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Abstract

Along with the forth industry revolution, implementing industrial control systems over main-
stream wireless networks such as WirelessHART, WiFi, and cellular networks becomes nec-
essary. Well-known challenges, such as uncertain time delays and packet drops, induced
by networks have been intensively investigated from various perspectives: control synthesis,
network design, or control and network co-design. The status quo is that industry remains
hesitant to close the loop at the control-to-actuation side due to safety concerns. This work
offers an alternative perspective to address the safety concern, by exploiting the design free-
dom of system architecture. Specifically, we present a smart actuation architecture, which
deploys (1) a remote controller, which communicates with physical plant via wireless network,
accounting for optimality, adaptation, and constraints by conducting computationally expen-
sive operations; (2) a smart actuator, which co-locates with the physical plant, executing a
local control policy and accounting for system safety in the view of network imperfections.
Both the remote and the local controllers run at the same time scale and cooperate through an
unreliable network. We propose a policy iteration-based procedure to co-design the local and
remote controllers when the latter employs the model predictive control policy. Semi-global
asymptotic stability of the resulting closed-loop system can be established for certain classes
of plants. Extensive simulations demonstrate the advantages of the proposed architecture
and co-design procedure.
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Abstract— Along with the forth industry revolution, imple-
menting industrial control systems over mainstream wireless
networks such as WirelessHART, WiFi, and cellular networks
becomes necessary. Well-known challenges, such as uncertain
time delays and packet drops, induced by networks have
been intensively investigated from various perspectives: control
synthesis, network design, or control and network co-design.
The status quo is that industry remains hesitant to close the
loop at the control-to-actuation side due to safety concerns.
This work offers an alternative perspective to address the safety
concern, by exploiting the design freedom of system architec-
ture. Specifically, we present a smart actuation architecture,
which deploys (1) a remote controller, which communicates with
physical plant via wireless network, accounting for optimality,
adaptation, and constraints by conducting computationally
expensive operations; (2) a smart actuator, which co-locates with
the physical plant, executing a local control policy and account-
ing for system safety in the view of network imperfections.
Both the remote and the local controllers run at the same time
scale and cooperate through an unreliable network. We propose
a policy iteration-based procedure to co-design the local and
remote controllers when the latter employs the model predictive
control policy. Semi-global asymptotic stability of the resulting
closed-loop system can be established for certain classes of
plants. Extensive simulations demonstrate the advantages of
the proposed architecture and co-design procedure.

I. INTRODUCTION

Thanks to their flexibility and low cost, the past decade has
witnessed sustained interest in exploring wireless networked
control systems (WNCS) and expanding their applications
over industry processes, unmanned aerial vehicles, and tele-
operated robots. Within the foreseeable future, the WNCS
is expected to rapidly penetrate into the next generation
of industrial applications, including autonomous warehouses
and smart factories [1].

WNCSs face serious challenges due to the inherent in-
determinism and limited throughput of wireless networks.
They have spawned a variety of research directions in both
network and control communities. On the network side, the
adoptions of wireless sensor and actuator networks (WSANSs)
are accelerated by wireless standards tailored for industrial
automation, such as ISA100, WirelessHART, and ZigBee.
Other approaches to address indeterminism include cod-
ing [2], retransmissions and channel selection [3], [4], rout-
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ing [5], and reachability-aware scheduling [6], etc. However,
the unpredictable wireless conditions of an industrial WSAN
mean that the reliability of the wireless network cannot be
guaranteed, leading to unsafe control performance. Another
important research direction is rooted in control theory to
improve the systems’ resiliency to network imperfections.
A plethora of control designs have been performed based
on the models of the original plant as well as on network
parameters. To name a few, Sinopoli et al. [7] discuss Kalman
filtering with intermittent measurement; Gao et al. [8] in-
vestigate robust output tracking control subject to the time
delay between controllers and actuators; Wang et al. [9]-[11]
model packet loss as a Bernoulli or Markov-type process and
establish stochastic stability of the resultant WNCS. More
recently, network and control co-design has been explored
to jointly determine the control and network polices to
attenuate the effects of uncertainties and limited throughput,
for example, [12] on network QoS-aware adaptive control,
[13] on co-design sampling periods and network throughput,
[14], [15] on control and network channel allocation, [16],
[17] on control and network scheduling policy, and [18] on
control and network power policy, etc. Interested readers are
referred to [19]-[23] for more details.

