that instances solved in up to

3,600s have a final gap of 0%, and hence the curves are non-decreasing. Furthermore, each instance

of caveman was counted as 0.1 because of its randomized process.

The plot indicates that separating at fractional nodes (BEN+(2)) significantly improves the opti-

mality proof time for instances that were solved within the time limit. Adding a primal heuristic

(BEN+(3)) was crucial in obtaining better relative gaps, especially since MDO typically provides good

solutions quickly, as exhibited later in this section. In contrast, additional cuts without fractional

separation (BEN+(1)) did not provide significant enhancements. The complete method, BC, outper-

formed all other approaches both in terms of solution times and relative gaps, thus suggesting a

positive effect of combining the individual enhancements. The same behavior was observed when

plotting each benchmark separately. Other possible combinations were dominated by BC as well.

In order to verify whether an individual enhancement leads to a statistically significant improve-

ment in performance, a two-tailed paired t-test was employed. Specifically, the null hypothesis
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Figure 3 Cumulative distribution plot evaluating individual algorithmic enhancements.

indicates whether the solutions times or gaps are equivalent with or without an enhancement.

We first consider the solution times, restricting to instances that were solved within 3,600s for all

methodologies. For algorithms BEN+(1), BEN+(2), BEN+(3), and BC, the tests resulted in a p-value

of 0.57, 0.00024, 0.088, and 7.6× 10−5, respectively, in comparison to BEN. Notice that this is con-

sistent with Figure 3, since only BEN+(2) and BC provided significant and consistent improvements

to BEN. For the relative optimality gap, we consider all tested instances. The p-values for BEN+(1),

BEN+(2), BEN+(3), and BC were then 0.016, 5.7× 10−7, 2.0× 10−12, and 2.5× 10−14, respectively.

This is again consistent with Figure 3 and shows that the relative gaps for BEN+(3) and BC are

significantly superior to BEN.

Table 1 provides further details on the impact of the enhancements on each dataset. Column #I

reports the total number of instances in the dataset; columns t provides the average solution time

for instances that were solved within 3,600 seconds, with the number in parenthesis representing

the number of such instances; and columns %Gap provides the average gap for instances that were

not solved within the time limit. BC outperforms the other configurations, with respect to both

the relative gap and the number of instances solved within the time limit. There were no instances

solved by other configurations that BC was unable to solve.

Cut Analysis. We also experiment with enabling and disabling distinct combinations of valid

inequalities (I2)-(I4) in the presence of the primal heuristic and separation at fractional nodes. BC
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Table 1 Relative performance of individual improvement per benchmark.

BEN BEN+(1) BEN+(2) BEN+(3) BC

Set #I t %Gap t %Gap t %Gap t %Gap t %Gap

queen 32 107.2(15) 32 120.9(15) 13 55.1(15) 24 77.5(15) 31 109.2(15) 14

grid 23 286.9(11) 54 9.4(10) 25 68.6(13) 34 7.6(10) 51 45.1(13) 13

caveman 25 45.0(24) 22 47.3(24) 7 17.0(25) 0 24.8(24) 38 5.9(25) 0

rcc-8 60 134.6(24) 59 175.1(22) 21 354.2(30) 55 12.2(23) 61 346.4(31) 14

DIMACS 34 167.0(18) 83 91.5(17) 31 34.1(18) 61 350.9(18) 83 64.6(18) 26

Total 174 120.4(92) 56 84.4(88) 22 128.7(101) 46 87.6(90) 57 138.6(102) 17

had a higher average running time than the algorithms with no extra inequalities or with a single

family of cuts (I2), (I3), (I4). Nevertheless, BC solved to optimality either one or two instances

more than each of the other algorithms; in particular, BC solves all instances that were solved

by the other combinations. Average relative gaps varied by at most 1% between combinations.

Finally, two-tailed paired t-tests indicate that there is no significant difference in solution times or

relative gaps between combinations. We therefore use all inequalities (I2)-(I4) in the subsequent

experiments.

9.2. Comparison with Other Approaches

This section provides a comparison of BC with YUC, as well as with the MDO heuristic. We first focus

on the instances reported upon in Yüceoğlu (2015) and Bergman and Raghunathan (2015)—grid,

queen, and DIMACS graphs—and compare solution times and objective function bounds. The

reported numbers for YUC were obtained directly from Yüceoğlu (2015), which were run with IBM

ILOG CPLEX 12.2 and a processor with similar clock (2.53 GHz), but using the parallel version

of the solver, with 4 cores, and not with 1 core, as was set in our experiments.

The data for grid graphs, queen graphs, and DIMACS graphs are presented in Tables 2, 3, and 4,

respectively. These tables report, for each instance, the number of vertices, the number of edges,

and, for all algorithms, the resulting lower bounds, upper bounds, and solution times (in seconds

if solved to optimality in 3,600s, or a ”-” mark otherwise). An upper bound presented in bold face

indicates that the algorithm found the best-known solution for the instance.

As a summary of our results, BC finds the best known solutions in 85 out of all 89 of these

instances, and improves upon the best lower bound in 14 of the 64 instances (13 by more than the
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least integer greater than the bound) that have previously been reported on in the literature. In

particular, the optimality gap in 6 of the instances was closed for the first time. We now discuss

the results for each class of graph in detail.

For grid graphs, Yüceoğlu (2015) enhances PEO with cuts tailored for graphs containing grid

structures, so these instances are particularly well-suited for YUC. The results are presented in

Table 2. BC always finds the best-known solutions, and only in 4 cases out of 23 the relaxation

bound for YUC outperforms that of BC (3 by more than the last integer greater than the bound).

Also, BC improves upon the solutions by MDO in 9 instances, proving optimality for 3 new cases.

Table 2 Results for grid graphs.∗ Note: grid5 5 was not included in the results by Yüceoğlu (2015).

Instance YUC BC MDO

name |V | |E| LB UB t LB UB t UB

grid3 3 9 12 5 5 0.01 5 5 0.01 5

grid3 4 12 17 9 9 0 9 9 0.01 9

grid3 5 15 22 13 13 0.02 13 13 0.04 13

grid3 6 18 27 17 17 0.02 17 17 0.09 17

grid3 7 21 32 21 21 0.01 21 21 0.12 21

grid3 8 24 37 25 25 0.02 25 25 0.69 25

grid3 9 27 42 29 29 0.02 29 29 0.87 33

grid3 10 30 47 33 33 0.03 33 33 2.6 37

grid4 4 16 24 18 18 1.23 18 18 0.58 18

grid4 5 20 31 25 25 18.11 25 25 3.95 25

grid4 6 24 38 32.2 34 - 34 34 71.26 34

grid4 7 28 45 39 41 - 41 41 370.9 41

grid4 8 32 52 45.5 52 - 47.97 50 - 50

grid4 9 36 59 52.5 58 - 52.89 57 - 57

grid4 10 40 66 59.3 66 - 58.58 66 - 66

grid5 5 25 40 * * * 37 37 135.32 37

grid5 6 30 49 46.2 53 - 47.31 50 - 52

grid5 7 35 58 56.9 65 - 56.03 62 - 68

grid5 8 40 67 67.5 77 - 63.30 75 - 80

grid5 9 45 76 33.3 90 - 70.33 87 - 93

grid6 6 36 60 60.9 77 - 57.03 69 - 71

grid6 7 42 71 31 94 - 68.22 86 - 92

grid7 7 49 84 37 125 - 80.82 111 - 119

* Numerical results for the YUC columns were taken directly from Yüceoğlu’s Thesis.

Next, Table 3 reports on queen graphs. As previously mentioned, these instances are also well-

suited to YUC because of their grid-like structures. The results show that BC typically delivers

better upper bounds, whereas YUC frequently returns smaller optimality gaps and solution times
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Table 3 Results for queen graphs.∗ Note: queen9 9 was not included in the results by Yüceoğlu (2015).

