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Abstract
Multimodal fusion of audio, vision, and text has demonstrated significant benefits in advanc-
ing the performance of several tasks, including machine translation, video captioning, and
video summarization. Audio-Visual Scene-aware Dialog (AVSD) is a new and more challeng-
ing task, proposed recently, that focuses on generating sentence responses to questions that
are asked in a dialog about video content. While prior approaches designed to tackle this task
have shown the need for multimodal fusion to improve response quality, the best-performing
systems often rely heavily on human-generated summaries of the video content, which are
unavailable when such systems are deployed in real-world. This paper investigates how to
compensate for such information, which is missing in the inference phase but available during
the training phase. To this end, we propose a novel AVSD system using studentteacher learn-
ing, in which a student network is (jointly) trained to mimic the teacher’s responses. Our
experiments demonstrate that in addition to yielding state-of-the-art accuracy against the
baseline DSTC7-AVSD system, the proposed approach (which does not use human-generated
summaries at test time) performs competitively with methods that do use those summaries
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Abstract
Multimodal fusion of audio, vision, and text has demon-
strated significant benefits in advancing the performance of
several tasks, including machine translation, video captioning,
and video summarization. Audio-Visual Scene-aware Dialog
(AVSD) is a new and more challenging task, proposed re-
cently, that focuses on generating sentence responses to ques-
tions that are asked in a dialog about video content. While
prior approaches designed to tackle this task have shown the
need for multimodal fusion to improve response quality, the
best-performing systems often rely heavily on human-generated
summaries of the video content, which are unavailable when
such systems are deployed in real-world. This paper investi-
gates how to compensate for such information, which is missing
in the inference phase but available during the training phase.
To this end, we propose a novel AVSD system using student-
teacher learning, in which a student network is (jointly) trained
to mimic the teacher’s responses. Our experiments demonstrate
that in addition to yielding state-of-the-art accuracy against the
baseline DSTC7-AVSD system, the proposed approach (which
does not use human-generated summaries at test time) performs
competitively with methods that do use those summaries.
Index Terms: dialog system, end-to-end conversation model,
question answering, audio-visual scene-aware dialog

1. Introduction
Human-machine interfaces that can process spoken dialogs
have revolutionized the way we interact with smart phone dig-
ital assistants, car navigation systems, voice-controlled smart
speakers, and human-facing robots. Going forward, such sys-
tems will need capabilities to accommodate other input modal-
ities, including vision, to generate adequate responses in varied
user contexts or process novel situations that were not avail-
able during training. However, the current state-of-the-art di-
alog systems lack efficient models for processing multimodal
sensory inputs (e.g., vision, audio, and text) that are required
to handle such dynamic scenes, and thus may not be able to
generate suitable responses in conversations.

Recently, through the advances in deep learning, there have
been efforts to build end-to-end dialog systems that can be
trained to map directly from a user utterance to a system re-
sponse. Such systems allow us to combine different mod-
ules into a single end-to-end differentiable network, simulta-
neously taking video features and user utterances as inputs to
an encoder-decoder-based system whose outputs are natural-
language responses. End-to-end approaches have also been
shown to better handle flexible conversations between the user
and the system by training the model on large conversational
datasets [1, 2]. Using such end-to-end frameworks, visual ques-
tion answering (VQA) [3] and visual dialog [4] have been pro-
posed to directly answer questions about a scene using informa-
tion present in a single static image. These are significant steps
towards enabling more natural human-machine interaction.

As a further step towards conversational visual AI, a new
dialog task using multimodal information processing has been
proposed, called Audio-Visual Scene-aware Dialog (AVSD) [5,
6, 7]. AVSD focuses on response sentence generation for dialog
systems aimed at answering a user’s questions about a provided
video, in which the system can use audio-visual information in
the video as well as the dialog history up to the user’s last ques-
tion. Optionally, short human-generated summaries that explain
the video clip are also available as input to the system. Recent
approaches to the AVSD task

(
proposed in the 7th Dialog Sys-

tem Technology Challenge (DSTC7)
)

have shown that multi-
modal fusion of audio, visual, and text information is effective
to enhance the response quality. Further, it is found that the best
performance is achieved when including text features extracted
from the available summaries. Surprisingly, systems using such
manual descriptions enable performance close to the best sys-
tem, even without using the audio-visual features. However,
such summaries are unavailable in the real world, posing chal-
lenges during deployment.