Most of the aforementioned works assume that the WNCS
admits a direct architecture [21], where the controller and
plants communicate through the wireless network. With
sensing and actuation signals transmitted over an unreliable
network, the key issue is how to ensure the closed-loop
system safety (stability). Due to the stochastic nature of
network models, most existing works either strive to obtain
guaranteed stability (albeit with conservative designs) or
stochastic stability, which has the drawback of being unsatis-
factory to industrial practitioners. Alternatively, a hierarchi-
cal architecture is widely adopted in industrial WNCS, where
local (lower level) controllers fulfill stabilization and tracking
of local control loops, and a remote controller supervises
local controllers over a unreliable network. This architecture
possesses two main characteristics: the remote controller
typically runs much slower than local control loops; and the
remote controller provides reference inputs to local control
loops for optimal process operation [21]. By decoupling the
unreliable network from local control loops, stability analysis
of the entire closed-loop system is relatively straightforward.
In addition to its higher cost, another shortcoming of the
hierarchical architecture is that the remote controller has
insufficient authority to shape the transient of the closed-
loop control system, and thus might cause performance loss.

This paper aims to reconcile the safety, optimality, and cost



of the WNCS by exploiting the design freedom of system
architectures. Main contributions of this paper are four-fold:

(i) propose a smart actuation architecture that combines
features of direct and hierarchical architectures.

(i1) present a procedure of co-designing remote and local
controllers in the case that the remote controller imple-
ments a model predictive control (MPC) policy.

(iii) establish stability of the resultant closed-loop system.

(iv) demonstrate the effectiveness of the smart actuation
architecture in both reliable and unreliable networks
through extensive simulations.

The rest of the paper is organized as follows: Section II
introduces existing architectures of the WNCS and proposes
the smart actuation architecture. Section III presents a proce-
dure to co-design remote and local controllers and establishes
the closed-loop system stability when the remote controller
implements the MPC policy. Section IV provides evaluation
results of the proposed architecture and co-design procedure.
Conclusions and future work are stated in Section V.

II. SYSTEM ARCHITECTURE

This section first briefly describes two prevailing architec-
tures, and then the smart actuation architecture is proposed
and discussed. Interested readers are referred to [20], [21]
for a comprehensive coverage on existing architectures.

A. Existing Architectures

Fig. 1 illustrates a typical schematic of direct architecture.
Sensors transmit the measurements y(k) to the remote con-
troller via the network; and the remote controller transmits
control inputs u(k) to actuators the network. Although enjoy-
ing miscellaneous advantages, this architecture suffers from
one notable weakness: sophisticated control and network

design to ensure the closed-loop system stability.
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Fig. 1: Direct architecture

Fig. 2 outlines hierarchical architecture. The remote con-
troller supervises local control loops by specifying their
references, denoted by y*(k). The local controller generates
control inputs u(k’) to actuators. Here we use k and k' to
suggest that remote and local controllers have distinct sample
rates. Since the remote controller typically runs at a much
slower pace than the local one, the time scale separation
principle can be applied. Thus the local controller mostly
accounts for the closed-loop system stability. Thanks to
its scalability and reliability [21], hierarchical architecture
has been found in many industrial applications such as
distributed control systems for process automation, mobile
robots control systems [12], and smart power grids [24].
Compared with direct architecture, hierarchical architecture
enhances reliability but increases the system cost, through
such expenses as extra installation, maintenance, and cabling.

Ref

Remote y* (k)
Controller with ———-"
Low Frequency i

— *(0]  Leal - Juk)

~“<—> Controller with
High Frequency

Actuators

Fig. 2: Hierarchical architecture

Ret

Smart Actuator

0,0 (K. Ref 0, (k). %, (k). Ref | [ Local

u(k) |
g - ,‘.Q\ x ‘__H Controller Actuators !

Fig. 3: Smart actuation architecture
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In addition, the remote controller has insufficient authority
to shape the transient of the closed-loop system.

B. Smart Actuation Architecture

Our smart actuation architecture is shown in Fig. 3. At
time step k, the remote controller determines control input
u-(k) based on the estimated state x.(k) and references,
and then sends these signals to the local controller; the
local controller can generate the local control input u;(k)
by adopting local control law u;(k) = h(x(k)). The local
controller passes on either the remote control input (k)
from network or its own control input u;(k), depending on
whether the actuation packet is delivered on time. That is,

{ﬁr(k), packet delivered,
= : (1
u;(k), otherwise,

where u(k) is the control command to actuators. The remote
controller adopts policies tackling optimality, uncertainties,
and constraints, e.g. MPC, reinforcement learning, and adap-
tive dynamic programming. The local controller implements
computationally lightweight policies for system stability.

For example, consider a nonlinear discrete-time system,

x(k+1) = f(x(k),u(k)),
where x € R” is the state and u € R™ the control. The local
controller implements a control policy as follows:

) f(xe(k),u(k)), packet delivered,
)= {f(xl(k),u(k)), otherwise, )

u(k+1)=h(x;(k+1)).

If the actuation packet arrives on time, u(k) = #,(k) ac-
cording to (1), and £,(k) is the estimated state of x,(k)
received from the network. On the other hand, if the actuation
packet is lost, u(k) = u;(k) according to (1), and x;(k) is the
predicted state based on local policy (2) at time step k — 1.
Please note that (1) is an example of the switch rule. The
switch rule should depend on remote control policy in order
to establish stability. For instance, with MPC as the remote
controller, a tailored switch mechanism, designed to establish
stability, is described in detail in Sec. III-B.

