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Abstract
As Synthetic Aperture Radar (SAR) technology advances and the resolution and quality of
SAR systems improves, there is an increasing need for lightweight compression of SAR raw
data. In most satellite-borne SAR systems, due to their limited processing capacity, raw data
needs to be transmitted to a ground station for processing. As the resolution and acquisition
quality increases, so does the volume of data to be transmitted, making compression necessary.
Furthermore, computational constraints on-board such systems impose sever restrictions on
the kinds of algorithms that can be implemented, and, therefore, on the compression quality.
This report proposes a novel lightweight compression approach, based on the principles of
universal quantization, which allows the compression system to exploit the structure of the
signal in hindsight, i.e., during the decompression stage. This approach shifts the compu-
tational complexity to the decoder, which needs to impose the appropriate image model to
recover the data. Thus, the heavy lifting in this approach is performed by the decoder at the
ground station, which has significantly more computational resources available.
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Abstract

As Synthetic Aperture Radar (SAR) technology advances and the resolution and quality of SAR sys-
tems improves, there is an increasing need for lightweight compression of SAR raw data. In most
satellite-borne SAR systems, due to their limited processing capacity, raw data needs to be transmit-
ted to a ground station for processing. As the resolution and acquisition quality increases, so does
the volume of data to be transmitted, making compression necessary. Furthermore, computational
constraints on-board such systems impose sever restrictions on the kinds of algorithms that can be
implemented, and, therefore, on the compression quality. This report proposes a novel lightweight
compression approach, based on the principles of universal quantization, which allows the compres-
sion system to exploit the structure of the signal in hindsight, i.e., during the decompression stage.
This approach shifts the computational complexity to the decoder, which needs to impose the ap-
propriate image model to recover the data. Thus, the heavy lifting in this approach is performed by
the decoder at the ground station, which has significantly more computational resources available.

1 Introduction

In radar imaging systems, image resolution is a function of the array aperture. Thus to improve resolution
it is necessary to increase the array aperture size. SAR systems, in particular, acquire high-resolution
images by exploiting the motion of a moving platform on which an antenna is mounted, thus creating a
synthetic aperture, with size significantly larger than the physical antenna. Thus, it is possible to obtain
high-resolution images even with a small physical antenna.

The main principle of SAR systems is simple: as the moving platform, e.g., a satellite, is moving along
a trajectory, the imaging radar transmits pulses at regular intervals towards a region of interest and re-
ceives their reflections. These reflections are recorded and used to synthesize the SAR image of the region
of interest, through a process known as image formation. There are several SAR modes of operation, de-
pending on how the antenna beam is directed as the platform moves along its track. For example, in
stripmap mode, the antenna beam direction remains fixed with respect to the moving platform, i.e., as
the platform moves, the beam slides along the region of interest. In spotlight mode, instead, the beam
is always directed to the same spot on the ground, thus obtaining more views of this spot from a larger
effective aperture.

In typical SAR systems, stripmap mode has lower resolution than spotlight mode, while spotlight
mode images a smaller area. Other modes have also been developed and might be available, such as slid-
ing mode—which has flexible trade-off between resolution and area size, operating in-between stripmap
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2 2 BACKGROUND

and spotlight modes—and scan mode—which allows imaging and even larger areas than stripmap mode,
albeit at even lower resolution. An overview of SAR principles can be found in [1, 2]

Despite the variety of SAR modes, the fundamental structure of SAR data remains the same. For each
transmitted pulse, a reflection of fixed length, in samples, is recorded by sampling the received signal in
baseband, i.e., acquiring a sequence of complex-valued samples. Thus, the SAR data comprise of several
lines of complex numbers of fixed length. The index of each line is often referred to as the azimuth
dimension, the along-track dimension, or the slow time. The index of each sample within a line is often
referred to as the range dimension, the across-track dimension, or the fast time. Thus, for all SAR modes,
the raw SAR data can be expressed as a two-dimensional complex-valued array of numbers.

Once the data is acquired, the SAR image is formed using one of many algorithms, according to the
SAR mode of operation. These algorithms include the range-Doppler algorithm (RDA), the chirp scaling
algorithm (CSA), and the Omega-K algorithm (ω-k), among others. While the problem can be expressed
as a delay-and-sum operation, these algorithms explore several trade-offs and simplifying assumptions
to achieve significant gains in computational efficiency, by exploiting the structure of the problem and
fast algorithms, such as the fast Fourier transform (FFT). Different assumptions and different approxima-
tions are appropriate for each mode of operation and each application, according to system, application,
and processing requirements.

