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Abstract
Model predictive control (MPC) often requires solving an optimal control structuredquadratic
program (QP), possibly based on an online linearization at each sampling instant. Block-
tridiagonal preconditioners have been proposed, combined with the minimal residual (MIN-
RES) method, to result in a simple but efficient implementation of a sparse activeset strategy
for fast MPC. This paper presents an improved variant of this PRESAS algorithm, by using
a projected preconditioned conjugate gradient (PPCG) method. Based on a standalone C
code implementation and using an ARM Cortex-A7 processor, we illustrate the performance
of the proposed solver against the current state of the art for embedded predictive control.
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1. INTRODUCTION

A block-sparse problem structure arises in a linear or
linear time-varying formulation of model predictive con-
trol (MPC) (Rawlings et al., 2017). A similarly structured
quadratic program (QP) forms the subproblem within
a sequential quadratic programming (SQP) method for
nonlinear MPC (Ferreau et al., 2017). We are interested in
solving the following formulation of a convex constrained
linear-quadratic optimal control problem (OCP)
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s.t. x0 = x̂0, (1c)

xk+1 = ak +Akxk +Bkuk, k = 0, . . . , N−1, (1d)

0 ≥ dk +Dx
kxk +Du

kuk, k = 0, . . . , N, (1e)

where we define the state vectors as xk ∈ Rnx , the control
inputs as uk ∈ Rnu and the cost matrices as Qk ∈ Rnx×nx ,
Sk ∈ Rnu×nx and Rk ∈ Rnu×nu . The constraints include
the system dynamics with Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , the
inequality constraints with Dx

k ∈ Rnc,k×nx , Du
k ∈ Rnc,k×nu

and an initial value condition where x̂0 ∈ Rnx denotes the
current state estimate.

Most embedded optimization algorithms that have been
successfully applied to real-time optimal control rely on
direct linear algebra routines. However, it is known that
iterative methods can result in a better asymptotic com-
plexity when solving the saddle point linear systems arising
in second order optimization methods (Benzi et al., 2005).
Iterative solvers, such as the minimal residual (MINRES)
or the conjugate gradient (CG) method (Greenbaum,
1997), are suitable for hardware acceleration of the lin-
ear system solution, e.g., using an FPGA for fast em-
bedded applications (Boland and Constantinides, 2008),
due to their higher ratio of addition and multiplication

operations. The use of an iterative method also allows to
make a trade-off between computational time and solution
accuracy (Knyazev et al., 2015). However, for a general
saddle point linear system, Krylov subspace methods tend
to converge rather poorly without preconditioning (Benzi
et al., 2005).

Block structured preconditioning techniques have recently
been proposed within an active-set method for real-time
optimal control in (Quirynen et al., 2018). Earlier work
in (Shahzad et al., 2010a,b) studied the use of block-
diagonal preconditioners, based on techniques that are in-
stead tailored to an inexact interior-point (IP) framework.
Unlike IP methods, an active-set solver can considerably
benefit from the use of warm or hot-starting techniques to
reduce the computational effort when solving a sequence
of closely related optimal control problems as discussed
in (Bartlett et al., 2000; Ferreau et al., 2017; Wright, 1996).
In addition, the cost per iteration is generally of a lower
computational complexity by exploiting low-rank updates
of the matrix factorizations when changing the current
guess for the active set (Ferreau et al., 2014; Kirches et al.,
2011). The proposed PRESAS solver allows for an initial
setup computational complexity of O(Nm3) and a per-
iteration complexity of O(Nm2) for the QP in (1), where
m denotes the number of state and control variables in the
system (Quirynen et al., 2018).

The present paper proposes a new variant of the PRESAS
solver that further improves the computational perfor-
mance, i.e., it reduces the overall number of iterations
for the residual method. We particularly focus on the
numerical properties of the preconditioning when using
low-precision arithmetics, which is very common for prac-
tical applications of MPC on embedded control hardware.
The solver is based on a constraint preconditioner for the
projected conjugate gradient (PPCG) method and it corre-
sponds to a direct linear system solution in an ideal setting,
i.e., when solving a strictly convex and well-conditioned
QP with high-precision arithmetics. In addition, based on



two numerical case studies, we show that a limited number
of CG iterations can remain sufficient in practice, e.g.,
when using single- instead of double-precision arithmetics
on an ARM Cortex-A7 processor.