Instance YUC BC MDO

name |V | |E| LB UB t LB UB t UB

queen3 3 9 28 5 5 0 5 5 0.01 5

queen3 4 12 46 12 12 0.01 12 12 0.01 12

queen3 5 15 67 22 22 0.31 22 22 0.01 22

queen3 6 18 91 36 36 1.03 36 36 0.07 36

queen3 7 21 118 53 53 2.17 53 53 0.06 53

queen3 8 24 148 74 74 8.49 74 74 2.58 74

queen3 9 27 181 98 98 15.77 98 98 9.37 98

queen3 10 30 217 126 126 65.91 126 126 43.08 126

queen4 4 16 76 26 26 0.19 26 26 0.02 28

queen4 5 20 110 51 51 4.54 51 51 0.54 53

queen4 6 24 148 83 83 16.54 83 83 13.25 83

queen4 7 28 190 119 119 68.22 119 119 73.56 121

queen4 8 32 236 164 164 636.28 164 164 1129.7 167

queen4 9 36 286 209.8 217 - 208.5 218 - 222

queen4 10 40 340 255.5 278 - 254.72 279 - 286

queen5 5 25 160 93 93 41.03 93 93 50.06 94

queen5 6 30 215 144 144 185.81 144 144 315.97 154

queen5 7 35 275 203.1 214 - 200.25 215 - 223

queen5 8 40 340 265.8 293 - 261.49 294 - 306

queen5 9 45 410 339.8 393 - 335.27 392 - 398

queen5 10 50 485 424.9 501 - 422.31 497 - 503

queen6 6 36 290 214.9 232 - 210.13 231 - 244

queen6 7 42 371 299.2 351 - 292.59 340 - 352

queen6 8 48 458 400.7 481 - 394.47 461 - 482

queen6 9 54 551 521.4 622 - 512.35 615 - 633

queen6 10 60 650 656.7 786 - 642.16 792 - 826

queen7 7 49 476 423.7 520 - 418.85 502 - 515

queen7 8 56 588 577.6 710 - 566.06 684 - 687

queen7 9 63 707 751.8 935 - 733.14 905 - 919

queen7 10 70 833 948.5 1177 - 924.79 1141 - 1149

queen8 8 64 728 782.1 965 - 767.02 938 - 970

queen9 9 81 1056 * * * 1289.17 1641 - 1664

* Numerical results for the YUC columns were taken directly from Yüceoğlu’s Thesis.

for harder instances. We remark that different configurations of BC (e.g., the one using only family

of cuts (I4)) delivered the best-known upper bounds for all instances of this class of graphs.

Table 4 reports on DIMACS graphs. The 11 instances above the double horizontal line are those

reported on in Yüceoğlu (2015), whereas the others are the remaining graphs in the benchmark set

consisting of fewer than 150 vertices. Our results show that instances of the first group are solved

orders of magnitude faster by BC and, for those in which YUC was not able to prove optimality,

substantially better objective function bounds are obtained. In particular, BC was able to close the
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Table 4 Results for DIMACS graphs.∗

Instance
YUC BC MDO

name |V | |E| LB UB t LB UB t UB

anna 138 493 47 47 1386.04 47 47 0.64 47

david 87 406 59.5 65 - 64 64 1.84 66

games120 120 638 496.4 1626 - 902.48 1452 - 1513

huck 74 301 5 5 2.92 5 5 0.03 9

jean 80 254 16 16 6.13 16 16 0.06 19

miles250 128 387 45.7 61 - 53 53 4.95 61

miles500 128 1170 196.4 447 - 337.68 404 - 446

miles750 128 2113 352.1 954 - 471 471 812.59 723

myciel3 11 20 10 10 0 10 10 0 10

myciel4 23 71 46 46 0.06 46 46 0.01 46

myciel5 47 236 189.7 197 - 196 196 17.04 197

1-FullIns 3 30 100 80 80 1.22 80

1-FullIns 4 93 593 652.75 776 - 839

1-Insertions 4 67 232 294.99 364 - 394

2-FullIns 3 52 201 238.65 248 - 273

2-Insertions 3 37 72 87.46 99 - 103

2-Insertions 4 149 541 599.21 1585 - 1588

3-FullIns 3 80 346 427.18 575 - 661

3-Insertions 3 56 110 124.96 191 - 198

4-FullIns 3 114 541 639.86 1110 - 1274

4-Insertions 3 79 156 170.54 322 - 331

DSJC125.1 125 736 1714.13 2599 - 2618

DSJC125.5 125 3891 2367.78 3240 - 3240

DSJC125.9 125 6961 583.08 734 - 734

miles1000 128 3216 535 535 286.98 700

miles1500 128 5198 218 218 1.13 308

mug100 1 100 166 64 64 0.48 91

mug100 25 100 166 64 64 0.90 93

mug88 1 88 146 56 56 0.33 82

mug88 25 88 146 56 56 0.68 84

myciel6 95 755 730.97 753 - 753

r125.1 125 209 11 11 1.53 15

r125.1c 125 7501 207 207 33.83 207

r125.5 125 3838 1006.78 1212 - 1231

* Numerical results for the YUC columns were taken directly from Yüceoğlu’s Thesis.

optimality gap of four instances of this dataset that were still open: david, miles250, miles750,

and myciel5. These results can be explained by the fact that DIMACS graphs do not necessarily

have grid-like structures, which makes them more challenging for YUC. For the remaining instances,

9 are solved to optimality and for many of the other instances, the best solutions obtained by

BC employed substantially fewer fill edges than those obtained by the traditional heuristic MDO.

Namely, BC improved upon the solution obtained by MOD in 26 of the 34 DIMACS graphs.
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Table 5 Comparison between MDO and BC on caveman graphs.

α β BC %Gap BC t BC UB MDO UB % Dec Min % Dec Max % Dec

4 4 0.0 0.0 0.9 1.4 15.0 0.0 50.0

4 5 0.0 0.0 1.7 2.8 35.11 0.0 75.0

4 6 0.0 0.0 5.3 7.4 42.75 0.0 66.66

4 7 0.0 0.03 13.2 17.3 25.1 8.33 56.25

4 8 0.0 0.07 19.0 26.3 29.27 6.66 64.28

5 4 0.0 0.0 1.6 1.8 6.25 0.0 50.0

5 5 0.0 0.0 1.7 4.4 51.77 12.5 80.0

5 6 0.0 0.01 7.7 10.3 40.3 0.0 66.66

5 7 0.0 0.17 15.5 21.7 35.67 0.0 54.54

5 8 0.0 0.27 25.1 37.1 34.76 13.79 61.9

6 4 0.0 0.0 0.6 1.7 32.14 0.0 71.42

6 5 0.0 0.0 4.1 8.4 54.92 16.66 80.0

6 6 0.0 0.15 12.2 16.9 35.41 0.0 61.53

6 7 0.0 0.35 18.1 24.2 25.28 6.12 50.0

6 8 0.0 1.47 28.9 43.0 35.76 8.82 59.25

7 4 0.0 0.0 1.1 2.5 50.83 0.0 75.0

7 5 0.0 0.0 3.6 6.5 42.85 0.0 83.33

7 6 0.0 0.32 17.1 23.6 35.79 7.31 38.46

7 7 0.0 2.05 24.8 35.4 37.63 9.37 55.81

7 8 0.0 35.53 55.9 74.1 27.61 11.39 70.96

8 4 0.0 0.0 0.3 3.3 70.83 33.33 75.0

8 5 0.0 0.01 5.5 9.9 58.66 0.0 80.0

8 6 0.0 3.96 14.6 23.3 39.92 0.0 92.85

8 7 0.0 3.76 29.7 45.0 37.64 8.0 81.25

8 8 0.0 101.44 52.6 69.8 26.67 13.88 56.81

We now evaluate the solution quality provided by BC on the remaining datasets. Table 5 presents

the results for relaxed caveman graphs. The columns indicate the parameters α and β, and, for

each configuration, the average optimality gap, solution time, upper and lower bounds provides

by BC, as well as the the average upper bound provided by MDO and the average, minimum, and

maximum percentage decrease in the upper bound from MDO to BC over each individual instance in

that configuration. All instances have been solved to optimality by BC, so all gaps are equal to zero.

As MDO runs in under a hundredth of a second in all cases, running times are not reported. The

results show the advantage of seeking optimal solutions. The heuristic can be far from the optimum

(up to 70% on average for some configurations), showing a trade-off between computational effort

and solution quality.

Finally, Table 6 shows the detailed results for RCC-8 graphs. The results are aggregated by

the number of vertices of the instances (n), where the first column indicates n and the remaining

columns are presented as they are in Table 5. We observe that MDO, which is typically employed
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Table 6 Comparison between MDO and BC on RCC-8 graphs.

n BC %Gap BC t BC UB MDO UB % Dec Min % Dec Max % Dec

25 0.0 0.01 10.6 10.7 1.0 0.0 10.0
50 0.0 16.56 30.4 31.4 3.36 0.0 8.1
75 3.27 1362.64 72.4 77.6 6.97 0.0 30.3
100 7.77 2934.65 101.5 109.1 7.28 0.0 27.84
125 14.08 3600.0 148.6 157.8 5.98 0.79 17.39
150 17.23 3600.0 190.8 202.1 5.59 2.96 9.5

for RCC-8, is highly effective for n ∈ {25,50}. For larger instances with n ≥ 75, we see that BC

can identify substantially better solutions. The reduction in the number of edges in the obtained

solution can be as high as 30% and is on average approximately 5%. Finding the solutions requires

substantial computational time, but since this application does not require expedience in identifying

solutions, using BC is particularly attractive.