Providing control input to actuators directly, the remote
controller has sufficient authority to shape the closed-loop
system performance. However, this treatment may lead to
the dilemma encountered in the direct architecture: unsatis-
factory stability and sophisticated control design. The local



controller is therefore introduced to lift this concern. This
idea is consistent with results in [25], where the optimal
location of controllers is investigated. It concludes that con-
trollers should be collocated with the actuator when packets
are allowed to be infinity long.

Remark 2.1: The signal flow from sensors to the local
controller, represented by the dashed line in Fig. 3, is
optional. With this flow, the smart actuation architecture
is similar with the hierarchical one, except that the remote
controllers of the two play different roles, and its local and
remote controllers adopt the same time scale. Without this
flow, it is similar to direct architecture, except that smart
actuation architecture has local controllers in place. (]

III. SMART ACTUATION FOR STABILITY AND
PERFORMANCE

The closed-loop system corresponding to the smart actu-
ation architecture is hybrid. Specifically it can be regarded
as a switched system arbitrarily triggered by the event
designating actuation packet loss. Stability analysis tools for
hybrid systems can be found in [26] and references therein.
This work performs stability analysis and control design
based on a well-received result: if there exists a common
Lyapunov function for all subsystems, then the stability of
the switched system is guaranteed under arbitrary switching.
It is revealed that construction of such a common Lyapunov
function entails co-design of remote and local controllers.
It is not trivial to perform the co-design which guarantees
stability. We propose a policy evaluation-/iteration-based co-
design procedure by confining the remote controller to MPC.

A. Simplification and Assumptions

We concentrate on a specific control synthesis problem by
confining the remote controller to MPC. This problem is re-
strictive but meaningful because MPC, by taking constraints
and optimality into account, is in alignment with desired
features of the remote controller. As a results, MPC has
been widely adopted as remote controllers of WNCSs [27]—
[29]. Furthermore, because the state observer provides the-
oretically sound protection against loss of sensing informa-
tion [7], [30], the WNCSs are more sensitive to packet loss
on the actuation side [28]. stability analysis here focuses on
the impact of actuation packet loss. This focus implies the
following assumption.

Assumption 3.1: The closed-loop control system in the
smart actuation architecture holds the following facts:

(i) we focus on actuation packet loss, assuming there is

no packet loss at the sensor-to-control side;

(ii) delays of computations and communications within a
single sampling period are ignored. Delays longer than
the sampling period are regarded as packet losses.

Regarding the plant, we have the following assumptions
to facilitate stability analysis and control design.

Assumption 3.2: Within a closed-loop control system, the
open-loop plant features the following facts:

(i) itis stabilizable by either MPC or a local state feedback

control policy u;(k) = h(x(k)) in an ideal network;

(i1) its model is known, and its states are measured.

B. Nonlinear System Case

Consider a nonlinear discrete-time system,
x(k+1) = f(x(k)) + g(x(k)Ju(k), y(k) =x(k),  (3)
where x € X C R” is the state, f and g smooth vector fields,
u € U C R™ the control input, and y the output. Both X and U
are convex and compact, with each set containing the origin
in its interior. The control objective is to steer states to the
origin while minimizing a certain cost function.

Next, we illustrate co-design of the remote MPC and local
control policies for system (3) to ensure that the resultant
closed-loop system is semi-globally asymptotically stable.

1) Local Controller Design: Feedback stabilizing or
tracking control design for a nonlinear system (3) is one of
the fundamental problems in control theory. However, it is
not the focus of this work. As specified in Assumption 3.2,
we assume the existence of a smooth state feedback law
u;(k) = h(x(k)), which renders the resultant closed-loop
system globally asymptotically stable; i.e., Thm. 3.3 holds.

Theorem 3.3: [31, Thm 4.2] Let x = 0 be an equilibrium
point for the closed-loop system (3) with control u; (k) =
h(x(k)). There exists a continuously differentiable function
V; : R" — R such that,

(1) Vi(0)=0and V;(x) >0, Vx#0
(ii) [lx]| =00 = Vi(x) — oo
(iii) Vi(x(k+ 1)) = Vi(x(k)) < 0, ¥x #£0.