Despite the existence of fast algorithms, image formation is a too complex a task to be performed on-
board a satellite. Thus, the raw SAR data needs to be transmitted to a ground station and processed there
to obtain a SAR image. In most modern systems, considering the data size and the communication link
capacity, it is necessary to compress the data before transmitting it. Unfortunately, at first inspection,
raw SAR data do not seem to exhibit any exploitable structure and resemble uncorrelated noise or noise
with low correlation properties [3]. In contrast, formed SAR images exhibit significant structure which
can be used to achieve greater compression rates. Thus, it is, in principle, possible to compress the raw
SAR data by first performing image formation, which is an invertible process, and then compressing the
formed image. Of course, this is not possible in practice, since it is prohibitively expensive to perform
on-board a satellite, but it demonstrates that raw SAR data are, in principle, compressible. The main goal
of on-board compression algorithms is to be able to exploit some structure but at a very low complexity
and computational cost.

2 Background

2.1 SAR as an Inverse Problem

While there are different modes of SAR operation, mathematically they can all be represented by the
same high-level linear model. In particular, given a two-dimensional region of interest (ROI) denoted X ,
the acquired two dimensional data Y are obtained through a linear operator A(·):

Y = A(X ). (1)

Depending on the mode of operation, the forward operator A(·) describes how the complex image X is
converted to raw SAR data, according to the operating mode of the SAR system.

In order to be able to acquire a SAR image without significant artifacts, such as spatial aliasing, the
typical assumption is that A is invertible. Significant literature has been devoted to inverting A efficiently,
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which provides good algorithms for implementing A, its adjoint A∗, and its inverse A−1 with low com-
putational complexity. Depending on the system design, appropriate algorithms include the RDA, CSA,
ω-k, all of which exhibit different trade-offs between efficiency, accuracy, and applicability to different
SAR modes.

This general characterization of SAR as a linear system has spawned significant work on considering
SAR in the context of general inverse problems, and applying recent advances in this area. For example,
there is significant work on applying compressive sensing techniques to reduce the required number
of SAR pulses [4–6], to provide robustness to acquisition error, such as saturation [7], or to improve the
operating characteristics, such as ROI size and resolution [8–12]. A significant component of these efforts
relies on appropriate signal models for X , such as sparsity under a basis or a learned dictionary. It should
be noted, however, that SAR images are not as sparse as regular images, primarily because the phase
component does not have easily exploitable structure, but also because they exhibit significant speckle
noise.

2.2 SAR Raw Data Compression

Typical SAR raw data compression approaches include Block-Adaptive Quantization (BAQ) [13, 14] and
Flexible Block-Adaptive Quantization (FD-BAQ) [15, 16] and their variants, such as [3] and references
within. These algorithms operate on raw data blocks and do not attempt to take an image model into
account. In particular, image blocks are modeled as an i.i.d. process of a certain distribution—typically
Gaussian or uniform—and an optimal quantizer is designed for this process, trading-off the target data
rate and desired quality. The output is then coded using an entropy coder, the complexity of which varies,
depending on the computational power available on-board.

Typical variations include lightweight pre-processing of the data, for example filtering, de-chirping,
or using a small low-complexity fast Fourier transform (FFT) to transform the data to the frequency do-
main. In addition, FD-BAQ further exploits prior information about the level of noise in each block to
adapt the bit-rate used to encode the block. However, even with those variations, none of the existing
popular approaches is able to exploit the structure of the image generated by the image formation algo-
rithm.

2.3 Universal Quantization

Universal quantization, first introduced in [17], has been proven a promising approach in a number of
applications requiring lightweight compression of different aspects of a signal, although not the signal
itself. The main tenet of universal quantization is that higher order bits often contain redundant infor-
mation and can be discarded. In particular, when prior information about the signal can be exploited,
a signal prediction of reasonable accuracy can be estimated. If the signal is transformed using a ran-
domized incoherent measurement process, e.g., using a Gaussian random projection matrix, then it is
possible to determine higher order bits with very high probability, whereas the lower-order bits are more
difficult to determine.

Universal quantization-based compression approaches shift the complexity to the decoder. In a dis-
tributed source coding setup, such as [18–20], the decoder will try to estimate a good approximation of
the signal, incorporating all known models and side information, attempting a prediction of the mea-
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surements. Since the least significant bits are more difficult to predict, the encoder should encode cor-
rection information at a higher rate, often transmitting them as is. On the other hand, higher order bits
are easier to predict, so the correction information requires a lower rate to transmit. Thus, similarly
to classical distributed coding, the correction information becomes the compression of the signal. How-
ever, this approach requires a good prediction of the signal to be available at the decoder, which is usually
originating from side information.