The paper is organized as follows. Section 2 presents the
preliminaries on quadratic programming, active-set meth-
ods and on preconditioning of iterative solvers. Section 3
describes two block-diagonal preconditioners to be used
within PMINRES. Then, Section 4 presents and discusses
the optimal control structured constraint preconditioner
for the PPCG method. The performance of a resulting
PRESAS-PPCG solver is illustrated in Section 5, based on
case studies of both linear and nonlinear MPC.

2. PRELIMINARIES

We assume that the convex QP in (1) has a unique global
solution that is non-degenerate. A solution is degenerate
when either the strict complementarity condition or the
linear independence constraint qualification (LICQ) does
not hold (Nocedal and Wright, 2006). In order to have a
unique solution to the QP in (1), the Hessian needs to
be positive definite on the null-space of the strictly active
constraints at the solution.

2.1 Embedded Optimal Control Algorithms

There is a general trade-off between solvers that make use
of second-order information and require only few but com-
putationally expensive iterations, e.g., qpOASES (Ferreau
et al., 2014), versus first-order methods that are of low
complexity but may require many more iterations, such
as PQP (Di Cairano et al., 2013), ADMM (Raghunathan and
Di Cairano, 2015) and other gradient or splitting-based
methods (Ferreau et al., 2017). In addition, there is an
important distinction between optimal control algorithms
that target the dense versus the sparse problem formula-
tion. The numerical elimination of the state variables in
a condensing routine (Bock and Plitt, 1984) is typically
of a computational complexity O(N2m3) but, unlike non-
linear problems, it can be mostly avoided in linear MPC
applications. However, even with an offline preparation of
the dense QP formulation, solvers applied to this dense
QP will have a runtime complexity of O(N2m2) (Kirches
et al., 2011). Instead, we focus on directly solving the OCP
formulation with the block sparsity structure in (1), similar
to the software tools in FORCES (Domahidi and Perez,
2014) and HPMPC (Frison et al., 2014).

It is important to note that many tailored QP algo-
rithms for real-time optimal control rely on strict con-
vexity of the cost function. This enables the usage of a
dual Newton strategy such as in qpDUNES (Frasch et al.,
2015), sparsity exploiting linear algebra routines such as
the block-tridiagonal Cholesky factorization of the Schur
complement in (Anderson et al., 1999; Wang and Boyd,
2010) or a particular Riccati recursion for linear-quadratic
control problems in (Frison and Jørgensen, 2013; Wright,
1996). In the case of a positive semidefinite cost matrix,
regularization needs to be applied, followed by an iterative
refinement procedure to obtain a solution to the original
problem. This combination of regularization and itera-
tive refinement can be also needed in the presence of ill-
conditioned QP matrices. Instead, we here do not assume

strict convexity of the cost function and we propose to use
an iterative method to solve each linear KKT system.

2.2 Primal Feasible Active-Set Method

The basic idea behind active-set methods is to find an
optimal active set by iteratively updating a current guess.
When fixing the active constraints at the current solution
guess, a corresponding structured equality constrained QP
needs to be solved to compute a new search direction

min
∆X,∆U
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s.t. ∆x0 = 0, (2c)

∆xk+1 = Ak∆xk +Bk∆uk, k = 0, . . . , N−1, (2d)

0 = Dx
k,i∆xk +Du

k,i∆uk, (k, i) ∈ W, (2e)

where W denotes the current guess for the active set, i.e.,
the working set. The variables ∆wk := (∆xk,∆uk) =
(xk − x̄k, uk − ūk) are defined for k = 0, . . . , N − 1
and ∆wN := ∆xN = xN − x̄N , where w̄k := (x̄k, ūk)
denotes the current guess for the optimal solution of the
QP in (1). Note that the equality constrained QP in (2)
results in the search direction w̄k + α∆wk for which all
constraints in the set W remain satisfied, regardless of
the value for α. A distinction should be made between
primal, dual and primal-dual active-set methods (Nocedal
and Wright, 2006). In addition, parametric methods have
been proposed (Ferreau et al., 2014) in order to exploit the
parametric aspect within a homotopy framework. In this
work, we consider a primal feasible active-set method.