10. Conclusion

In this paper we described a new mathematical programming formulation for the MCCP and inves-

tigated some key properties of its polytope. The constraints employed in our model correspond to

lifted inequalities of induced cycle graphs. Our theoretical results show that this lifting procedure

can be generalized to derive other facets of the MCCP polytope of cycle graphs. Finally, we pro-

posed a hybrid solution technique that considers both a lazy-constraint generation and a heuristic

separation method based on a threshold rounding, and also presented a simple primal heuristic

for the problem. A numerical study indicates that our approach substantially outperforms existing

methods, often by orders of magnitude.
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Figure EC.1 The graph (a) G(x̃i) and the graph (b) G(x̂i) defined in the proof of Proposition 2.

Online Supplement—Proofs of Statements

EC.1. Additional Proofs for Section 6

Facet-defining proof of Proposition 2. Let F I =
{
x∈X(G) :

∑
f ∈ ι(C) xf = |C| − 3

}
and µx ≥

µ0 be a valid inequality for conv(X(G)) that is satisfied at equality by each x ∈ F I . It suffices to

show that there exists some λ for which µf = λ and µ0 = (|C| − 3)λ.

Let x′ ∈ {0,1}mc
be such that x′f = 1 if f = {v0, vj}, j = 2, . . . , k − 2, and x′f = 0 otherwise. We

claim that x′ ∈X(G), i.e., G(x′) is chordal, and x′ ∈ F I . First, let V̄j = {v0, v1, . . . , vj} for every

j ∈ [2, k − 1]. By construction, set NG[V̄j](vj) = {v0, vj−1} induces a clique in G[V̄j]. Therefore,

v0, v1, . . . , vk−1 is a perfect elimination ordering of V (G(x′)), thereby proving that G(x′) is chordal.

Additionally, since exactly |C| − 3 edges in ι(C) are in G(x′), x′ ∈ F I .

Consider now the solutions x̃i ∈ {0,1}mc
for i= 3, . . . , k− 1, such that x̃if = 1 if f = {v1, vj}, j =

3, . . . , i, or if f = {v0, vj}, j = i, i+1, . . . , k−2; otherwise, x̃if = 0 (see Figure EC.1 (a) for an example

of G(x̃i)). For every j ∈ [2, k − 1], let V̄j be the set of vertices belonging to the subsequence of

(v1, . . . , vi, v0, vi+1, . . . , vk−1) finishing at element vj. By construction, NG[V̄j](vj) is given by {v1, vi}

if j = 0, {v1} if j = 2, {v1, vj−1} if 3≤ j ≤ i, and {v0, vj−1} if i+ 1≤ j ≤ k− 1, which in each case is

a clique. Therefore, v1, . . . , vi, v0, vi+1, . . . , vk−1 is a perfect elimination ordering of V (G(x̃i)), thus

showing that G(x̃i) is chordal. Moreover, exactly |C| − 3 edges of ι(C) are in G(x̃i), so x̃i ∈ F I .

Let λ2 = µ{v0,v2}. Solutions x̃i and x′ belong to FI , so µx̃i = µx′ = µ0. By subtracting equa-

tion µx̃3 = µ0 from µx′ = µ0, we obtain µ{v0,v2} = µ{v1,v3}. Additionally, shift operations on the
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order of the vertices (to the left or to the right) lead to the same cycle C. Therefore, µ{v0,v2} =

µ{vj ,v(j+2) mod k} for any j ∈ [k− 1], implying thus that µ{v0,v2} = λ2 for every f ∈ ι(C) containing

vertices whose indices in C differ by 2. The same operation involving x̃i−1 and x̃i for i= 4, . . . , k−1

yields µ{v0,vi−1} = µ{v1,vi}. Again, as the ordering around C can be arbitrarily shifted to the left

and to the right, all edges f ∈ ι(C) containing vertices whose indices in C differ by i− 1 have the

same coefficient in µ; let λi−1 be this common value. We thus conclude that µ{vj ,vj′} = λj′−j for

any f = {vj, vj′} (assuming j < j′).

Consider now the solutions x̂i ∈ {0,1}mc
for i= 2, . . . , k− 2, where x̂if = 1 if f = {vi−1, vi+1} or if

f = {v0, vj}, j = 2, . . . , i−1, i+1, . . . , k−2 and x̂if = 0 otherwise (see Figure EC.1 (b) for an example

of G(x̂i).). For every j ∈ [2, k − 1], let V̄j be the set of vertices belonging to the subsequence of

(v0, v1, . . . , vi−1, vi+1, . . . , vk−1, vi) finishing at element vj. By construction, we have that NG[V̄j](vj)

is equal to {v0} if j = 2, {v0, vj−1} if 1 ≤ j ≤ i− 1, and {vi−1, vi+1} if j = i, which, in each case,

is a clique. Consequently, (v0, v1, . . . , vi−1, vi+1, . . . , vk−1, vi) is a perfect elimination ordering, so

x̂i ∈X(G). Finally, as |C| − 3 edges from ι(C) are included in G(x̂i), x̂i ∈ F I .

By subtracting µx′ = µ0 from µx̂i = µ0 for any i= 2, . . . , k− 2, we obtain µ{v0,vi} = µ{vi−1,vi+1}.

Therefore, we have that λi = λ2 for any i = 2, . . . , k − 2. If λ = λ2, µx = µ0 can be rewritten∑
f∈ι(C) λxf = µ0. Finally, substituting x′ in this equation yields µ0 = (|C| − 3)λ, as desired. �

Facet-defining proof of Proposition 3. Let I := ax≥ b be the inequality of type (I2) associated

with i= 1, F I be the set of points in conv(X(G)) that satisfy I at equality, and µx≥ µ0 be a valid

inequality for conv(X(G)) satisfied at equality for each x∈ F I . Let µv0,v2 = λ.

For i ∈ {3,4, . . . , k− 1}, let x̌i be such that x̌if = 1 if f = {vi, vj}, j ∈ [k− 1]\{i− 1, i, i+ 1}, and

x̌if = 0 otherwise, and let y̌i be such that y̌i{v1,vi} = 0, y̌i{v0,v2} = 1, and y̌if = x̌if for the remaining

edges in E(G)c; both families of solutions are depicted in Figure EC.2. We have that both x̌i

and y̌i belong to X(G), as G(x̌i) is isomorphic to G(x′) and y̌i is isomorphic to G(x̂i−1); note

that G(x̌i) and G(x̂i−1) were defined and shown to be associated with chordal completions in the

proof of Proposition 2. Additionally, note that af x̌
i
f = 1 only for f = {v1, vi} and af y̌

i
f = 1 only for
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Figure EC.2 The graph (a) G(x̌i) and the graph (b) G(y̌i) defined in the proof of Proposition 3.

f = {v0, v2}, so both solutions satisfy I at equality and, by definition, µx̌i = µ0 = µy̌i. Therefore,

we must have µ{v1,vi} = µ{v0,v2} = λ for i∈ {3,4, . . . , k− 1}.

We claim now that µf ′ = 0 if f ′ ∈ V0,2 = ι(C)\
(
{v0, v2}∪

⋃
i=3,...,k−1

{v1, vi}
)

. First, note that

V0,2 6= ∅ only if k≥ 5. Let f ′ = {vj, vj′} be such an edge, and assume without loss of generality that

vj 6= v0 (i.e., vj′ can be equal to v2). Let z(f ′) be the solution in {0,1}mc
presented in Figure EC.3

(part a) defined by

z(f ′)f =



1, f = {vi, vj′}, k= 0, 2≤ i≤ j′− 2, and j+ 1≤ i≤ k− 1,

1, f = {vj+1, vj′+1},

1, f = {vj, vi}, j′+ 1≤ i≤ j− 2,

0, otherwise.

Solution z(f ′) satisfies I at equality, as afz(f
′)f = 1 for f = {v1, vj′} and afz(f

′)f = 0 for all the

other edges in G(z(f ′)). Moreover, G(z(f ′)) is isomorphic to the graph presented in Figure EC.1

(part a), so z(f ′)∈X(G).

Let now z′(f ′) be the solution in {0,1}mc
such that z′(f ′)f ′ = 1 and z′(f ′)f =

z(f ′)f for the remaining edges; this solution is presented in Figure EC.3 (part b). The

same argument used for z(f ′) shows that z′(f ′) satisfies I at equality, and sequence

(vj, vj′ , vj+1, vj+2, . . . , vk−1, v0, v1, . . . , vj′−1, vj′+1, . . . , vj−1) is a perfect elimination ordering of V (G)

for G(z′(f ′)), which shows that z′(f ′) ∈ X(G). Finally, because µz′(f ′) = µ0 = µz(f ′), it follows

that µf ′ = 0, as desired.
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Figure EC.3 The graph (a) G(z(f ′)) and the graph (b) G(z′(f ′)) defined in the proof of Proposition 3.