Remark 3.4: Several control designs lead to u (k) € U,
Vx € X, and u;(k) renders X, an invariant set of the control
system. For simplicity, this work assumes that u; (k) always
lies in U for all x € X, and makes X an invariant set. U

2) Remote Controller Design: Let p be a dummy variable.
Given a constant i > 0, p(i|k) denotes a prediction of p (k+i),
based on information available at time k; and p(ilk+ 1)
represents a prediction p(k+i+ 1), using the information
available at time k+ 1. p(k) = p(0lk). Without loss of
generality, for system (3) at time k, the MPC controller tries

to minimize the following cost function [32],
N—1

V(x(k), u(k)) = F(x(N|k)) + ;) Lx(ilk), u(ilk)), — (4)

where u(k) = u, (k) = {u,(k),u-(1]k),...,u,(N — 1]k)}, x(i|k)

for 1 <i<N-—1 is the state corresponding to u,(k), and

N the prediction horizon. The positive definite functions

I(x,u) and F(x) represent the stage cost and the terminal

cost, respectively. At time k, the MPC controller solves an

optimization problem by minimizing the cost function (4),

subject to state/control constraints along the state trajectory

and a terminal constraint x(N|k) € Xy C X. Assumption 3.2

implies that the optimization problem has an optimal solution

uwi(k) ={ul(k),us(1]k),...,us(N—1]k)} at time k, and the as-

sociated cost function is given by V,*(x(k)) =V (x(k),u(k)).
Assumption 3.2 indicates that there exist functions

F(-),1(-,-), #5(-) satisfying Al to A4 [32, Sec. 3.3].

Al: Xy CX, where Xy is closed and 0 € X;.

A2: Local controller %% (x) € U, Vx € X;.

A3: (f(x)+g(x)H#r(x)) € Xf, Vx € Xy

Ad: F(f(x) +8(x) 47 () — F (x) +1(x, #7(x)) < 0, Vx € Xy.



To establish stability of the hybrid system resulting from
the remote MPC and local controllers, it is sufficient to prove
that (4) is a common Lyapunov function for subsystems

associated with the local control policy or the MPC policy.
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Remark 3.5: 1t is challenging to establish the stability
of closed-loop system, when the smart actuator enacts the
switching policy (1) and the remote controller employs MPC.
Motivated by [27], [28], [33]-[35], where actuation buffer
is used to address time delays and packet loss, the switch
mechanism illustrated by Fig. 4 is alternatively executed by
the smart actuator in the stability analysis below. Assume that
the smart actuator has a buffer of size L = N, and the buffer
stores a control sequence u(k) = {u}(k),us(1]k),...,ul(N —
1|k)}. If the actuation packet is delivered at time k+ 1, the
buffer is refreshed by the MPC control sequence u,*(k +
1); otherwise, the local control policy u;(N|k) is pushed
into the buffer. Consequently, the control sequence in the
buffer turns into w(k) = {u}(1|k),...,u;(N —1|k),u;(N|k)}.
Previous study [27] discussed whether the last input of buffer
should be set to O or last value when packet drops. We have
developed a third option by setting it as local control input,
which is favorable to stability. ]

Proposition 3.6: Assume that a local control policy
uy(k) = h(x(k)) renders system (3) globally asymptotically
stable, and that for a certain positive definition function J(x),
the following condition holds, for 0 <k <o, Vxe X, > 1,

o - (L(x(k), s (K))) +J (x(k+ 1)) = J (x(k)) = 0. (5)
Then the cost function (4), with F(x) =J(x) and the stage
cost [(x,u), is a common Lyapunov function of the closed-
loop system, where control input switches between the MPC
policy and u; (k) = h(x(k)), according to Fig. 4.

Proof: We need to show the following facts
(i) the subsystem resulting from the MPC policy has a
Lyapunov function given by V,*(x(k));
(ii) with F(x) = J(x), (4) is a Lyapunov function of the
subsystem resulting from u;(k);
(iii) in the case of switching from the MPC policy to the
policy u;(k), the Lyapunov function decreases;
(iv) in the case of switching from the policy u;(k) to the
MPC policy, the Lyapunov function deceases.

Proof of (i): With conditions A1-A4, the cost func-
tion (4) is a Lyapunov function for the subsystem corre-
sponding to the MPC policy [32]. Proof is omitted.

Proof of (ii): Given x(k), u;(k) = h(x(k)), and system
(3), we have u;(nlk) = u;(k+n) and x(n+1]k) =x(k+n+1),
where 0 < n < N. Therefore, we have {u;(k),...,u;(N+k)},

{x(1+k),...,.x(N+1+k)}, and

V(x(k+1)) =J(x(N+1+k))+ il(x(i+k),ul(i+k))
i=1
V(x(k+1)) =V (x(k)) = J(x(N +1+k)) = J(x(N +k))
—1(x(k),uy (k) +1(x(N+k),u;(N +k)).

Substituting (5) into the above equation gives
V(x(k+1))=V(x(k)) == (a—DI(x(N+k),u;(N+k))
— 1(x(k), 1 (K)),
which is negative definite and implies (ii).