In this paper, we investigate how to compensate during the
inference (test) phase for this information, which is missing
in the inference phase but available in training phase, to im-
prove AVSD responses without using manual descriptions. We
could use automatic video description to generate descriptive
sentences from the video clips, but it is not easy to build a
video description system that generates accurate descriptions.
Instead, we propose a new AVSD system, which is trained
through a student-teacher learning approach. The teacher model
is first trained with manual descriptions, then a student model is
trained without the descriptions to mimic the teacher’s output.
The student model is used in the inference phase. We also ex-
tend this framework to joint student-teacher learning, where the
both models are trained together not only to reduce their own
loss functions but also to have similar hidden representations
of context vectors with each other. In this learning, the teacher
model is updated to be mimicked more easily by the student
model since the context vector of the teacher model approaches
to that of the student model. The new system achieves better
performance than prior approaches. It is competitive to those
trained with manual descriptions including the best DSTC7-
AVSD system [8].

2. Related Work
Student-teacher learning is a technique of transfer learning,
in which the knowledge in a teacher model is transferred to
a student model. This is typically used for model compres-
sion [9, 10, 11], where a small model is trained to mimic the
output of a large model that has higher prediction accuracy.
Student-teacher learning can bring the performance of the small
model closer to that of the large model, while preserving the
small model’s benefits of reduced computational cost and mem-
ory consumption.

Student-teacher learning can also be used to compensate



for missing information in the input. In this case, the teacher
model is trained to predict target labels using additional infor-
mation, but the student model is trained to mimic the teacher’s
output without that information. In automatic speech recog-
nition (ASR), for example, a teacher model is trained with
enhanced speech obtained through a microphone array, while
a student model is trained to mimic the teacher’s output for
the same speech but only using single-channel-recorded noisy
speech [12]. With this method, the student model can improve
the performance without the microphone array at test time. This
technique was also used for domain adaption between child and
adult speech [13]. The proposed AVSD system takes this ap-
proach to compensate for a missing video description. The stu-
dent model can generate better responses without description
features. We further extend this framework to joint student-
teacher learning, aiming at improving the teacher model to be a
better teacher for the student model.

3. System Architecture
The architecture of the proposed AVSD system is shown in Fig-
ure 1. The system employs an attention-based encoder-decoder
[14, 15], which enables the network to emphasize features from
specific time frames depending on the current context, enabling
the next word to be generated more accurately. The efficacy of
attention models has been shown in many tasks such as machine
translation [14] and video description [16, 17].

The attention-based encoder-decoder is designed as a
sequence-to-sequence mapping process using recurrent neural
networks (RNNs). Let X and Y be input and output sequences,
respectively. The model computes the posterior probability dis-
tribution P (Y |X). For the AVSD task, X includes all the input
information such as the user’s question, audio-visual features,
and dialog context (dialog history). Y is the system response
to be generated, which answers the user’s question. The most
likely hypothesis of Y is obtained as:

Ŷ = argmax
Y ∈V∗

P (Y |X) (1)

= argmax
Y ∈V∗

|Y |∏
i=1

P (yi|y1, . . . , yi−1, X), (2)

where V∗ denotes a set of sequences of zero or more words in
system vocabulary V , and each yi is a word in the response.

LetX = {X1, . . . , XK} be a set of input sequences, where
Xk is the kth input sequence, which can represent the user’s
question, a feature vector sequence extracted from the target
video clip, or dialog history that includes all of the previous
questions and answers in the dialog about the video clip. To
generate system response Y , each input sequence in X is first
encoded to a better representation using a corresponding en-
coder.