Direct inspection on any solution x̌ (e.g., x̌3) allows us to see that µ0 = λ. Therefore, there exists

a λ such that ∀f ∈Ec, µf = λaf and µ0 = bλ, completing the proof that I is facet defining. �

Facet-defining proof of Proposition 4. Let I := ax≥ b be any inequality (I3). Moreover, let F I

be the set of points in conv(X(G)) that satisfy I at equality and µx≥ µ0 be a valid inequality for

conv(X(G)) satisfied at equality for each x∈ F I . Let λ= µ{v0,v2}.

We claim that ∃λ 6= 0 such that ∀f ∈ ι(C) with dC(f) = 2, µf = λ. Consider solutions x′ and

x̃3 presented in the proof of Proposition 2; graph G(x′) is isomorphic to the one shown in Fig-

ure EC.2 (a) and has v0 as the neighbor of all vertices in V (G), whereas graph G(x̃3) is shown in

Figure EC.1 (a). By construction, both solutions are in F I . Subtracting µx′ = µ0 from µx̃3 = µ0

and canceling like terms yields µ{v0,v2} = µ{v1,v3}. By sequentially applying this procedure starting

from any fill edge of C with dC(vi, vj) = 2, we obtain the desired result.

Now, we show that µf = 0 for every f in ι(C) such that dC(f)≥ 3. Let ỹi be the set of solutions

given by ỹi = x̃i + e{v1,vi+1}, 3≤ i≤ k− 3, with x̃ being again the solutions defined in the proof of

Proposition 2. Each solution ỹi satisfies I at equality. Moreover, (v1, v2, . . . , vi, v0, vi+1, vi+2, . . . , vk−1)

is a perfect elimination ordering for each G(ỹi), thus showing that each ỹi is a valid solution.

Therefore, µỹi = µ0 = µx̃i = µ0, and, as ỹi and x̃i only differ on the coordinate corresponding to fill

edge {v1, vi+1}, we must have µ{v1,vi+1} = 0 for any edge index i,3≤ i≤ k− 2. This implies, due to

cyclic symmetry, that µf = 0 for any edge f ∈ ι(C) such that dC(f)≥ 3.

Finally, we have µ0 = µx′ = µ{v0,v2}+µ{v0,v2} = 2λ. Therefore, there exists a λ such that µ0 = bλ

and µf = λaf for every f in Ec, which shows that I is facet defining. �
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Facet-defining proof of Proposition 5. Let I := ax ≥ b be any inequality (I4). Without loss of

generality, let j = 0 and i be any value in [2, k−3]. Let F I be the set of points in conv(X(G)) that

satisfy I at equality, and let µx≥ µ0 be a valid inequality for conv(X(G)) satisfied at equality for

each x∈ F I .

Consider solutions x′ and x̂i presented in the proof of Proposition 2. Direct inspection allows us

to see that both belong to F I and differ only on coordinates σ({v0, vi}) and σ({vi−1, vi+1}), so that

µx′ = µ0 = µx̂i implies that µ{v0,vi} = µ{vi−1,vi+1}. Additionally, the solution x′ + e{vi−1,vi+1} also

belongs to F I : it satisfies I at equality and the sequence (v0, v1, . . . , vk−1) is a perfect elimination

order of V (G). Therefore, as µ
(
x′+ e{vi−1,vi+1}

)
= µx′+µ{vi−1,vi+1} = µ0, it follows that µ{v0,vi} =

µ{vi−1,vi+1} = 0.

Let C ′ = (v0, v1, . . . , vi−1, vi+1, vi+2, . . . , vk−1) and let λ= µv1,vk−1
. We have that µf = λ for each

f ∈ ι(C ′). Let x be any feasible solution of X(C ′ + {{vi−1, vi+1}}) satisfying inequality (I1) at

equality. Let y be a solution such that yf = xf for f ∈ int(C ′), xf = 1 if f = {vi−1, vi+1}, and xf = 0

otherwise. Solution y belongs to X(G) because any perfect elimination order of V (C ′) can be

extended into a perfect elimination order for V (C) by putting vi in the end of the sequence (note

that the only neighbors of vi are vi−1 and vi+1, which are necessarily connected). Moreover, by

construction,
∑

f∈int(C′) yf = |C ′|−3 = |C|−4, so y ∈ F I . Finally, as
∑

f∈ι(C)\{{vi−1,vi+1},{vj ,vi}}
yf =∑

f∈ι(C′) yf for all j ∈ [k− 1] \ {i}, it follows from the arguments used in the proof of Proposition 2

that µf = λ for each f ∈ ι(C ′).

Now, we show that µf = λ for each f = {vi, v`}, ` = 1,2, . . . , i− 2, i+ 2, i+ 3, . . . , k − 2. For an

arbitrary value of `′, let x̄ be such that x̄f = 1 if vi ∈ f and x̄f = 0 otherwise. G(x̄) is isomorphic

to G(x′) for the solution x′ defined in the proof of Proposition 2, so x̄ is feasible. Moreover, x̄f = 1

for |C| − 4 edges in ι(C) \ {{vi−1, vi+1} ,{v0, vi}}, so we have that x̄ ∈ F I . Let x̄`
′

be the solution

of X(G) such that x̄`
′
{v`′−1,v`′+1}

= 1, x̄`
′
{vi,v`′}

= 0, and x̄`
′
f = x̄f for the remaining edges. The graph

G(x̄`
′
) is isomorphic to one of the graphs G(x̂i

′
) defined in the proof of Proposition 2, and therefore

x̄`
′ ∈X(G). Moreover, x̄`

′
f = 1 for |C| − 4 edges in ι(C) \ {{vi−1, vi+1} ,{vi, vl′}}, so we have that
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x̄`
′ ∈ F I . Finally, we have µx̄= µ0 and µx̄`

′
= µ0, and the subtraction of these two equalities yields

µ{v`′−1,v`′+1} = µ{vi,v`′}. Since {v`′−1, v`′+1} ∈ int(C ′), λ= µ{v`′−1,v`′+1} and µ{vi,v`′} = λ.

We conclude thus that any solution in F I yields µ0 = λ (|C| − 4), as desired. �

EC.2. Additional Proofs for Section 7

Lemma EC.1. If G= (V,E) is chordal, then G′ = (V ∪w,E ∪{(w,v) : ∀ v ∈ V } is also chordal.

Proof. Suppose by contradiction that C = (v0, v1, . . . , vk−1), k ≥ 4, is a chordless cycle in G′.

As G does not contain chordless cycles, V (C) cannot be contained in V (G), so w ∈ V (C). By

construction, w is adjacent to all vertices in V (G) and, in particular, to all vertices in V (C), thus

contradicting the hypothesis that C is chordless. �

Corollary EC.1. If G = (V,E) is a chordal graph, then the graph G′ = (V ∪ W,E ∪

{(w,v) : ∀w ∈W, v ∈ V ∪W\{w}} is also chordal.

Proof. Lemma EC.1 can be extended to cliques as opposed to single vertices, since this addition

can be seen as a inductively adding a single vertex one-by-one. �

Definition EC.1. An edge e is said to be critical in a chordal graph G= (V,E) if G′ = (V,E\e)

is not chordal (i.e., if the removal of e from G creates a chordless cycle).

Lemma EC.2. Let G = (V,E) be a chordal graph. If e = {v,w} is critical, then any chordless

cycle C emerging after the deletion of e is such that {v,w} ⊂ V (C) and |C|= 4.

Proof. Let C be a chordless cycle emerging after the deletion of e. If either v or w does not

belong to V (C), then C is also a chordless cycle in G, a contradiction. Suppose |C| > 4. In this

case, C can be written as a sequence v ∼ P1 ∼w ∼ P2, where P1 and P2 are paths in G such that

V (P1)∩V (P2) = ∅ and v,w /∈ V (P1)∪V (P2). Moreover, as |C|> 4, at least one of P1, P2 contains 2

or more vertices. If |P1|> 1 (|P2|> 1), then the sequence described by path v∼ P1 ∼w (w∼ P2 ∼ v)

induces a chordless cycle in G, thereby contradicting the assumption that G is chordal. �

Proof of Theorem 3. This follows directly from Theorem EC.1, presented next. �
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Theorem EC.1. Let G= (V,E) and E′ ⊆Ec be such that G∪E′ is not chordal and G∪E′\{f}

is chordal for every f ∈E′. If ax≥ b is facet defining for conv(X(G∪E′)), a≥ 0, and a′ ∈R|Ec(G)|,

with a′f = af if f ∈Ec\E′ and a′f = 0 otherwise, the inequality

a′x≥ b

 ∑
f∈FG(C)

xf − |E′|+ 1


is facet defining for conv(X(G)).