2.3 Preconditioning of Iterative Solvers

At each iteration of the active-set method, one needs to
efficiently solve the saddle point linear system[

H A>
A 0

] [
∆y
∆λ

]
= −

[
h
a

]
or K z = b, (3)

which corresponds to the first order necessary conditions
of optimality for the equality constrained QP (2). In (3),
the matrixA has full rank andH is symmetric and positive
semidefinite. Unlike the prior work on embedded opti-
mization algorithms for optimal control based on direct
linear algebra routines in (Frison and Jørgensen, 2013;
Kirches et al., 2011; Wang and Boyd, 2010; Wright, 1996),
we propose the use of iterative solvers as discussed for
general saddle point linear systems in (Benzi et al., 2005;
Benzi and Wathen, 2008). Preconditioning is necessary for
the good performance of iterative solvers (Knyazev et al.,
2015). It results in a modified linear system T −1K z =
T −1b where T is the preconditioner, which is such that

(1) computations with the operator T −1 are cheaper than
solving the original saddle point linear system in (3),

(2) and the preconditioned matrix T −1K approximates
the identity or its eigenvalues are tightly clus-
tered (Greenbaum, 1997).

An overview on algebraic and application-specific precon-
ditioners can be found in (Benzi et al., 2005). Here, we
focus on two block-diagonal preconditioning techniques.



2.4 PRESAS for Embedded Predictive Control

A primal active-set method requires the availability of
an initial point, which is already primal feasible. In the
general case of a constrained quadratic program, this is a
nontrivial task that corresponds to a Phase 1 procedure
as described, for example, in (Fletcher, 1987; Nocedal
and Wright, 2006). However, when solving the parametric
OCP in (1) within receding horizon based control or
estimation, it becomes relatively easy to satisfy the initial
value condition and the continuity constraints based on a
forward simulation using a shifted version of the previous
control trajectory. In addition, one may introduce slack
variables in order to always be able to satisfy all state-
dependent inequality constraints in (1e).

The resulting PRESAS solver is relatively easy to imple-
ment, because there is no explicit Phase 1 procedure
needed for initialization and a primal active-set method
automatically maintains the linear independence of the
constraint gradients in its working set (Nocedal and
Wright, 2006). The computational performance of this
solver has recently been illustrated for multiple numeri-
cal case studies of linear MPC on an ARM Cortex-A53
processor, and was shown to be competitive with other
state of the art solvers in (Quirynen et al., 2018).

3. OPTIMAL CONTROL STRUCTURED
BLOCK-DIAGONAL PRECONDITIONING

The saddle point linear system in (3) describes the first
order necessary conditions of optimality for the equality
constrained QP in (2). It has a particular sparsity struc-
ture because H corresponds to the block-diagonal Hessian
matrix and the constraint matrix A reads as

A =


−1 0
Ex

0 Eu
0

A0 B0 −1 0
. . .

 =


[−1 0]
E0

C0 [−1 0]
. . .

 , (4)

where Ex
k and Eu

k denote the active inequality constraints
for each interval k, corresponding to the working set inW.
For notational convenience, we define the block matrices
Ck := [Ak Bk] and Ek := [Ex

k E
u
k ].

3.1 Preconditioner 1: Augmented Lagrangian (AL)

To obtain a good performance for the iterative solver, we
can use the standard block-diagonal preconditioner

Ta =

[
H+A>ΓA 0

0 Γ−1

]
=

[
H+ γA>A 0

0 γ−1 1

]
, (5)

where Γ is a symmetric positive definite weighting ma-
trix. A popular choice for the weighting matrix, which
follows an augmented Lagrangian type technique (Benzi
and Wathen, 2008), is Γ = γ 1 where γ > 0 is a scalar
and 1 denotes the identity matrix. The application of
this augmented Lagrangian type preconditioner Ta in (5)
requires the factorization of the block-tridiagonal matrix
H+ γA>A which reads as

H+ γA>A =Ĥ0 + γ G>0 G0 −γ C>0
−γ C0 Ĥ1 + γ G>1 G1 −γ C>1

−γ C1
. . .

