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Abstract
In hybrid automatic speech recognition (ASR) systems, neural networks are used as acoustic
models (AMs) to recognize phonemes that are composed to words and sentences using pro-
nunciation dictionaries, hidden Markov models, and language models, which can be jointly
represented by a weighted finite state transducer (WFST). The importance of capturing tem-
poral context by an AM has been studied and discussed in prior work. In an end-to-end ASR
system, however, all components are merged into a single neural network, i.e., the breakdown
into an AM and the different parts of the WFST model is no longer possible. This implies
that end-to-end neural network architectures have even stronger requirements for processing
long contextual information. Bidirectional long short-term memory (BLSTM) neural net-
works have demonstrated state-of-the-art results in end-to-end ASR but are unsuitable for
streaming applications. Latency-controlled BLSTMs account for this by limiting the future
context seen by the backward directed recurrence using chunk-wise processing. In this pa-
per, we propose two new unidirectional neural network architectures, the timedelay LSTM
(TDLSTM) and the parallel time-delayed LSTM (PTDLSTM) streams, which both limit the
processing latency to a fixed size and demonstrate significant improvements compared to prior
art on a variety of ASR tasks.
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Abstract
In hybrid automatic speech recognition (ASR) systems,

neural networks are used as acoustic models (AMs) to recognize
phonemes that are composed to words and sentences using pro-
nunciation dictionaries, hidden Markov models, and language
models, which can be jointly represented by a weighted finite
state transducer (WFST). The importance of capturing tempo-
ral context by an AM has been studied and discussed in prior
work. In an end-to-end ASR system, however, all components
are merged into a single neural network, i.e., the breakdown
into an AM and the different parts of the WFST model is no
longer possible. This implies that end-to-end neural network ar-
chitectures have even stronger requirements for processing long
contextual information. Bidirectional long short-term memory
(BLSTM) neural networks have demonstrated state-of-the-art
results in end-to-end ASR but are unsuitable for streaming ap-
plications. Latency-controlled BLSTMs account for this by lim-
iting the future context seen by the backward directed recur-
rence using chunk-wise processing. In this paper, we propose
two new unidirectional neural network architectures, the time-
delay LSTM (TDLSTM) and the parallel time-delayed LSTM
(PTDLSTM) streams, which both limit the processing latency
to a fixed size and demonstrate significant improvements com-
pared to prior art on a variety of ASR tasks.
Index Terms: unidirectional encoder architectures, streaming
end-to-end ASR, low-latency neural networks, parallel time-
delayed LSTM, automatic speech recognition

1. Introduction
The processing of temporal information is of paramount im-
portance in automatic speech recognition (ASR), since most
linguistic information for recognizing phones, phonemes, and
larger units of speech such as syllables and words are encoded
in spectral envelopes such as amplitude modulation frequen-
cies [1–3]. For example, human listening experiments have
shown that in noise-free acoustic conditions only four spectral
bands of modulated noise are sufficient to achieve high speech
recognition performance, while additional spectral bands in-
crease speech intelligibility in the presence of noise, presum-
ably due to masking effects, and modulation frequencies below
12 Hz are indispensable for speech recognition [1, 4].

In today’s ASR systems, processing of temporal informa-
tion is accomplished by neural networks whose architectures
define how well the system can recognize such cues. We dis-
tinguish two major types of neural network architectures in this
work: unidirectional and bidirectional. Both types involve re-
current neural networks (RNNs) such as long short-term mem-
ory (LSTM) neural networks, whose model performance for
end-to-end ASR has not yet been matched by solely using con-
volutional neural networks (CNNs) [5,6]. We suspect the reason
is that RNNs can better compensate for the temporal dynamics

of speech signals such as varying speech rates, whereas CNNs
are restricted in this ability by their static temporal windowing.

Bidirectional RNNs such as bidirectional LSTMs
(BLSTMs) have demonstrated state-of-the-art results in ASR
but at the expense of large output delays, which makes this
type of architecture unsuitable for streaming ASR applications,
where the text output must be generated soon after each word
is spoken. Latency-controlled BLSTMs (LCBLSTMs) account
for this by limiting the future context seen by the backward
directed LSTM using chunk-wise processing but at the ex-
pense of an increased computational cost due to overlapping
chunks [7–9]. Therefore, the most widely used neural network
architectures for streaming applications with end-to-end ASR
systems rely on unidirectional LSTMs [10, 11].