Proof of (iii): The induction principle is used here.
Assume that the MPC policy u,*(k) = {u,*(k)....,u,*(N —
1|k)} is applied at time k. The Lyapunov function is V,*(k).
With the packet drop at time k + 1, the control sequence
is uk+1) = {u (1lk)....,u,*(N — 1|k),u;(N|k)}, where
u;(N|k) is the local control policy. We have

N-1

Jx(N+1[k)+ Y I(x
1—1

Zz

V(k+1)—V," (k) = (ilK), 1, (ilk))

+ U(x(Nlk),u;(N|k)) — J (x(N[k)) (ilk), ur" (ilk))

(6)
where x(N + 1]k) is obtained from applying control
u;(x(N]k)) to system (3). Applying (5) to (6), one verifies
V(k+1)—V.*(k) < —I(x(k),u}(k)). By induction, one can
repeat the aforementioned derivation to establish the decrease
of the Lyapunov function, if the packet loss continues beyond
time k+ 1. This completes the proof of (iii).

Proof of (iv): V.*(k+1) <V,*(k) because of (i). At
time k, since the control sequence in the buffer is a feasible
solution with a cost V (k), the MPC policy u,*(k), obtained
by solving the optimization problem, necessarily yields a cost
V,*(k) <V (k). Therefore V,*(k+1)—V (k) <O0. [ |

Remark 3.7: Prop. 3.6 establishes that the resultant
closed-loop system is semi-globally asymptotically stable
over X, by imposing a restrictive condition (5) over X.
This restriction can be lifted in many cases by relaxing
Assumption 3.2 to hold over Xy. This relaxation, together
with A3 for u; = h(x) = #(x) and assuming the successful
delivery of the actuation packet at k = 0, also ensures the
semi-globally asymptotic stability over X. |

Remark 3.8: It worth noting that condition (5) is sufficient
but not necessary for stability. It is for verification but not
for control synthesis. Given a feedback control u; = h(x)
satisfying Thm. 3.3, I(x,u), and J(x), it is straightforward
to verify whether condition (5) holds or not. However, it is
not trivial to construct the function J(x) and u; = h(x) from
condition (5) for a given I(x,u). This is because u; = h(x)
is associated with a Lyapunov function V;, and renders V;
decay at a certain rate which is irrelevant to I(x,u). O

3) Policy Evaluation-Based Co-Design Procedure: We
employ the following policy evaluation-based procedure to
bridge the gap from u; = h(x) to the construction of J(x).

(i) Design a stabilizing local controller u;y = hg(x).

(i) Given ujg = ho(x), {(x,u), y =1, perform 1 step of

the policy evaluation as (10) to evaluate the cost V;(x)

corresponding to u;o = ho(x), and set J(x) = Vi (x).



(iii) Solve the MPC policy by minimizing the cost func-
tion (4) with F(x) = J(x).

Given a local control law u; = uyg, the policy evaluation-
based co-design procedure eventually outputs a terminal cost
J(x) = Vi(x). We have J(x(k+ 1)) —J(x) = —I(x(k),u;(k))
according to (10), which satisfies condition (5). This implies
the stability of the control system, according to Prop. 3.6.

Remark 3.9: As a system of first-order nonlinear differ-
ence equations, the closed-form solution of (5) or (10) is
difficult to establish. Instead, a proper approximate solu-
tion is usually of practical interest. Given u; = h(x) and
parameterizations of J(x), (5) or (10) is reduced to algebraic
equations, and thus, the approximate solution of J(x) can be
readily computed. See Appendix V-A for details. ]

Remark 3.10: The control policy u; = h(x) is designed
to make V; decay along the system trajectory. This implies
that u;9 may be far from optimal w.r.t., minimizing the cost
function (4). As a consequence, the policy evaluation-based
procedure above may have difficulty in solving J(x), which
satisfies (5). A remedy to this issue is to introduce policy
iteration-based co-design procedure as follows:

(i) Design a stabilizing controller u;y = ho(x) and let j =0.
(ii) Given u;; = h;(x) and I(x,u), perform the policy evalu-
ation step (10) to evaluate the cost Vj(x) correspond-
ing to the control u;;.

(iii) Given Vjy(x), perform policy improvement step (11).
(iv) j = j+1; repeat the policy evaluation and policy
improvement steps until j = M, and then let J(x) =
Vim+1(x). M denotes the allowed number of iterations.
(v) Solve the MPC policy by minimizing the cost func-

tion (4) with F(x) =J(x).
Given the stabilizing control policy u;g, the control pol-
icy updated in the policy improvement step also stabilizes
the system (3). Hence, the policy iteration-based co-design
procedure eventually will produce a local control policy
up = upyy = hy(x) and the terminal cost J(x) = Vi (x) in
(4), which satisfy condition (5). This implies the stability of
the resulting closed-loop system. O
Remark 3.11: Either policy evaluation- or iteration-based
co-design procedures can be readily extended to take control
constraints into account. See [36] for details. U

C. LTI System Case

Consider a linear time-invariant system
x(k+1) = Ax(k) +Bu(k), y(k)=x(k). (7)
1) Controller Design: For simplicity, we take I(x,u) =
x"Qx+u"Ru, and F(x) = x"Sx in (4), where Q,R,S are

positive definite. Rewrite the cost function as follows:
k+N-—1

Y, (@) Qx(i) +u (D)Ru(i))

i—k (®)
+xT (k+N)Sx(k+N).