 , (6)
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]
, Hk =

[
Qk S

>
k

Sk Rk

]
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[
Qk + γ 1 S>k

Sk Rk

]
.

The structured matrix in Eq. (6) is positive definite for
any value γ > 0 such that a block-tridiagonal Cholesky
decomposition (Anderson et al., 1999) can be applied.
The asymptotic computational complexity for this matrix
factorization is O(Nm3), where m = nx + nu is defined.
However, such computational cost is incurred only once
per QP solution for the initial guess of active constraints.
At each iteration of the active-set method, in which
one constraint is added or removed from the working
set, a corresponding row is added or removed from the
Jacobian matrix A in (4). Given this modification of
the matrix H + γA>A, a rank-one update to its block-
tridiagonal Cholesky factorization can be computed at a
computational complexity of O(Nm2) in each iteration of
the PRESAS solver (Quirynen et al., 2018).

3.2 Preconditioner 2: Schur Complement (SC)

Alternatively, a Schur complement type preconditioner can
be used that reads as follows

Ts =

[
H̃ 0
0 AH̃−1A>

]
, (7)

where H̃ ≈ H such that H̃ � 0. This preconditioner Ts

in (7) also results in a block-tridiagonal structure

AH̃−1A> =
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−Ex
0 Q̃
−1
0 E0H̃

−1
0 E>0 E0H̃

−1
0 C>0

−A0Q̃
−1
0 C0H̃

−1
0 E>0 C0H̃

−1
0 C>0 + Q̃−1

1 −Q̃−1
1 Ex>

1

−Ex
1 Q̃
−1
1

. . .

, (8)

where, for simplicity, we assumed that each of the Hessian
matrices is block diagonal, i.e., Sk = 0 for k = 0, . . . , N −
1. Note that each of the block matrices is of different
dimensions in (8), corresponding to the number of active
constraints in each block. Similar to before and as dis-
cussed in (Quirynen et al., 2018), a rank-one update can be
computed for the block-tridiagonal Cholesky factorization
of the matrixAH̃−1A> as part of the preconditioner in (7),
resulting in a computational complexity of O(Nm2) at
each iteration of the active-set method.

In the case that the Hessian block matrix Hk is positive
semidefinite, then a positive definite approximation H̃k =[
Q̃k 0
0 R̃k

]
� 0 needs to be computed. One can apply

an on-the-fly regularization in the form of a modified
Cholesky factorization, e.g., as in (Frasch et al., 2015;
Nocedal and Wright, 2006). Alternatively, we can apply
the structure-exploiting regularization technique tailored
to optimal control from (Verschueren et al., 2017). We
further restrict to a simple but standard regularization
procedure of the form H̃k = Hk + ε1. The value for ε > 0
needs to be chosen sufficiently small such that H̃k ≈ Hk

but it also needs to be large enough such that H̃k � 0.
Note that the Hessian matrices do not need to be diagonal
and one can even include off-diagonal matrices Sk, without
changing the block-tridiagonal sparsity structure in (8).



3.3 Preconditioned MINRES Algorithm

Both the Schur-complement based Ts and the augmented
Lagrangian preconditioner Ta are symmetric positive defi-
nite, given a sufficiently large choice for Γ = γ 1. Therefore,
these preconditioning techniques can be used within the
preconditioned minimal residual (PMINRES) algorithm as
described in (Greenbaum, 1997). PMINRES is based on
the three-term recurrence in the Lanczos iteration for sym-
metric matrices and specifically requires a positive definite
preconditioner (Benzi et al., 2005). On the other hand, the
generalized minimal residual (GMRES) algorithm is based
on the Arnoldi iteration, for which the computational cost
generally grows with each iteration, but it does not need a
positive definite preconditioner. For simplicity, we further
focus on using PMINRES in combination with either of
the block-diagonal preconditioners in Eq. (5) or (7).