Unfortunately, in the case of compression of SAR raw data, side information is not available. In this
case, hierarchical universal quantization [21] can be used to code the signal. This approach, however,
is not competitive in practice and requires significant parameter tuning. Still, it demonstrates that it
is possible to use a few measurements of the signal to provide the signal prediction and recover bits of
higher order. The remainder of this report exploits this insight and explores approaches to apply meth-
ods based in universal quantization to lightweight compression of SAR data, in which side information
is not available. We qualitatively compare with BAQ and FDBAQ approaches, and describe their com-
parative advantages and disadvantages.

3 Universal Quantization and SAR Measurements

3.1 Baseline Image

In order to generate a good prediction of the measurements, we first need to obtain a good prediction
of the signal. In particular, it is by now well-understood that SAR images exhibit structure that can be
exploited using compressive sensing principles [4–12, 22–25]. Thus, given the linear SAR acquisition
system (1), it is possible to reconstruct, with reasonable error, the SAR image from subsampled quantized
data

Y =Q(S(A(X ))), (2)

where S(·) is a linear subsampling operator, designed such that S(A(·)) is incoherent with the signal
model for X 1, and Q(·) is an element-wise scalar quantizer designed to satisfy the reconstruction quality
specs for the end-to-end system. This initial reconstruction can serve as a prediction of the signal that
can be used to recover higher order bits of the remaining measurements.

3.2 Hierarchical Reconstruction

The principle above can be generalized in a hierarchical fashion with several levels of image recovery,
followed by prediction of the higher order bits. In particular we consider a sequence of operators Si (·), i =
1, . . . , I such that their range is mutually disjoint and span the range of A(·). In other words, range(Si )∩
range(S j ) = {0}, for all i 6= j and

⋃
i range(Si ) = range(A). This implies that their direct sum spans the

space of measurements:
⊕

i range(Si ) = range(A). Furthermore, as above, these operators should satisfy
the same incoherence properties as S above. We denote the measurements using

Yi =Q(Si (A(X ))), (3)

1Technically, the term incoherence applies to X exhibiting a sparsity model under some basis X . However, there are several
alternative models possible for X , including manifolds,We abuse the term incoherence to mean that using the signal model
and the appropriate reconstruction algorithm, it is possible to estimate the image X from the measurements.
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Figure 1: Overview of the proposed system architecture and operation

where Q(·) is designed such that the reconstruction using all Yi , i = 1, . . . , I using the preferable image
formation algorithm satisfies the quality requirements of the system.

In practice, the easiest approach to generate the sequence of Si is to measure using a randomized
full-rank operator of the same dimensionality as A and then partition the measurements to I partitions.
Typical examples are matrices generated with random Gaussian entries, or a randomized fast transform.
In particular for SAR systems, SAR measurements are already significantly incoherent with the SAR im-
age, and, therefore, Si could be just selecting a randomized non-uniform subsampling of the raw SAR
data.

Given the sequence of measurement operators, reconstruction can be performed in a hierarchical
sequence, where at hierarchy level j all sets of measurements Yi , i = 1, . . . , j are used to reconstruct an
estimate X̂ j using the appropriate reconstruction algorithm for the model. Since the reconstruction
at every level of the hierarchy uses more data than the previous level, we expect the estimation error,
denoted using

ε j =
∥∥X̂ j −X

∥∥
2 , (4)

to decrease, i.e., ε1 ≥ ε2 ≥ . . . ≥ εI . The remainder of this development assumes that the sequence of ε j , or
an upper bound for it, is known during encoding time. A drawback of this approach is that this sequence
is not straightforward to compute, especially when non-linear reconstruction methods are considered.

3.3 Hierarchical Coding/Decoding

Using this hierarchy of operators, a hierarchical encoding/decoding strategy, summarized in Fig. 1, fol-
lows. The encoder, at each level of the hierarchy starting at i = 1, encodes the measurements Yi =
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Q(Si (A(X ))) in sequence, protecting bits of higher order less than bits of lower order, i.e., using higher
rate to encode lower order bits. The protection of the higher order bits decreases as the level of the hier-
archy increases. In particular, at level i = 1, all bits are equally protected, i.e., are transmitted as is. As the
level i increases, lower order bits of Yi are transmitted as is, while higher might be dropped, to be fully
recovered by the decoder.

There are two approaches possible for encoding correction bits.