To ensure stability of the hybrid system, we validate that
subsystems corresponding to the local control policy and the
MPC policy share the same Lyapunov function (8).

V(x(k)) =

Proposition 3.12: Consider system (7), the cost function
(8), and the switching policy in Fig. 4, let S be the solution
of discrete-time algebraic Riccati equation (DARE):

ATSA—S+0Q—ATSB(BTSB+R)"'BTSA=0, (9)
the local control policy is u(k) = —(BTSB+R) BT SAx(k).
The resultant hybrid system is asymptotically stable.

Proof: 1t resembles the proof of Prop. 3.6, omitted. W

IV. EVALUATION

In this section, we present three examples to illustrate
and verify the co-design procedure of local and remote
controllers. Performances with different architectures are
compared to corroborate the effectiveness of the smart
actuation architecture. Simulations are conducted in MAT-
LAB/Simulink, where random packet drops of both sensing
and actuation sides are simulated. Sensing packet losses
are handled by the Extended Kalman Filter (EKF) with
intermittent observations [7]. Actuation packet losses are
compensated by different structures, i.e., remote controller
only, local controller only, and smart actuation (a hybrid
system that adopts the switch policy (1)) architectures.

Detailed simulation results are given in Figs. 5 - ??. Each
boxplot figure shows the results of five different cases:

(i) MPC_I: remote MPC controller in ideal network. Since
there is no packet loss, the remote controller is in effect.

(ii) Local_I: local controller in an ideal network.

(iii) Hybrid: smart actuation architecture with both local
and remote controllers, but a lossy network. The hybrid
system adopts the switch policy given by (1).

(iv) Local: local controller and a lossy network. In this case,
the EKF transmits estimated states x.(k) to the local
controller via the network. If the packet arrives, the
local controller generates control inputs based on x,(k);
otherwise, it generates control inputs based on x;(k).

(v) MPC: direct architecture with the buffered MPC
scheme and a lossy network. The buffer size is 5.

Each boxplot is generated from 50 rounds of simulations.

A. Example 1: Linear System

Consider the load-positioning system in [37],

Xx=Acx+Beu, y(k)=x(k),
where system parameters are given in Table I and
0 1 0 0 0
1 1 k d 1 1
a9 Gt m ms | g |m T
¢ 0 0 0 I 0
0 dr kg _dp _ L
mp mp mp mpg

For simplicity, we discretize the continuous-time model
using Eluer discretization, and have the discrete-time model
denoted by x(k+1) = Agx(k) + By(k).

1) Controller Design: We would like to stabilize the load
positioning system to the origin while minimizing the cost
function (8) with Q =14 and R = 1. The controller design
for this purpose is to determine the local control policy and

mg| 10 | mp| 20 | dp | 15 | kg | 0.1 | kg | 0.1 | dg | 0.5
ar | 003 by | 07| a | 07| b | 2 c 16 | d 1.6
TABLE I: System parameters
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Fig. 6: Policy evaluation results for nonlinear system

the matrix S. Solving the DARE, we can calculate S. And
according to Proposition 3.12, we have the local control
policy u;(k) = —(BISB;+R)'BLSA,x(k) .

2) Simulation Results: Simulation results are given in
Fig. 5, where the simulation time of each round is 600s,
and the sampling frequency is 6Hz. Fig. 5 (a) shows the
costs when the lossy network is subject to 80% random
packet loss. The cost of the Hybrid case is a little higher
than the Local_I case, but lower than the MPC case. This
is because the local control u(k) is the optimal solution
of the infinite time LQR problem, while the remote MPC
solves it in a receding horizon manner. As a result, the Local
case gives the lowest cost in both ideal and lossy networks.
Fig. 5 (b) indicates that, when the WNCS loses network
connection from 25 s to 125 s, both the Hybrid and Local
cases still work properly. However, performance of the MPC
case deteriorates drastically because the limited buffer size
fails to mitigate network failure lasting for 100s.

B. Example 2: First Order Nonlinear System

Consider the following first order nonlinear plant
% =ax’ +byu,
where model parameters are provided in Table 1.

1) Controller Design: We would like to regulate the state
to the origin while minimizing the cost (4), where I(x,u) =
xT Qx + u” Ru, terminal cost F(x) = S(x). The local control
law is u; = b—ll(—x— a1x*). To design terminal cost S(x) for
the remote MPC policy, we take 0 =1,R=1,00 = 1.2, and
choose S(x) =x! Wx, with W being a positive definite matrix.
Based on the policy evaluation-based co-design method given
in Sec. III-B.3, we obtain S(x) = 10.16x>. As long as
S(x(k+1)) —S(x(k)) < xT (k)Ox(k) +u; T (k)Ruy (k) holds for
the entire feasible sets of state and control inputs, (5) is
satisfied. The results of policy evaluation are given by Fig. 6
(a), where the curve of S(x(k+1)) —S(x(k)) is always below
that of x” (k)Qx(k) +u;” (k)Ru; (k) in the feasible set of x.