For the augmented Lagrangian preconditioner Ta, as dis-
cussed in detail by (Greif and Schoetzau, 2006), the eigen-
values of the preconditioned matrix become more tightly
clustered around ±1 as the value of γ > 0 increases.
For a sufficiently large value of γ, MINRES can therefore
converge within two iterations in the ideal setting, but
choosing γ too large may result in ill-conditioning of the
matrix Ta. For the Schur-complement based preconditioner
Ts, when H̃ = H is invertible, the preconditioned matrix
has three distinct eigenvalues 1, 1

2 (1 +
√

5) and 1
2 (1 −√

5), and therefore MINRES converges within three itera-
tions (Murphy et al., 2000). The eigenvalues become clus-

tered when, e.g., regularization is needed to make H̃ ≈ H
positive definite (Benzi et al., 2005; Murphy et al., 2000).
Similar to before, the eigenvalues become more tightly
clustered for a smaller value of ε > 0 in H̃ = H + ε1,
while trying to avoid numerical issues that can be caused
by ill-conditioning of the matrix Ts, when choosing the
value of ε > 0 too small. The effect of these choices on the
overall performance of the algorithm will be illustrated in
the case studies of Section 5.

4. PROJECTED PRECONDITIONED CONJUGATE
GRADIENT METHOD WITHIN PRESAS

The parameters, γ or ε, in the above mentioned precon-
ditioners can be difficult to choose, especially in case of
using lower precision arithmetics or in the presence of ill-
conditioned QP matrices. In what follows, we therefore
present a preconditioned iterative solver for which the
performance is less dependent on a careful choice for the
regularization parameter. We propose to use conjugate
gradient (CG) iterations in the null space of the active
constraints, based on a particular projection operator that
preserves the block-structured sparsity in optimal control.
For this purpose, let us briefly review the issues that arise
when applying the CG method to a standard reduced
formulation of the linear KKT system.

4.1 Conjugate Gradient for Reduced Linear System

The equality constrained QP in (2) could be solved by
eliminating the constraints and solving the resulting re-
duced problem formulation. Let us define the matrix Z as
a basis for the null space of the constraint matrix A such

that AZ = 0. In addition, note that a = 0 in the right-
hand side of Eq. (3) for a primal feasible active-set method
such that the reduced linear system reads as

Z>HZ∆yz = −Z>h, (9)

where ∆y = Z∆yz, i.e., the solution vector ∆y is in the
null space of the active constraint matrix A.

Note that one could directly apply the conjugate gra-
dient (CG) method with standard preconditioning tech-
niques to this reduced linear system in (9) as described
in (Coleman and Verma, 2001; Gould et al., 2001). This
idea is generally not advised for optimal control problems
because the block-structured sparsity is destroyed, simi-
lar to the use of a condensing routine (Bock and Plitt,
1984), resulting in expensive CG iterations of complexity
O(N2m2) instead of the desired runtime complexity of
O(Nm2). In addition, forming a null space basis matrix Z,
the reduced Hessian Z>HZ and constructing and applying
a preconditioner for this reduced Hessian would generally
be expensive (Gould et al., 2001). Sparsity exploiting up-
date procedures for the null space basis matrix and for the
factorization in a Schur complement step of an active-set
strategy have been proposed in (Kirches et al., 2011), but
they are relatively complex to implement.

4.2 Projected Preconditioned Conjugate Gradient (PPCG)

Instead of the reduced linear system from Eq. (9), we
propose to apply a projection operator P, onto the null
space of A, to the linear system in Eq. (3):

P H∆y = −P h, (10)

where PA> = 0 has been used (Bakhvalov and Knyazev,
1994). One possible definition of the projection operator

reads as P := Z
(
Z>Z

)−1Z>, but it requires again the
computation of a basis matrix Z for the null space of
A. The idea of the projected preconditioned conjugate
gradient (PPCG) method from (Coleman and Verma,
2001; Dollar, 2005; Gould et al., 2001) is to use the
alternative projection operator

PA:H̃ := 1−A>
(
AH̃−1A>

)−1

AH̃−1, (11)

where 1 denotes the identity matrix. The projection in (11)
does not rely on any basis matrix Z and it preserves a
block-structured problem sparsity, as discussed in the next
subsection. The projection operator in (11) is defined for

a particular preconditioner H̃ � 0 and H̃ ≈ H that can be
applied directly to Eq. (10), resulting in

H̃−1 PA:H̃H∆y = −H̃−1 PA:H̃ h. (12)

One can then apply the conjugate gradient method to the
preconditioned projected linear system in (12).