Proof of Theorem EC.1 Let ax≥ b be a facet-defining inequality for conv(X(G∪E′)) and I be

the corresponding lifted inequality a′x≥ b
(∑

f∈E′ xf − |E′|+ 1
)

for conv(X(G)).

First, we show that I is valid for conv(X(G)). Since a≥ 0, I can only be violated by a feasible

element x of conv(X(G)) if
∑

f∈E′ xf = |E′|; otherwise, I is trivially satisfied. Moreover, because

ax′ ≥ b is valid for every x′ ∈ conv(X(G∪E′)), we have

a′x=
∑

f∈Ec\E′
afxf ≥ b= b

∑
f∈E′

xf − |E′|+ 1

 ,

as desired. Now we present a set of |Ec| affinely independent vectors of conv(X(G)) satisfying I

at equality. For any facet-defining inequality ax ≥ b of conv(X(G ∪E′)), there exists an affinely

independent set of vectors W = {wj}dj=1 ⊆ {0,1}|E
c\E′| that satisfy ax = b. Let T = {tj}dj=1 ⊆

{0,1}|Ec| be such that tjf = wjf for f ∈ Ec \E′ and tjf = 1 for f ∈ E′. That is, tj is an embedding

of wj in {0,1}|Ec| in which coordinates associated with edges in E′ are set to 1. Note that every tj

belongs to conv(X(G)) because G(tj) is isomorphic to (G∪E′) (wj), which is chordal. Moreover,

by construction, a′tj =
∑

f∈Ec\E′ a
′
f t
j
f = b and

∑
f∈E′ t

j
f = |E′| for each j = 1, . . . , d, so solutions

of T satisfy I at equality. Finally, note that the embedding operation in the elements of W is such

that T is also affinely independent.

Let Z = {zf}f∈E′ ⊆ {0,1}|E
c| be such that zff ′ = 1 for f ′ ∈ E′ \ f and zff ′ = 0 otherwise. As

G ∪ E′ \ {f} is chordal by hypothesis, it follows that each solution zf belongs to conv(X(G)).

Moreover, by construction, a′zf =
∑

f ′∈Ec\E′ a
′
f ′t

j
f ′ = 0 and

∑
f ′∈E′ z

f
f ′ = |E′|− 1 for each f ∈E′, so

each solution of Z satisfies I at equality. Let αf , f ∈Ec \E′, and βf , f ∈E′, be constants for which

∑
f∈Ec\E′

αjt
j +

∑
f∈E′

βfz
f = 0,

∑
f∈Ec\E′

αj +
∑
f∈E′

βf = 0.
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For each f ∈ E′, we have zff = 0, whereas sf = 1 for s ∈ T ∪ Z \ {zf}. Therefore, we must have∑
f ′∈Ec\E′ αf ′ +

∑
f ′∈E′\{f} βf ′ = 0 and, as a consequence, βf = 0 for each f ∈ E′. Finally, as T is

affinely independent, we have that αf = 0, f ∈Ec \E′. It follows that I is a faced-defining inequality

for conv(X), as desired. �

Proof of Theorem 4. Without loss of generality, let f∗ = {v0, vt−1}, t < k, be the chord consid-

ered and I be the associated lifted inequality a′x− bxf∗ ≥ 0 for X(G). For any vector x∈ {0,1}|Ec|

and set E′ ⊆Ec, let x[E′] be the projection of x onto the coordinates corresponding to fill edges

in E′. First, we claim that I is valid for X(G). Take any solution x0 ∈X(G). If x0
f∗ = 0, then I

reduces to a′x0 ≥ 0, which must be satisfied because a′ ≥ 0 and x0 ≥ 0. If x0
f∗ = 1, then I reduces to

a′x≥ b. Since G(x0) is chordal, by Lemma 2 we have that G(x0)[C ′] is also chordal, and therefore

x0[ι(C ′)] ∈X(G′). Since I is facet-defining for conv(X(G′)), we have a′x0 = ax0[ι(C ′)]≥ b. As x0

was chosen arbitrarily among all feasible solutions in X(G), it follows that I is valid for X(G).

Let C ′ = (v0, v1, . . . , vt−1) ,C ′′ = (v0, vt−1, vt, . . . , vk−1), and Cross(f∗) = {f : f ∩{v1, v2, . . . , vt−2} 6=

∅, f ∩{vt, vt+1, . . . , vk−1} 6= ∅}, that is, Cross(f∗) contains all fill edges in ι(C) containing exactly one

vertex incident in C ′ \C ′′ and one vertex incident in C ′′ \C ′. Set ι(C) can therefore be partitioned

as ι(C) = ι(C ′) ∪̇ ι(C ′′) ∪̇ f∗ ∪̇Cross(f∗). Let F I be the set of points in conv(X(G)) that satisfy I

at equality, and µx≥ µ0 be a valid inequality for conv(X(G)) satisfied at equality by each x∈ F I .

Inequality µx≥ µ0 can be written as∑
f∈int(C′)

µfxf +
∑

f∈int(C′′)

µfxf +µf∗xf∗ +
∑

f∈Cross(f∗)

µfxf ≥ µ0

Claim EC.1. For every f in Cross(f∗), µf = 0.

Proof. Take any vector w̃b in X(G′) such that aw̃b = b. Moreover, let us assume that the fill-in

set associated with w̃b is minimal; note that if w̃b does not satisfy this condition, then it can be

substituted for some other feasible solution w′, aw′ = aw̃b = b, associated with a subset of the fill-in

edges represented by w̃b.

From Proposition 4, it follows that G′(w̃b) must contain an edge {vb−1, vb+1}. Moreover, from

Lemma 2, we have that w′ = w̃b[Ec(G′) \ {{va, vb} : va ∈ V (G′)}] is associated with a chordal com-

pletion of G′[V (G) \ vb]. Because vb−1 and vb+1 are the only neighbours of vb in G′, the edges of w′
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are sufficient to make G′ chordal; therefore, we have that the neighbours of vb in G′[w̃b] are exactly

its neighbours in C ′.

Fix f ′ ∈ Cross(f∗), f ′ = {va, vb},1 ≤ a ≤ t− 2, t ≤ b ≤ k − 1. Let w̃ in X(G) be such that w̃f =

w̃bf if f ∈ ι(C ′), w̃f = 1 if f ∈ {f∗} ∪ ι(C ′′) ∪ Cross(f∗)\{va, vb}, and w̃f = 0 if f = {va, vb}. By

Lemma EC.1, G
(
w̃+ e{va,vb}

)
is a chordal graph. We claim that {va, vb} cannot be critical, and

therefore G (T 1 (w̃b)) is chordal. Suppose by contradiction that this is not true. Then, upon the

removal of {va, vb}, by Lemma EC.2 there must exists vertices v′, v′′ for which (va, v
′, vb, v

′′) is a

chordless cycle. This can only happen if there exists a pair of vertices in N(vb) which are not

adjacent. However, N(vb) = {vb−1, vb+1}∪ {vt, vt+1, . . . , vk−1}, which, by construction, is a clique.

Therefore, we have that w̃ and w̃+ e{va,vb} belong to conv(X(G)). Additionally, both solutions

satisfy I at equality and thus belong to F I . Finally, as µ(w̃+ e{va,vb}− w̃) = µ{va,vb} = 0, it follows

that µf ′ = 0 for every f ′ ∈Cross(f∗). �

Claim EC.2. For every f ∈ int(C ′′), µf = 0.

Proof. Fix f ′ = {z1, z2} ∈ ι(C ′′) and any solution w̃b in X(G′) such that aw̃b = b. Let w̃ be such

that w̃f = w̃bf if f ∈ ι(C ′), w̃f = 1 if f = f∗ or f ∈ ι(C ′′)\f ′, and w̃f = 0 if f ∈Cross(f∗) or f = f ′.

We claim that G(w̃ + ef
′
) is chordal. Consider the ordering π of the vertices in V (G) consisting

of a perfect elimination order of the vertices in V (C ′) (which must exists because G[V (C ′)](w̃b) is

chordal), followed by an arbitrary ordering of the remaining vertices. Because the neighbourhood

of each vertex in V (C ′′) \V (C ′) is a clique in V (C ′′), it follows by construction that π is a perfect

elimination ordering for the vertices of G(w̃+ ef
′
).

We claim now that G(w̃) is also chordal. If not, by Lemma EC.2 there must exist a chordless

cycle (z1, v
′, z2, v

′′) created upon the removal of f ′ from G(w̃+ ef
′
). At least one among z1 and z2

is contained in {vt, vt+1, . . . , vk−1}; let z1 be one such vertex. The neighborhood of z1 in G(w̃) is

V (C ′′), and, as G(w̃)[V (C ′′)] is a clique, we must have {v′, v′′} ∈E(G(w̃)), a contradiction.