2) Simulation Results: Fig. 7 presents the costs of 5 dif-
ferent cases for the first order nonlinear system. Simulation

g g
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Fig. 7: Costs of the 1st order nonlinear system under 20% loss
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time of each round is 60s, and the sampling frequency is 3Hz.
The MPC_I case outperforms the Local_I since the former
takes optimality into account by solving a finite-time optimal
control problem versus the latter merely solves the stabilizing
problem. When under 20% packet loss, the Hybrid case
outperforms the Local and MPC cases in the sense that the
cost distribution of the Hybrid has a lower mean value than
the Local case, and has a smaller variance than the MPC.

C. Example 3: Second Order Nonlinear System

Consider the following second order nonlinear plant
X1 = ax% —bx? +cxp, X2 =u,
where system parameters are provided in Table I.

1) Controllers Design: Again, we would like to regulate
the state to the origin while minimizing the cost, which has
same format with the cost function in Sec. IV-B and Q =
35,R = 1. The local control law is given by:
z=m+%x%+%xhuz =—z—x —(zgm—i—;)(—bx%—dm—l-z).
Following the policy evaluation-based design method in
Sec. III-B.3, we choose o = 3, and get S(x) = 17.39x%—|—
23.16x§. Fig. 6 (b) presents the results of policy evaluation.
One can verify that in the feasible set of x, S(x(k+ 1)) —
S(x(k)) < xT (k)Qx(k) 4w, " (k)Ruy (k). Then (5) is satisfied.

2) Simulation Results: Fig. 8 (a) and (b) show the costs
of five different cases for the second order nonlinear system
under 0%, 30%, and 70% of packet loss. Simulation time
of each round is 100s, and the sampling frequency is 10Hz.
Again, with the ideal network, the cost of the MPC case is
smaller than the Local case. When the network experiences
30% packet loss (Fig. 8 (a)), the Local case has a higher cost
than both the Hybrid and the MPC cases. More interestingly,
the Hybrid case outperforms the MPC case in the sense
that the mean value and variance of the cost distribution for
the former is smaller. When the network suffers from more
severe packet loss (Fig. 8 (b)), both the Hybrid and Local



cases yield lower costs than the MPC case because (1) the
linearized MPC prediction is not accurate away from k; (2)
the buffer size is not enough under severe packet loss.

V. CONCLUSIONS AND FUTURE WORK

We proposed a smart actuation architecture, which com-
bines features of direct and hierarchical architectures: a
remote controller accounts for optimality, adaptation, and
constraints by conducting computationally expensive op-
erations; a smart actuator executes a local control policy
and accounts for system safety in the view of network
imperfections. Stabilities for linear and nonlinear plant cases
can be guaranteed by a policy iteration-based co-design pro-
cedure when the remote controller employs the MPC policy.
Simulation results show that the smart actuation architecture
works well in both reliable and unreliable networks. Many
interesting issues remain open, for instance, the case of
stability analysis for output feedback, if the smart actuation
architecture can outperform other cases when network time-
delay is considered, what if the plant model is partially
known, and how to extend this result to large scale systems.

APPENDIX
A. Policy Iteration Algorithm
This content is included for self-completeness. Interested

readers are referred to [38]. The notion of goal-directed
optimal behavior is captured by defining a cost function

V() = Y7 M) hx(0))),
i=k

with 0 < ¥ <1 a discount factor. Function /(x(i),h(x(i))) is
stage cost, which is a measure of the one-step cost of control.
1) Initialization step: select any admissible (i.e, stabilizing)
control policy ho(x(k)) as initialization.
2) Policy evaluation step: for 0 < j < oo,
Vi1 (x(8)) = 1x(k), Iy (x(8)) + PVt (x(k + 1)) (10)
3) Policy improvement step: for 0 < j < oo,

hjt1(x(k)) = arg I}}éﬁl(l (x(k), R (x(k))) + V1 (x(k+1))).

(11
Policy evaluation (10) involves solving an infinite di-
mension problem. A commonly-used treatment resorts to
approximating the value function and control policy [39],
for instance, V (x) = W ®(x),h(x) = [TW¥(x), where W and
I are the approximation coefficient vectors, and @,V are the
basis vectors given by ®(x) = [¢; (x) ¢2(x) ...on (x)]7, ¥ (x) =
(Wi (x) w2(x) ...yy(x)]". Then the policy evaluation formula
is given by W7 (®(x(k)) — ®(x(k+1))) = I(x(k),h(x(k))).

REFERENCES

[1]1 X. Li et al., “A review of industrial wireless networks in the context
of industry 4.0,” Wireless Networks, 2017.