The operation
(
H̃−1 PA:H̃

)
b1 in (12) can alternatively be

computed by solving the linear system[
H̃ A>
A 0

] [
z1

z2

]
=

[
b1
0

]
, or Tc z = b, (13)

for a certain vector b1. The matrix Tc is also referred to
as a constraint preconditioner for the KKT system in (3).
The solution of the linear system (13) corresponds to

z1 := H̃−1
(
b1 −A>z2

)
, z2 :=

(
AH̃−1A>

)−1

AH̃−1b1,

(14)



such that z1 =
(
H̃−1 PA:H̃

)
b1 holds. We further use

the improved variant of the PPCG method based on the
residual update strategy in (Dollar, 2005; Gould et al.,
2001), in order to avoid significant round-off errors in
the range of A>. One could additionally use an iterative
refinement step to improve the numerical stability.

4.3 Block-structured Sparse Constraint Preconditioner

The standard block-tridiagonal sparsity structure of the
positive definite matrix AH̃−1A> as well as the block-
diagonal structure of the positive definite matrix H̃ can
be exploited in Eq. (14) for the implementation of a novel
variant of PRESAS in combination with the PPCG method
for fast MPC applications. In addition, note that the ap-
proximate Hessian matrix H̃ in the preconditioner is often
chosen to be diagonal, in practice. As described earlier in
Section 3, the block-tridiagonal Cholesky factorization for
the matrix AH̃−1A> can be also efficiently maintained
based on a rank-one factorization update for each active-
set change. Similar to the techniques in (Quirynen et al.,
2018), this alternative variant of the PRESAS solver requires
an initial setup computational complexity of O(Nm3) and
a per-iteration complexity of O(Nm2) for solving the op-
timal control structured QP in (1).

The quality of the constraint preconditioner is defined
by the accuracy of the approximation H̃ ≈ H such that
H̃ � 0. However, unlike the case for the Schur complement
type block-diagonal preconditioner, the eigenvalues of the
preconditioned matrix T −1

c K can be shown to be

{1} ∪ σ

((
Z>H̃Z

)−1

Z>HZ
)
, (15)

where the notation σ(·) denotes the spectrum of a matrix.
As described in (Gould et al., 2001), typical choices are

H̃ = 1 or H̃ = diag(H). Here, we use again a regularized

Hessian approximation of the form H̃ = H + ε1, where
ε > 0 is chosen sufficiently small without causing ill-
conditioning of the constraint preconditioner Tc.

Two conclusions can be made straightforwardly from the
expression for the eigenvalues of the preconditioned matrix
in Eq. (15). First, all eigenvalues are equal to 1 in case that

H = H̃ � 0, i.e., only one CG iteration is needed. Secondly,
all eigenvalues remain equal to 1 also when augmented
Lagrangian type regularization is applied to the Hessian,
i.e., H̃ = H + A>ΓA � 0 such that the reduced Hessian
reads Z>H̃Z = Z>HZ as in (Dollar, 2005). The latter is
very common for MPC applications, e.g., when performing
a slack reformulation of inequality constraints based on an
exact L1 penalty. The full Hessian matrix will be positive
semidefinite as a result of such slack reformulation, but
a regularization of the slack variables in the constraint
preconditioner does not change the reduced Hessian and
therefore it does not affect the convergence of the PPCG
method. Note that the number of iterations can be larger
than one in practice for both of these cases because of nu-
merical round-off errors that are caused by ill-conditioning
and/or the use of low-precision arithmetics.