If Xk is a user’s question, the sentence Q =
wQ,1, . . . , wQ,N is encoded with word embedding and BLSTM
layers. If Xk is a video feature sequence Xk =
xk1, xk2, . . . , xkLk , it can be extracted from the image se-
quence of the video clip using a pretrained CNN, such as
VGG-16 [18], C3D [19], or I3D [20], that was originally trained
for an image or video classification task. In the case of C3D
and I3D, multiple images are fed to the network at once to cap-
ture dynamic features in the video. The audio features can
also be extracted in a similar way using a pretrained CNN
such as SoundNet [21] or VGGish [22]. Each feature vector
sequence is encoded to an appropriate representation X ′k =

x′k1, x
′
k2, . . . , x

′
kLk

using a single projection layer for dimen-
sionality reduction. If Xk is the dialog history, it can be a se-
quence of question-answer pairs H = H1, . . . , HJ that appear
before the current question in the dialog. H is encoded using a
hierarchical LSTM encoder, where each question-answer pair is
first encoded to a fixed dimensional vectorHj using a sentence-
embedding LSTM, and the sequence of sentence embeddings is
further embedded using additional BLSTM layers.

The decoder predicts the next word iteratively beginning
with the start-of-sentence token, <sos>, until it predicts the
end-of-sentence token, <eos>. Given decoder state si−1, the
decoder network λD infers the next-word probability distribu-
tion as

P (y|y1, . . . , yi−1, X)

≈ P (y|si−1, gi)

= softmax
(
W (λD)
s [si−1, gi] + b(λD)

s

)
, (3)

and generates the word yi that has the highest probability ac-
cording to

yi = argmax
y∈V

P (y|si−1, gi). (4)

The decoder state is updated using the LSTM network of the
decoder as

si = LSTM
(
si−1, [y

′
i, gi];λD

)
, (5)

where y′i is a word-embedding vector of yi, and gi is a context
vector including the input information relevant to the previous
decoder state. λD denotes the set of decoder parameters.

The context vector is obtained by a hierarchical attention
mechanism that first aggregates frame-level hidden vectors for
each input sequence into modality-wise context vector ck,i, and
then fuses the context vectors c1,i, . . . , cK,i into a single con-
text vector gi. The attention mechanism is realized by using at-
tention weights to the hidden activation vectors throughout the
input sequence. These weights enable the network to empha-
size features from those time steps that are most important for
predicting the next output word.

Let αk,i,t be an attention weight between the ith output
word and the tth input feature vector from the kth modality.
For the ith output, the vector representing the relevant content
of the input sequence is obtained as a weighted sum of hidden
unit activation vectors:

ck,i =

Lk∑
t=1

αk,i,thk,t, (6)

where hk,t is the tth output vector of the kth encoder. The at-
tention weights are computed in the same manner as in [14]:

The model also utilizes a multimodal attention mechanism.
To fuse multimodal information, prior work [17] proposed a
method that extends the attention mechanism from temporal at-
tention (attention over time) to attention over modalities. The
following equation shows an approach to perform the attention-
based feature fusion:

gi = tanh

(
K∑
k=1

βk,idk,i

)
, (7)

where
dk,i =W

(λD)
ck ck,i + b

(λD)
ck , (8)



H4: Does he do anything else that is of note?  
    Not really he just lays there like he’s lazy.  
H3: Could you get an idea of about how old he is?  
      I would probably guess he’s in late 20’s or early 
30’s. 

H2: Does he get up to turn the lights off?  
       At the very end he stands up to turn it off, yes.  
H1: Can you tell what he’s watching on TV?  
       It is some documentary about the planet earth.  
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Figure 1: Left: Multimodal-attention based audio-visual scene-aware dialog system, Right: Student-teacher learning of AVSD system.

and ck,i is a context vector obtained using the kth input modal-
ity. A similar mechanism for temporal attention is applied to ob-
tain the multimodal attention weights βk,i [17]. These weights
can change according to the decoder state and the context vector
from each encoder. This enables the decoder network to attend
to a different set of features and/or modalities when predicting
each subsequent word in the description.

4. Student-Teacher Learning
Figure 1 (right) depicts the concept of student-teacher learning
for the AVSD system. The goal of this step is to obtain a student
model that does not make use of video description text, which is
trained to mimic a teacher model that has already been trained
using video description text. Accordingly, the student model
can be used to generate system responses without relying on
description text, while hopefully achieving similar performance
to the teacher model.