Therefore, we have that w̃ and w̃+ef
′
belong to conv(X(G)) and, by construction, to F I . Similar

arguments to those used in the previous claim show that µf ′ = 0 for every f ′ ∈ int(C ′′). �
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Claim EC.3. µ0 = 0.

Proof. Consider the solution ŵ defined by ŵf = 1 if vk−1 ∈ f and ŵf = 0 otherwise. This solution

is isomorphic to the solution x′ constructed in the proof of Proposition 2, so G(ŵ) is chordal.

By construction, because f∗ = {v0, vt−1} for t < k, ŵf∗ = 0. Moreover, as af = 0 for f /∈ ι(C ′),

we have aŵ = 0, and therefore aŵ − bŵf∗ = 0. Substituting ŵ into µx = µ0 yields µ0 = µŵ =∑
f∈int(C′) µf ŵf +µf∗ŵf∗ = 0, as desired. �

Claim EC.4. There is a λ∈R such that µf∗ =−λb and µf = λaf for every f in ι(C ′).

Proof. Let F̃ I be the subset of F I containing only solutions x such that xf = 1 for every edge

f which does not belong to ι(C ′). For every x∈ F̃ I , we have µx=
∑

f∈ι(C′) µfxf +µf∗1 = 0, which

implies that
∑

f∈ι(C′) µfxf = −µf∗ . Consequently, we have that every solution y in X(G′) that

satisfies ay= b must also satisfy µ[ι(C ′)]y=−µf∗ . As ay≥ b is facet defining for X(G′), there exists

some λ such that −µf∗ = λb and µf = λ′af for every f in E(G′)c, as desired. �

From the previous claims, we conclude that I is a facet-defining inequality for conv(X(G)). �

EC.3. Additional Proofs for Section 8.1

Lemma EC.3. For any fractional point x ∈ [0,1]m
c
, if x /∈ conv(X(G)), then there is a chordless

cycle C in G∪E(x) whose associated inequality of type (I1) is violated by x.

Proof. Suppose by contradiction that this claim does not hold, and let C be a cycle in G

associated with a violated inequality of type (I1) such that ι(C) ∩ E(G) is minimum. Set ι(C)

must contain at least one edge e in E(G), so let C ′ and C ′′ be the subcycles of C such that

V (C ′) ∩ V (C ′′) = e, V (C ′) ∪ V (C ′′) = V (C), and E(C ′) ∩E(C ′′) = {e}; by construction, we have

|C ′|+ |C ′′|= |C|+ 2. If x satisfies the inequalities (I1) associated with C ′ and C ′′, we have

∑
e∈ι(C)

xe ≥
∑

e∈ι(C′)

xe +
∑

e∈ι(C′′)

xe + 1≥ |C ′| − 3 + |C ′′| − 3 + 1 = |C|+ 2− 5 = |C| − 3,

contradicting hence the fact that C does not satisfy inequality (I1). Therefore, x must violate

inequality (I1) for C ′ or C ′′; let us assume that the violation holds for C ′. If ι(C ′) does not contain

any edge in E(G), we have a contradiction. Otherwise, we must have |ι(C ′)∩E(G)|< |ι(C)∩E(G)|,

which contradicts the selection of C. �
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Proof of Theorem 5(a). We show this result by proving that the (−3)-Quadratic Shortest Cycle

Problem (or (−3)-QSCP), defined below, can be reduced to the the separation of the simplified

version of inequalities I1. Lemma EC.3 allows us to conclude that these two problems are equivalent,

so the main step of the proof consists of showing that (−3)-QSCP is NP -complete.

We define the Quadratic Shortest Cycle Problem (QSCP) as follows: we are given an undirected

graph G= (V,E) and a quadratic cost function q : V ×V → [0,1] such that q(u, v) = 0 if (u, v)∈E;

that is, the quadratic cost associated with {u, v} can be different from zero only if {u, v} /∈ E.

For any cycle C in G, let int∗(C) = E(G[C])C , that is, edge {u, v} belongs to int∗(C) if u 6= v

and (u, v) /∈ E. A feasible solution for an instance of QSCP consists of a simple chordless cycle

C = (v1, v2, . . . , v|C|) whose cost p(C) is given by p(C) =
∑
{u,v}∈int∗(C) q(u, v)−|C|. Finally, α-QSCP

is the decision version of QSCP in which the goal is to decide whether there is a simple chordless

cycle C such that p(C)<α.

Our proof employs a reduction of the Quadratic Assignment Problem (QAP) to (−3)-QSCP

and is based on a reduction used by Rostami et al. (2015). QAP is known to be NP-complete (see

e.g., Garey and Johnson (1979)). For an arbitrary instance I of the QAP, let F and L be the sets,

respectively, with n= |F |= |L|, and let C, D, and A be n× n matrices in R+, with A describing

the linear costs and B and C the quadratic costs. We are given a value β, and the goal is to decide

whether the instance of the QAP admits an assignment whose cost is smaller than β.

If M is an upper bound on the largest individual penalty (linear or quadratic) that may compose

the cost of a feasible assignment, no feasible assignment has an objective value larger than K =

2Mn2. Such a bound is given by

M = max

 max
1≤f,f ′≤|F |
1≤l,l′≤|L|

Cf,f ′Dl,l′ , max
1≤f≤|F |
1≤l≤|L|

Af,l

 .

From I, we construct an instance I ′ of (−3)-QSCP associated with a graph G = (V,E) and a

quadratic cost q : V × V → [0,1] such that a cycle C is a feasible solution of I ′ if and only if I

admits an assignment whose cost is inferior to β. Let us assume without loss of generality that

there is some (arbitrary) ordering between facilities, that is, F = {f1, f2, . . . , fn}.
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Set V contains one assignment vertex af,l for each pair (f, l) ∈ F ×L. Each cycle C solving I ′

is associated with the solution of I containing each assignment (fi, lj) such that afi,lj belongs

to V (C). A pair of assignment vertices belong to the same block if they are associated with the

same facility. Moreover, V contains three types of auxiliary variables. We have type-z vertices z1

and z2 and type-y variables y1, y2, . . . , yn, whose usage will become clear next. Additionally, for

each pair of assignments (fi, l) and (fi+1, l
′), 1 ≤ i < n and l, l′ ∈ L, we have a connection vertex

cfi,fi+1,l,l
′ . V also contains connection vertices cz1,f1,∅,l and cfn,yn−1,l,∅ for all l in L; by an abuse of

notation, we might use cf0,f1,l,l′ instead of cz1,f1,∅,l′ (i.e., substitute (z1,∅) for (f0, l)) and cfn,fn+1,l,l′

instead of cfn,zn,l,∅ ((zn,∅) for (fn+1, l
′) ) in situations where the correct notation can be easily

inferred from the context. A pair of connection vertices is said to belong to the same block if they

have the same first facility index. Each assignment vertex afi,l composes edges with connection

vertices cfi,fi+1,l,l
′ and cfi−1,fi,l

′′,l for all l′, l′′ in L. Moreover, z1 and assignment vertices af1,l are

connected to cz1,f1,∅,l, whereas yn and assignment vertices afn,l are connected to cfn,yn,l,∅, l ∈ L.

Note that afi,l and afi+1,l
′ are the only neighbours of cfi,fi+1,l,l

′ , that is, all connection vertices have

degree 2. Finally, {z1, z2}, {z2, y1}, {y1, y2}, . . . ,{yn−1, yn} are also edges of E. An example of graph

associated with an instance of the QAP with n= 3 is presented in Figure EC.4.

Let Alg be an algorithm deciding (−3)-QSCP. Alg returns C only if p(C) = pL(C) + pQ(C) +

q∗(C) < −3, where q∗(C) is the sum of −|C| with all additional costs that will be incorporated

in our construction and pL(C) and pQ(C) denote the linear and the quadratic costs of I mapped

into C, respectively. For technical reasons described below, the original (linear and quadratic) costs

of I will be divided by K in I ′. As a consequence, the assignment associated with C is a solution

of I if it is feasible and pL(C) + pQ(C)< β
K

, with β ≤K, so q∗(C) =−3− β
K

.

Costs composing q∗(C) are constructed in a way that Alg can only return matching cycles, which

are cycles in G of size 3n+ 3 that pass through all type-y and type-z vertices and are associated

with a feasible assignment for the QAP instance whose cost is below β.