5. NUMERICAL CASE STUDIES

We consider two different numerical case studies. The first
case study concerns a linear MPC problem formulation
for a chain of spring-connected masses as in (Wang and
Boyd, 2010). The second case study consists of a non-
linear MPC problem formulation for the swing-up of an
inverted pendulum, based on the real-time iteration (RTI)
scheme in the ACADO code generation tool (Quirynen et al.,
2014). We illustrate the computational performance of
the PRESAS-PPCG solver based on a standalone C code
implementation that can be easily embedded. For this
purpose, we present average computation times of closed-
loop MPC simulations for both case studies in order to
compare the newly proposed solver against the PRESAS-AL
and PRESAS-SC methods from (Quirynen et al., 2018) and
other state of the art optimal control algorithms. Moti-
vated by real-world control applications, the computation
times in this section have been obtained using an ARM
Cortex-A7 processor in the Raspberry Pi 2. 1

5.1 Case Study 1: MPC on Chain of Oscillating Masses

This first test problem consists of the chain of oscillating
masses, which is often used as a benchmark example
for fast MPC solvers (Quirynen et al., 2018; Wang and
Boyd, 2010). The linear time-invariant system dynamics
and corresponding OCP formulation, of the form in (1),
are described in more detail in (Wang and Boyd, 2010).
The full state of the system consists of the displacement
and velocity of the nm masses, i.e., x(t) ∈ R2nm such
that the state dimension can be varied by changing the
amount of masses. A number of actuators nu < nm

apply tensions between certain masses while respecting the
actuator limitations as well as constraints on the position
and velocity of each of the masses. In order to guarantee
the QP to remain feasible at each sampling instant, a slack
variable is introduced for the state constraints on each
control interval. Based on a sufficiently large penalization
of this additional variable in the objective, a feasible
solution can be found whenever possible. During the
closed-loop MPC simulations, a uniformly distributed but
reproducible disturbance acts as a random force on each
of the masses as in (Wang and Boyd, 2010).

Figure 1 shows the average computation times per QP so-
lution during the closed-loop simulations of linear MPC for
different numbers of masses nm and for a varying control
horizon length N . It includes the computation times for
ADMM, qpOASES, HPMPC and the 3 variants of PRESAS. The
considered ADMM algorithm (Raghunathan and Di Cairano,
2015) and qpOASES (Ferreau et al., 2014) both solve the
small but dense QP after numerically eliminating the state
variables. The timing results for ADMM and qpOASES include
the computation time for this condensing routine. Note
that the black dashed lines in Figure 1 illustrate, respec-
tively, a computational cost that increases with a 1st, 2nd

or 3rd order of complexity. The typical runtime complexity
of O(N2m2) for the two dense solvers, ADMM and qpOASES,
can be observed. On the other hand, the computational
complexity of O(Nm3) for the interior-point method in

1 The Raspberry Pi 2 uses a BCM2836 SoC with a 900 MHz 32-bit
quad-core ARM Cortex-A7 processor, with 256 KB shared L2 cache.
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Fig. 1. Average computation times for MPC on the chain of
masses with L2 slack reformulation: varying number
of intervals N and number of masses nm.

HPMPC (Frison et al., 2014) and the per iteration complexity
of O(Nm2) for the proposed variants of the PRESAS solver
can be observed in Figure 1. Even though the PRESAS-AL
and PRESAS-SC solvers are very competitive with state of
the art optimal control algorithms, it can be observed that
the proposed PRESAS-PPCG method further outperforms
these algorithms. This performance scales well with the
number of control intervals and the number of state vari-
ables in this particular case study.