Following the best system in DSTC7-AVSD track [8], we
insert the description text at the beginning of each question.
This means that the same description is always fed to the en-
coder together with a new question, at every turn of the dialog
about the target video clip. The student network is trained to
reduce the cross entropy loss, by using the output of the teacher
network as a soft target to make the output distribution of the
student model closer to that of the teacher model.

In this paper, we investigate three loss functions for student-
teacher learning. The first one is a cross entropy loss with soft
targets:

LST(X,Y ) = −
|Y |∑
i=1

∑
y∈V

P̂ (y|ŝi−1, ĝi) logP (y|si−1, gi),

(9)

where P̂ (y|ŝi−1, ĝi) denotes the probability distribution for the
ith word obtained by the teacher network, and ŝi−1 and ĝi are
state and context vectors generated by the teacher network for
training sample (X,Y ). Here, P (y|si−1, gi) is the posterior
distribution from the current student network (which is being
trained), which is predicted without the description text.

The second loss function further incorporates the context
vector similarity as

L′ST(X,Y ) = LST(X,Y ) + λcLMSE(X,Y ) (10)

Table 1: Video Scene-aware Dialog Dataset on Charades
training validation trial test

#dialogs 7,659 1,787 733 1,710
#turns 153,180 35,740 14,660 13,490
#words 1,450,754 339,006 138,790 110,252

where LMSE(X,Y ) =
∑|Y |
i=1 MSE(gi, ĝi), where MSE(·, ·)

denotes the mean square error between two context vectors, and
λc denotes a scaling factor. We aim here to compensate for
missing input features at the context vector level, which hope-
fully exploits other modalities more actively.

The last loss function we consider is joint student-teacher
learning. The parameters of the teacher network are typically
kept fixed throughout the training phase. However, in the joint
training approach, we update not only the student network but
also the teacher network. The loss function is computed as

LJST(X,Y ) = L(S)
ST (X,Y ) + L(T )

CE (X,Y ) + λcL(ST )
MSE (X,Y ),

(11)

where L(T )
CE is the standard cross entropy for hard target Y ,

which is used only for the teacher network in the backprop-
agation process. Likewise, L(S)

ST is used only for the student
network, while L(ST )

MSE is used for the both networks.

5. Experiments
5.1. Dialog Data

The AVSD data set is a collection of text-based conversations
about short videos [5, 6, 7]1. The video clips were originally
from Charades [23] data set, which is an untrimmed and multi-
action dataset, containing 11,848 videos split into 7,985 for
training, 1,863 for validation, and 2,000 for testing. It has 157
action categories, with several fine-grained actions. Further, this
dataset also provides 27,847 textual descriptions for the videos;
each video is described using 1–3 sentences. For each video
in the Charades dataset, the AVSD dataset contains a text dia-
log between two people discussing the video. See Table 1 for
statistics of the dataset.

1http://workshop.colips.org/dstc7/call.html



Table 2: Evaluation results on the AVSD trial set with single references
System Description BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr

train test
AVSD baseline [5] — — 0.273 0.173 0.118 0.084 0.117 0.291 0.766

AVSD best system [8] man. man. 0.306 0.209 0.150 0.112 0.144 0.338 1.161
+ How2 data man. man. 0.311 0.212 0.152 0.114 0.146 0.337 1.169
Our system man. man. 0.311 0.214 0.156 0.117 0.150 0.345 1.234
Our system man. — 0.272 0.186 0.135 0.102 0.132 0.325 1.105
Our system man. auto 0.285 0.193 0.140 0.106 0.135 0.329 1.121
Our system — — 0.283 0.192 0.139 0.105 0.135 0.327 1.119

Student-teacher LST man. — 0.313 0.212 0.152 0.113 0.143 0.334 1.138
Student-teacher L′ST man. — 0.314 0.212 0.152 0.113 0.143 0.334 1.139
Student-teacher LJST man. — 0.314 0.213 0.153 0.115 0.144 0.335 1.148