• Using the approach in [18,19], we can recognize that bits higher than a certain order can be almost
exactly recovered with very few negligible errors. These bits are discarded and bits of lower order
are transmitted as is. This approach is not as efficient, but requires less precise knowledge of the
sequence of estimation errors εi .

• Using the approach in [20], for each bitplane of the measurements we can compute a probability
there will be an error using [20, Thm. 1]. This probability can then be used to derive the rate
necessary to encode this bitplane, i.e., to protect it from errors in estimation, using distributed
coding. Some bitplanes will be completely discarded, to be filled by the decoder, and other will
be transmitted as is. Intermediate bitplanes will be encoded with varying rate, increasing as the
bitplane order decreases. This approach provides much better compression rates, but has the
drawback that it requires more accurate knowledge of εi at the encoder.

The decoder works iteratively, starting with level i = 1. After the decoding of each level, i.e., at the
end of each iteration, the decoder produces two output items: the decoded measurements Yi for this
level, and an estimate of the image X̂i . The assumption is that at the end of each decoding iteration the
measurements Yi are exactly recovered and available to the next level, which is only possible because Yi

is quantized and taking values in a finite set.
In particular, at each iteration i the decoder uses the image estimate from the previous iteration X̂i−1

to obtain an estimate of the unquantized measurements Y i = Si (A(X̂i−1)). Using this estimate, and the
approach described in [18–20], the decoder can obtain Ỹi , the best uncorrected estimate of Yi . However,
using the correction bits transmitted by the encoder for this level, as described above, the decoder can
produce Ŷi , a corrected estimate of Yi . Of course, at level i = 1 we assume that X̂0 = 0, and that all
bitplanes for Y1 are transmitted as is.

Once all the decoding iterations are finished and Y has been fully recovered, the image formation
algorithm of choice can be used on Y ′ = S−1(Y ), where S(·) = [S1(·), . . . ,S I (·)] is the combination of all
the Si (·), and Y = [Y1, . . . ,YI ] is the combination of all the measurements, i.e., Y ′ = A(X )+ e, where e is
bounded noise due to the quantization of Si (A(X )).

4 Discussion

When comparing with conventional SAR compression approaches, there are several advantages and sev-
eral disadvantages in this approach.

The first key advantage is the very low complexity at the encoder. Encoding only requires straight-
forward linear operations followed by quantization for the measurement of the Yi , and simple bit opera-
tions for computing the protection bits, either dropping some and transmitting other, or applying simple
binary field operations to produce a syndrome using standard coding approaches.
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The second key advantage is the ability of the algorithm to exploit the structure of the signal at the
decoding, rather than the encoding. In particular, a key ingredient in the success of the algorithm is the
signal model used in the decoding stage to recover each X̂i , which allows better recovery with more accu-
rate signal models, and, therefore, lower values for εi . This, in turn, translates to improved coding rates
for the corresponding Yi . Thus, as expected, better signal models reduce the required rate necessary at
the encoder, assuming the encoder is aware of the improvement in εi or its upper bounds.

Unfortunately, in SAR systems, the signal models do not perform as well as signal models for more
conventional modalities, such as natural images. In particular, speckle and the random phase associated
with the image is difficult to take into account in a SAR model. One approach is to only apply the model
in the magnitude image [7]. Another is to try to learn SAR-specific image dictionaries. Still, there is
significant scope for improvement in this front. Any gains automatically imply gains in the achievable
compression rate.

The main disadvantage of this approach is the requirement that an estimate of the error at each
hierarchy level is available at the time of encoding. This might be possible to estimate off-line using
experience with sample training data. However, this estimate has to be conservative and can be critical.
Depending on the encoding choice, an incorrect estimate could lead to transmitting a smaller number
of correction bits, and failing to decode the correction at the decoder.

In contrast, conventional approaches, such as BAQ and FDBAQ completely ignore the structure of the
image and only rely on the statistical properties of the SAR raw data. The advantage of these approaches
is that, for the most part, the encoder does not need any additional information other than what exists in
the measurements. The disadvantage is that most of the exploitable structure for SAR systems is in the
formed image, not on the measurements. To improve the rate, these approaches rely on entropy coding,
which only looks at the statistics of the bitstream. Depending on the entropy coder choice, this can be a
computationally intensive component of the encoder, which can be quite costly when implemented for
a satellite system.
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[25] A. Soğanlı and M. Cetin, “Low-rank sparse matrix decomposition for sparsity-driven sar image re-
construction,” in 2015 3rd International Workshop on Compressed Sensing Theory and its Applica-
tions to Radar, Sonar and Remote Sensing (CoSeRa), pp. 239–243, IEEE, 2015.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-209.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9