For each pair of assignment vertices af,l and af ′,l′ , f 6= f ′ and l 6= l′, we have the assignment cost

q(af,l, af ′,l′) =
Cf,f ′Dl,l′

K
, which represents the quadratic cost of I, and the linear cost q(z1, af,l) =
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z1

cz1,f1,∅,l1

cz1,f1,∅,l2

cz1,f1,∅,l3

af1,l1

af1,l2

af1,l3

cf1,f2,l1,l2

cf1,f2,l1,l3

cf1,f2,l2,l1

cf1,f2,l2,l3

cf1,f2,l3,l1

cf1,f2,l3,l2

af2,l1

af2,l2

af2,l3

cf2,f3,l1,l2

cf2,f3,l1,l3

cf2,f3,l2,l1

cf2,f3,l2,l3

cf2,f3,l3,l1

cf2,f3,l3,l2

af3,l1

af3,l2

af3,l3

cf3,y3,l1,∅

cf3,y3,l2,∅

cf3,y3,l3,∅

y3

z2 y1 y2

Figure EC.4 Construction for QAP instance with n= 3.

Af,l

K
, representing the linear cost of I. Both values belong to [0, 1

2n2
] and, consequently, 0≤ pL(C)+

pQ(C)≤ 1 for any cycle C of G associated with a feasible assignment in I.

Cycle C cannot be a matching cycle if V (C) contains one or more pairs of assignment vertices

sharing the same location or facility. In order to avoid these configurations, we set assignment

conflict costs q(af,l, af ′,l′) = 1 for every pair of assignment vertices af,l and af ′,l′ such that either

f = f ′ or l= l′. Similar penalties apply to pairs of connection vertices belonging to the same block.

That is, given connection vertices cfi,fi+1,l,l
′ and cfi,fi+1,l

′′,l′′′ , 1≤ i≤ n and l, l′, l′′, l′′′ ∈ L, we have

transition conflict costs q(cfi,fi+1,l,l
′ , cfi,fi+1,l

′′,l′′′) = 1.

In order to avoid the selection of cycles which do not pass through type-y and type-z vertices,

we penalize pairs of connection vertices belonging to consecutive blocks. That is, given connection

vertices cfi,fi+1,l,l
′ and cfi+1,fi+2,l

′′,l′′′ , 0 ≤ i < n and l, l′, l′′, l′′′ ∈ L, we have transition penalties

q(cfi,fi+1,l,l
′ , cfi+1,fi+2,l

′′,l′′′) = 1. Note that this penalty incurs n times in matching cycles.

The inclusion of connection vertices is compensated by their quadratic costs with z2. That is,

for every connection vertex cfi,fi+1,l,l
′ , 0≤ i < n− 1 and l, l′ ∈L, we have connection-covering costs

q(z2, cfi,fi+1,l,l
′) = 1. In matching cycles, connection-covering costs incur n times. The costs of type-

y vertices are covered by quadratic assignments involving z1 and connection vertices cfi,fi+1,l,l
′ ,
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1≤ i < n− 1 and l, l′ ∈ L. These y-covering costs are given by q(z1, cfi,fi+1,l,l
′) = 1 and incur n− 1

times in matching cycles. Finally, we compensate the deficit of 1 − β
K
< 1 in p(C) by setting

q(z1, yn) = 1− β
K

. All the remaining costs that have not been explicitly presented are set to zero.

Lemma EC.4. Every cycle delivered by Alg must contain all type-z and type-y vertices.

Proof. Let us assume that C does not include some type-y or type-z vertex; by construction,

a cycle in G contains either all vertices in {z2, y1, y2, . . . , yn−1} or none of them, so C may only

contain z1, yn, assignment vertices, and connection vertices. Consequently, C belongs to a bipartite

region of G (with one part being composed of connection vertices), so |C| must be even and larger

than 4. See Figure EC.5 for an example with |C|= 12. Set V (C) contains |C|/2 connection vertices,

which are distributed among k≥ 2 (consecutive) blocks with bi ≥ 2 elements each, 1≤ i≤ k. These

vertices are associated with transition conflict penalties and transition penalties, and the sum pc(C)

of all penalties associated with them is

pc(C) =
∑

1≤i≤k

bi(bi− 1)

2
+
∑

1≤i<k

bibi+1.

Because 2≤ bi ≤ |C|2
− 2, we have bibi+1 ≥ bi + bi+1 and b2

i ≥ 2bi. Therefore,

pc(C) ≥
∑

1≤i≤k

bi(bi− 1)

2
+
∑

1≤i<k

bibi+1 ≥
∑

1≤i≤k

b2
i

2
−
∑

1≤i≤k

bi
2

+
∑

1≤i<k

(bi + bi+1)

≥
∑

1≤i≤k

2bi−
∑

1≤i≤k

bi
2

+
∑

1<i<k

bi ≥ |C| −
b1 + bk

2
≥ |C| − |C|

4
=

3|C|
4
.

V (C) also contains |C|/2−2 assignment vertices, which are located in the middle of the cycle and

stay in the same block with at least one other assignment vertex. Therefore, the assignment conflict

costs involving these vertices is at least |C|/4− 1. Finally, V (C) contains 2 more vertices, which

are are located in the extremities of the cycle (see Figure EC.5) and may be assignment vertices,

yn, or z1. By summing all penalties, we have p(C)≥−|C|+ |C|/4−1 +pc(C)>−1. Therefore, Alg

can only return cycles C containing all type-z and type-y vertices. �

Lemma EC.5. Every cycle delivered by Alg is associated with a feasible assignment.
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z1

cz1,∅,f1,l1

cz1,∅,f1,l4

af1,l1

af1,l4

cf1,l1,f2,l2

cf1,l4,f2,l5

af2,l2

af2,l5

cf2,l2,f3,l3

cf2,l5,f3,l3

af3,l3

Figure EC.5 Sub-cycle of G with 12 vertices

Proof. Let us suppose by contradiction that Alg delivers a cycle C which is not associated with

a feasible assignment. From Lemma EC.4, it follows that every cycle delivered by Alg necessarily

contains at least one assignment vertex containing each facility. Thus, if the assignment associ-

ated with C is infeasible, then some location is being assigned to at least two different facilities.

Compensation penalties are not affected by this, so q∗(C) =−3− β
K

. As each assignment conflict

cost is equal to 1, we have p(C) = pL(C) + pQ(C) + q∗(C)≥ 1 + q∗(C)≥ 1− 3− β
K

, and as β
K
≤ 1,

p(C)≥−3, and therefore C cannot be delivered by Alg. �

The previous lemmas show that Alg decides (−3)-QSCP positively on G using only matching

cycles. A similar process can be used to construct a solution for (−3)-QSCP on G given a feasible

solution for the QAP instance. Therefore, it follows that (−3)-QSCP is NP-complete. �

We conclude by reducing the (−3)-QSCP to the separation of I1. Let I be an instance of (−3)-

QSCP associated with graph G= (V,E) and quadratic cost function q : V ×V → [0,1]. We reduce I

to an instance I ′ of the separation of I1 associated with the same graph G= (V,E). The solution

x∈X(G) is derived from the quadratic cost function q of I as follows: if e= {u, v} ∈Ec, xe = q(u, v).

Note that x is valid, since xe ∈ [0,1] for all e∈E and xe is not defined if e∈E.

By construction, any chordless cycle C in G has a cost c(C) in I deciding (−3)-QSCP positively

has a cost c(C) such that c(C) =
∑
{u,v}∈Ec(C) q(u, v) =

∑
f∈ι(C) xf < |C|− 3, that is, if C decides I

positively, then C also decides I ′ positively. The same argument shows that if C decides I ′ positively,

then C is also a valid certificate for I. Finally, from Lemma EC.3, we know that the separation

of (I1) can be restricted to cycles which are chordless in G, so we conclude that deciding whether I
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has a solution is equivalent to deciding whether I ′ has a solution. Thus, we conclude that the

separation of (I1) is NP-complete. �

Proof of Theorem 5(b). All coefficients of inequalities (I2) are non-negative, so we are able to

apply Theorem 3 in order to obtain the following inequalities:

x{vi−1,vi+1}+
∑

f :vi∈f,{vi−1,vi+1}∩f=∅

xf ≥
∑

f∈F (C)

xf − |F (C)|+ 1≥ 1−
∑

f∈F (C)

(1−xf ). (EC.1)

Let x∈X(G) be a fractional solution; for {u, v} ∈E(G), let x{u,v} = 1. By construction, solution x

violates the inequality (EC.1) associated with cycle C = (vi−1, vi, vi+1, v1, v2, . . . , vn) if and only if

x{vi−1,vi+1} +
∑

t∈C′\{vi−1,vi,vi+1}

x{vi,t} < 1−
∑

f∈F (C′)

(1−xf ) =⇒

x{vi−1,vi+1} +
∑

vi /∈{vj ,vk}∈F (C′)

(
x{vi,vj}+x{vi,vk}

2

)
+

∑
vi /∈{vj ,vk}∈F (C′)

(1−x{vj ,vk}) +

(
1−

3x{vi−1,vi}

2

)
+

(
1−

3x{vi,vi+1}

2

)
Let Gi = (V (G),E(G)) be a complete weighted direct graph such that, for each e= {vj, vk} ∈E(G),

w(e) =


1−x{vj ,vk}+

x{vi,vj}+x{vi,vk}

2
, if vi /∈ {vj, vk}

+∞, otherwise.