Table 3: Evaluation results on the AVSD official test set with six references
System Description BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr

train test
AVSD baseline [5] — — 0.621 0.480 0.379 0.305 0.217 0.481 0.733

AVSD best system [8] man. man. 0.718 0.584 0.478 0.394 0.267 0.563 1.094
+ How2 data man. man. 0.723 0.586 0.476 0.387 0.266 0.564 1.087
Our system man. man. 0.727 0.593 0.488 0.405 0.273 0.566 1.118
Our system — — 0.675 0.543 0.446 0.371 0.248 0.527 0.966

Student-teacher LST man. — 0.686 0.556 0.457 0.380 0.254 0.535 0.995
Student-teacher LJST man. — 0.686 0.557 0.458 0.382 0.254 0.537 1.005

5.2. AVSD system

We trained the AVSD system in Fig. 1. The question encoder
had a word embedding layer (200 dim.) and two BLSTM layers
(256 dim. for each direction). Audio-visual features consist-
ing of I3D-rgb (2048 dim.), I3D-flow (2048 dim.), and VGGish
(128 dim.) were extracted from video frames using pre-trained
deep CNNs. Those feature sequences were then fed to the mul-
timodal encoders with single projection layers, which converted
them to 512, 512, and 64 dimensional vectors, respectively. The
history encoder had a word embedding layer (200 dim.) and two
LSTM layers for QA-pair embedding (256 dim.) and a 1-layer
BLSTM for embedding the history (256 dim. for each direc-
tion). We used ADAM optimizer for training, where the learn-
ing rate was halved if the validation perplexity did not decrease
after each epoch, and continued training up to 20 epochs. The
vocabulary size was 3910, where we kept only the words that
appeared at least four times in the training set.

5.3. Results and Discussion

Table 2 shows evaluation results on the AVSD trial test set
with single references. The quality of system responses was
measured using objective scores such as BLEU, METEOR,
ROUGE-L, and CIDEr, which were based on the degree of word
overlapping with references. The baseline system provided by
DSTC7-AVSD track organizers, which was a simple LSTM-
based encoder decoder [5] utilizing the same audio-visual fea-
tures as ours, was also evaluated. We also show the results of
the AVSD best system [8]. That system had a similar architec-
ture to ours, but it had only two encoders: one for questions,
and the other for video features obtained by a 3D ResNet. That
network was additionally pretrained using the How2 data set,
while our model was trained with only the AVSD data set.

Although our system outperformed the best AVSD system
when using manual descriptions for both training and testing
(“man. man.” in the second column), the performance signifi-
cantly degraded when the description was not fed to the network

in the test phase (“man. —”). When we provided automatic de-
scription instead of manual one (“man. auto”), where we used a
video description model trained with the same AVSD data set,
the improvement was limited. The model trained without de-
scriptions (“— —”) was slightly better than other conditions.

Next, we applied student-teacher learning with loss LST.
The trained model provided significant gains in all the objec-
tive metrics (e.g., BLEU4: 0.105 → 0.113, METEOR: 0.135
→ 0.143), which were closer to those obtained using the man-
ual descriptions (e.g., BLEU4: 0.117, METEOR: 0.150). We
also applied loss function L′ST that considered context vector
similarity, but the response quality was almost the same as LST.
Finally, we conducted joint student-teacher learning with LJST,
and obtained further improvements in most objective measures
(e.g., BLEU4: 0.113→ 0.115, METEOR: 0.143→ 0.144).

Table 3 shows evaluation results on the AVSD official test
set with six references for each response. Similar to Table 2,
our system outperformed the other ones including the best sys-
tem of DSTC7. The student-teacher framework also provided
significant gains for the official test set.

6. Conclusion

This paper investigated how to compensate, at test time, for
the lack of video description features that were available dur-
ing training. We proposed a student-teacher learning framework
for Audio-Visual Scene-aware Dialog (AVSD). Our AVSD sys-
tem achieved better performance than previous methods, which
is competitive to systems trained with manual descriptions,
and further outperformed the best DSTC7-AVSD system. The
trained model can answer questions about video content by fus-
ing audio, visual, and text information about the video, and gen-
erates high quality responses without relying on manual video
descriptions. We also proposed a joint student-teacher learning
approach, which provided further gains in most objective met-
rics.
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