Note that PRESAS-AL requires a suitable choice for
its parameter γ, while PRESAS-SC and the proposed
PRESAS-PPCG solver typically need diagonal regularization
using a parameter ε = 1

γ . Figure 2 illustrates the numer-

ical dependency of the number of PMINRES or PPCG
iterations on this parameter value, either using single- or
double-precision arithmetics. As expected, the value for
γ should be sufficiently large but not too large in order
to maintain a good conditioning of the preconditioner.
In case of double precision arithmetics, the parameter
design appears to be much less sensitive. For a sufficiently
large value of γ, the SC, AL and PPCG variant of PRESAS,
respectively, require 3, 2 and 1 iteration of the residual
method on average for each solution of a saddle point linear
system. When using single-precision arithmetics, the nu-
merical performance is reduced for all three precondition-
ers. However, the proposed PRESAS-PPCG method shows
a consistently lower number of iterations for the range of
values for the parameter γ and allows an average of only
two PPCG iterations for a sufficiently small regularization
parameter ε = 1

γ in this case study.

5.2 Case Study 2: Nonlinear MPC of Inverted Pendulum

This second numerical case study involves a swing-up of a
pendulum to its upward unstable position, using the non-
linear system dynamics and the optimal control problem
formulation from (Quirynen et al., 2014). Both the actu-
ated force and the cart position are constrained to remain
within their respective bound values. A slack reformulation
of the position constraints is used to guarantee each QP
subproblem to remain feasible. The swing-up maneuver
results in a relatively high number of online active-set
changes with respect to the amount of state nx = 4 and
control variables nu = 2. The nonlinear MPC (NMPC)
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Fig. 2. Average number of iterations for PPCG or MIN-
RES per linear system solution within the closed-loop
MPC simulations for a chain of nm = 3 masses.

Table 1. Timing results (ms) for inverted pen-
dulum swing-up (Ts = 50 ms and N = 40):
double/single precision on ARM Cortex-A7.

Double precision Time [ms] # sol iter # res iter
(mean/max) (mean/max) (mean/max)

PRESAS-PPCG 1.82/6.90 2.5/12 1.0/1
PRESAS-AL 3.28/14.59 2.5/12 2.0/3
PRESAS-SC 3.67/15.81 2.5/12 3.0/3
qpOASES 16.96/34.86 4.2/14 -
ADMM 15.87/97.57 54.2/446 -

Single precision Time [ms] # sol iter # res iter

PRESAS-PPCG 1.81/7.37 2.5/12 1.9/2
PRESAS-AL 4.75/22.19 2.5/12 6.4/8
PRESAS-SC 6.85/24.67 5.4/21 5.0/6
qpOASES 16.37/38.86 5.2/16 -
ADMM 11.68/69.61 54.5/446 -

algorithm is implemented using the Gauss-Newton based
real-time iteration scheme in the ACADO code generation
tool as discussed in (Quirynen et al., 2014).

Table 1 shows the average and worst-case computation
times for each QP solution within the RTI algorithm for
nonlinear MPC of the inverted pendulum, including the
solvers ADMM, qpOASES and all three variants of PRESAS
based on single- versus double-precision arithmetics on
an ARM Cortex-A7 processor. Note that ADMM provides
a rather low solution accuracy compared to the accuracy
of the solutions that are provided by PRESAS and qpOASES,
which are similar to each other. When switching from
double- to single-precision arithmetics, there can be an
increased efficiency of the floating-point operations be-
cause, e.g., the compiler can more effectively use SIMD
instructions. For example, this is observed for the compu-
tation time of the ADMM solver. However, the use of single-
precision arithmetics may additionally lead to numerical
issues that are caused by round-off errors, resulting in an
overall increased number of iterations. One can observe
from Table 1 that these competing effects result in a
comparable computational performance of the proposed
PRESAS-PPCG solver for both single- and double-precision
arithmetics, which outperforms the alternative optimal
control algorithms on this particular case study.



6. CONCLUSIONS

This paper proposed a new algorithm for solving optimal
control structured quadratic programming problems as
they typically arise in both linear and nonlinear real-time
MPC applications. The solver is based on a block-sparse
constraint preconditioner for the projected preconditioned
conjugate gradient (PPCG) method within the primal
active-set strategy (PRESAS). We discussed how this new
solver exhibits favorable numerical properties, especially
when using low-precision arithmetics, compared to prior
work on the PRESAS algorithm based on block-diagonal
preconditioning. Its competitiveness with state of the art
optimal control algorithms has been illustrated for two
case studies of MPC on an ARM Cortex-A7 processor.
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