In order to separate inequalities (EC.1), it suffices to find a path in Gi connecting vi+1 to vi−1

not passing through vi whose length is inferior to 1−x{vi−1,vi+1}−
(

1− 3xvi−1,vi

2

)
−
(

1− 3xvi,vi+1

2

)
.

If such a path exists, then, in particular, any shortest path in Gi connecting vi+1 to vi−1 while

avoiding vi also satisfies this property, so the verification can be done in polynomial time for each

sequence (vi−1, vi, vi+1). The number of sequences for which this verification needs to be performed

is O(|V (G)|3), so we conclude that inequality (EC.1) can be separated in polynomial time. �

Proof of Theorem 5(c). All coefficients of inequalities (I3) are non-negative, so we are able to

apply Theorem 3 in order to obtain the following inequalities:

∑
f :{{vi,vj}:dC(vi,vj)=2}

xf ≥ 2

 ∑
f∈F (C)

xf − |F (C)|+ 1

 =⇒

∑
f :{{vi,vj}:dC(vi,vj)=2}

xf + 2
∑

f∈F (C)

(1−xf )≥ 2. (EC.2)
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Note that inequality (EC.2) is trivially satisfied if
∑

f∈F (C) xf < |F (C)|, as the right-hand side

expression becomes zero and all coefficients on the left are non-negative.

Let x ∈ X(G) be a fractional solution; for {u, v} ∈ E(G), let x{u,v} = 1. Let D be a weighted

directed graph such that, for each two-set {vi, vj} in V (G), there is one vertex in V (D) labeled

by pair (vi, vj) and another labeled by pair (vj, vi). Moreover, for each pair of vertices (vi, vj) and

(vj, vk) in V (D), vi 6= vk, we define an arc a= ((vi, vj), (vj, vk)) in A(D) whose weight is given by

wD(a) =wD((vi, vj), (vj, vk)) = (1−x{vi,vj}) +x{vi,vk}+ (1−x{vj ,vk}).

Let u, v,w, and x be vertices in V (G) such that PG = (u, v,w,x) is a path in G, and let PD =

(a1, a2, a3) be the associated path in D, with a1 = (u, v), a2 = (v,w), and a3 = (w,x). Let P ′D =

(v1, v2, . . . , vn) be another path in D such that v1 = (x, z1), vi = (zi, zi+1),1≤ i < n, and vn = (zn, u);

note that, by construction, arc ((a3, v1), (vn, a1)) belongs to A(D).

We claim that CD is a directed cycle in D if P ′D is a shortest path in D connecting (x, z′) to (z′′, u)

(with z′, z′′ in V (G)) whose internal vertices are not associated with edges in G containing vertices

in {u, v,w,x} and such that |P ′D| is minimal. As wD(a) ≥ 0 for all a ∈ A(D), it follows from the

last condition and from the fact that P ′D is a shortest path that all elements in {z1, . . . , zn} are

necessarily pairwise different. The sum of the costs of all edges in cycle CD is given by

∑
i∈[1,2]

w((ai, ai+1)) +w((a3, v1)) +
∑

i∈[1,n−1]

w((vi, vi+1)) +w((vn, a1)) =∑
f∈{{a,b}:dCG

(a,b)=2}

xf + 2
∑

f∈F (CG)

(1−xf ).

Therefore, solution x does not respect the inequality (EC.2) associated with cycle CG in G con-

taining path P = (u, v,w,x) if and only if the weight of P ′D is smaller than 2.

The number of tuples for which this verification needs to be performed is O(|V (G)|4), and

the identification (and construction) of a path P ′D with the desired features can be performed in

polynomial time.Therefore, Inequalities EC.2 can be separated in polynomial time. �

Proof of Theorem 5(d). The proof of this result is very similar to the one used for Theorem 5(a).

More precisely, we introduce QSCP∗, a variation of QSCP that is more convenient for proving the
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hardness of (the simplified version of) (I4), and show that the addition of a single compensation

penalty to the construction used in the proof of Theorem 5(a) yields the desired result.

In the α-Adapted Quadratic Shortest Cycle Problem (α-QSCP∗) we are given α ∈ R, an undi-

rected graph G = (V,E), and a quadratic cost function q : V × V → [0,1] such that q(u, v) = 0

if (u, v) ∈ E. A feasible solution for an instance of αQSCP∗ consists of a simple chordless cycle

C = (v1, v2, . . . , v|C|) whose cost p∗(C) =
∑
{u,v}∈int∗(C) q(u, v)− |C| −U is smaller than α, where

U = max
vi,vj∈V (C)
vi 6=vj

dC({vj ,vi})≥2

(q(vj−1, vj+1) + q(vj, vi)).‘

The present proof also relies on a reduction of QAP to (−4)-QSCP∗. Let I be an arbitrary

instance of QAP of size n andM be the largest individual (i.e., linear or quadratic) penalty, andK =

2Mn2. If Alg is an algorithm that decides (−4)-QSCP∗, then it will only return a cycle C containing

the linear costs pL(C) and the quadratic costs pQ(C) of I if p∗(C) = pL(C) + pQ(C) + q∗(C)−U <

−4, where q∗(C) is the sum of −|C| with additional costs incorporated by our construction. The

assignment associated with C is feasible if pL(C) + pQ(C)< β
K

, so we have q∗(C) =−4− β
K

+U .

Using the penalties of the construction used in the proof of Theorem 5(a), one can see by inspection

that if C is a matching cycle, then U ≤ 1 + M
K

.

In order to guarantee equality in the inequality above for every matching cycle, we

set q(af1,lk , y1) = M
K

for all lk ∈ L. By definition, M ≤K, so q(af1,lk , y1) ≤ 1. With this, we have

q(vj−1, vj+1) = 1 and q(vj, vi) = M
K

for vj−1 = cz1,f1,∅,lk , vj = af1,lk , vj+1 = cf1,f2,lk,lz , and vi = y1,

lz, lk ∈L. Moreover, for every matching cycle C, by direct substitution we have q∗(C) =−3− β
K

+ M
K

.

The arguments used in the proof of Lemma EC.4 also apply to the present construction, so Alg

can only select cycles that include all type-y and type-z vertices. For Lemma EC.5, note that if C

contains assignments involving the same location or facility, then p∗(C) = pL(C)+pQ(C)+q∗(C)−

U ≥ 1− 3− β
K

+ M
K
>−3, so every cycle delivered by Alg is associated with a feasible assignment.

Finally, the arguments used in the proof of Theorem 5(a) to show that (−3)-QSCP is NP-

complete can be used in an identical way in order to show that (−4)-QSCP is NP-complete, and

the separation of (I4) can be reduced to (−4)-QSCP in the same way the separation of (I1) was

reduced to (−3)-QSCP, so it follows that the separation of (I4) is also NP-complete. �
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EC.4. Perfect Elimination Ordering Model

The model finds a perfect elimination ordering that minimizes the number of fill-in edges, and can

be written as follows.

min
∑

{i,j}∈Ec

yij + yji

s.t. xij +xji = 1, for all {i, j} ∈E (EC.3)

xij +xji ≤ 1, for all {i, j} ∈Ec (EC.4)

xij +xjk−xik ≤ 1, for all i, j, k ∈ V, i 6= j, j 6= k, i 6= k (EC.5)

yij ≤ xij, yji ≤ xji, for all i, j ∈ V, i 6= j (EC.6)

yij = xij, yji = xji, for all {i, j} ∈E (EC.7)

xjk + yij + yik− yjk ≤ 2, for all i, j, k ∈ V, i 6= j, j 6= k, i 6= k (EC.8)

yij, xij ∈ {0,1}, for all i, j ∈ V, i 6= j (EC.9)

In the model above, a binary variable yij indicates whether edge {i, j} is added to G and binary

variable xij indicates whether vertex i precedes j in the resulting ordering. Constraints (EC.3)

enforce the existence of a precedence relation between vertices i and j if {i, j} ∈E, whereas con-

straints (EC.4) prevent i and j from preceding each other simultaneously in an elimination ordering.

Constraints (EC.5) ensure the transitive closure of precedence relations is satisfied. Constraints

(EC.6) and (EC.7) indicate that a precedence relation between edges i and j can exist if and only if

{i, j} ∈E. Finally, constraints (EC.8) impose that the final ordering must be a perfect elimination

ordering.
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