[2] C. Wu et al., “Coded packets over lossy links: A redundancy-based
mechanism for reliable and fast data collection in sensor networks,”
Computer Networks, 2014.

[3] D. Gunatilaka et al., “Impacts of channel selection on industrial
wireless sensor-actuator networks,” INFOCOM, 2017.

[4] A. R. Mesquita et al., “Redundant data transmission in con-
trol/estimation over lossy networks,” Automatica, 2012.

[6]
[7]
[8]

[10]

(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
(32]
[33]

[34]

[35]

[36]

[37]
[38]

[39]

M. Sha et al.,, “Empirical study and enhancements of industrial
wireless sensor-actuator network protocols,” IEEE IoT Journal, 2017.
F. Dobslaw et al., “End-to-end reliability-aware scheduling for wireless
sensor networks,” TII, 2016.

B. Sinopoli et al., “Kalman filtering with intermittent observations,”
TAC, 2004.

H. Gao et al., “Network based h-infinity output tracking control,” TAC,
2008.

Z. Wang et al., “Robust /., control for networked systems with random
packet losses,” IEEE SMC, Part B (Cybernetics), 2007.

H. Li et al., “Control of nonlinear networked systems with packet
dropouts: interval type-2 fuzzy model-based approach,” IEEE Trans-
actions on Cybernetics, 2015.

J. Wu et al., “Design of networked control systems with packet
dropouts,” TAC, 2007.

Y. Tipsuwan et al., “Gain adaptation of networked mobile robot to
compensate QoS deterioration,” in JECON, 2002.

S. H. Hong, “Scheduling algorithm of data sampling times in the
integrated communication and control systems,” TCST, 1995.

K. Gatsis et al., “Control-aware random access communication,” in
ICCPS, 2016.

E. G. W. Peters et al., “Controller and scheduler codesign for feedback
control over IEEE 802.15.4 networks,” TCST, 2016.

Y. Ma et al., “Holistic cyber-physical management for dependable
wireless control systems,” TCPS, 2018.

M. S. Branicky et al., “A scheduling and feedback co-design for
networked control systems,” in CDC, 2002.

K. Gatsis et al., “Optimal power management in wireless control
systems,” TAC, 2014.

C. Lu et al., “Real-time wireless sensor-actuator networks for industrial
cyber-physical systems,” Proceedings of the IEEE, 2016.

J. P. Hespanha et al., “A survey of recent results in networked control
systems,” Proceedings of the IEEE, 2007.

Y. Tipsuwan et al., “Control methodologies in networked control
systems,” Control Eng Pract, 2003.

L. Schenato et al., “Foundations of control and estimation over lossy
networks,” Proceedings of the IEEE, 2007.

K.-D. Kim et al., “Cyber-physical systems: a perspective at the
centennial,” Proceedings of the IEEE, 2012.

B. Fateh et al., “Wireless network design for transmission line moni-
toring in smart grid,” IEEE Trans. Smart Grid, 2013.

C. L. Robinson et al., “Optimizing controller location in networked
control systems with packet drops,” JSAC, 2008.

H. Lin et al., “Stability and stabilizability of switched linear systems:
a survey of recent results,” TAC, 2009.

M. LjeSnjanin et al.,, “Packetized MPC with dynamic scheduling
constraints and bounded packet dropouts,” Automatica, 2014.

B. Li et al., “Wireless routing and control: a cyber-physical case study,”
in ICCPS, 2016.

D. M. de la Peia et al., “Lyapunov-based model predictive control of
nonlinear systems subject to data losses,” TAC, 2008.

X. Liu et al., “Kalman filtering with partial observation losses,” in
CDC, 2004.

H. K. Khalil, Nonlinear Systems, 3rd ed.
Prentice-Hall, 2002.

D. Q. Mayne et al., “Constrained model predictive control: Stability
and optimality,” Automatica, 2000.

A. Bemporad, “Predictive control of teleoperated constrained systems
with unbounded communication delays,” in CDC, 1998.

J. Fischer et al., “Optimal sequence-based lqg control over tcp-like
networks subject to random transmission delays and packet losses,” in
ACC, 2013.

D. E. Quevedo et al., “On stochastic stability of packetized predictive
control of non-linear systems over erasure channels,” IFAC Proceed-
ings, 2010.

M. Abu-Khalaf et al., “Nearly optimal control laws for nonlinear sys-
tems with saturating actuators using a neural network HJB approach,”
Automatica, 2005.

V. Shilpiekandula et al., “Load positioning in the presence of base
vibrations,” in ACC, 2012.

F. L. Lewis et al., “Reinforcement learning and adaptive dynamic
programming for feedback control,” IEEE Circuits Syst. Mag, 2009.

Y. Jiang et al., “Optimal codesign of nonlinear control systems based
on a modified policy iteration method,” TNNLS, 2015.

Englewood Cliffs, NJ:



	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-177.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