In the present paper, new unidirectional neural network ar-
chitectures are proposed for streaming ASR that are studied
and compared to other common neural network architectures
from the literature, such as a deep BLSTM [10], a deep LSTM
[11, 12], a deep LCBLSTM [9], and a deep time-delay neu-
ral network (TDNN) with interleaving LSTM layers (TDNN-
LSTM) [13]. The discussed architectures are applied as an en-
coder neural network in a hybrid connectionist temporal clas-
sification (CTC) and attention-based end-to-end ASR system
[14]. Note that the hybrid CTC/attention ASR system of this
work is not suitable for streaming recognition due to the full-
sequence attention model. We proposed the triggered atten-
tion mechanism in earlier work to enable streaming recognition
with attention models [15]. However, in this work we focus on
the impact of different encoder architectures alone and leave its
combination with triggered attention to future work. Our pro-
posed neural network architectures are based on a deep time-
delay structure, where each layer may be composed of different
neural network building blocks. Two new building blocks are
proposed: a time-delay LSTM (TDLSTM), which is an LSTM
cell with stacked time-delayed inputs followed by a bottleneck
layer, and a neural network component of parallel time-delayed
LSTM (PTDLSTM) streams that are merged using a bottleneck
layer. ASR experiments are conducted on three different tasks
of different size (between 80 and 960 hours of training) and
of different language (English and Mandarin Chinese). Unless
otherwise noted, the number of model parameters is the same
for all tested encoder architectures to enable a balanced com-
parison between different settings.

2. Neural network architectures
In this section, the different components and building blocks of
the investigated neural network architectures are presented. For
the purpose of a fair comparison of all tested neural network ar-
chitectures and unless otherwise noted, subsampling by a factor
of 3 is conducted for all settings by concatenating three con-
secutive frames of acoustic features and only forwarding every
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Figure 1: Deep time-delay neural network architecture. The numbers in square brackets denote the frame delays of the input to each
layer. Each rectangle represents a neural network building block. The solid black lines and the blue rectangles highlight the path to
generate one output frame. The dashed lines and gray rectangles denote connections and building blocks of past and future output
frames.

third stacked feature frame as an input to the encoder neural
network, which is inspired by [10, 11]. In addition, every neu-
ral network architecture is followed by a final linear projection
layer, which is a feed-forward neural network that projects the
encoder output to a vector of fixed size. No activation function
is applied on top of this final projection layer, because in our
experiments this has led to slightly better results compared to
using a tanh nonlinearity.

2.1. Prior work

Deep BLSTM neural networks achieve state-of-the-art results
in end-to-end ASR systems [10, 14, 16–18]. A BLSTM typi-
cally requires an entire speech utterance to compute an output,
since each output frame is derived by knowing the entire past
and future context of the speech utterance. This is a power-
ful architecture but due to the large future context required to
compute the BLSTM output of an input sequence, it is not ap-
plicable for streaming ASR. In order to enable streaming ASR
with BLSTMs, latency-controlled BLSTMs (LCBLSTMs) have
been proposed that use overlapping chunks of frames to com-
pute the output of the backward LSTM for a fixed size of future
context [7–9]. One disadvantage of LCBLSTMs is an increased
computational cost due to the overlapping frames of different
chunks. Other work focused on using deep CNN-based ar-
chitectures for end-to-end ASR to reduce computational costs
as well as to limit processing delays but yet without achieving
significant improvements in terms of word error rates (WERs)
compared to RNN-based architectures such as unidirectional
LSTMs [5, 6]. It should be noted that gated convolutional net-
works have recently demonstrated promising results for end-
to-end ASR [19, 20], but it remains unclear from these papers
how RNN-based neural networks of similar latency compare
in a similar system architecture. A combination of time-delay
neural networks (TDNN) [21, 22], which is also known as di-
lated convolution [23], and LSTM neural networks has been
proposed as an acoustic model for hybrid ASR systems [13],
but to the best of our knowledge this combination has not been
tested yet for end-to-end ASR systems.

2.2. Baseline architectures

In this paper, four different neural network architectures from
the literature are used as baseline models, respectively based on
BLSTM, LSTM, TDNN-LSTM, and LCBLSTM architectures.
The BLSTM, LSTM, and LCBLSTM architectures are all com-
posed of five layers followed by a final projection layer, which
is similar to our proposed deep time-delay architecture, cf. Sec-
tion 2.3, and which is also a common encoder setup in end-to-
end ASR [10]. The baseline LSTM and BLSTM encoder ar-
chitectures of this paper are referred to as “Google”-LSTM and
“Google”-BLSTM, respectively, because their configuration is
similar to architectures used in Google publications [10–12].

The chunk size of our baseline LCBLSTM amounts to 8
frames after subsampling, which is equivalent to 24 feature
frames of 10 ms frame rate, with a stride of 50%. This setup cor-
responds to a maximum delay of 250 ms including the 1 frame
delay for stacking 3 feature frames prior to the first layer, which
is similar to the delay induced by our proposed deep time-delay
architecture as described in Section 2.3. While the hidden states
and cell states of the backward LSTM are reset after each chunk,
the forward LSTM states are initialized with the LSTM states
at the same frame from the previous chunk.

Our baseline TDNN-LSTM model, which is similar to a
setup proposed by [13], is referred to as “Kaldi”-TDNN-LSTM,
and has the following structure: input features → TDNN:
[-1,0,1],[-1,0,1],[-1,0,1] → subsampling by 3 → LSTM →
TDNN: [-1,0,1],[-1,0,1] → LSTM → TDNN: [-1,0,1],[-1,0,1]
→ LSTM → projection layer. In the above notation, each en-
closed square bracket denotes one TDNN layer with the associ-
ated frame splicing configuration. Note that the splicing config-
urations following subsampling by 3 refer to the new 3× lower
frame rate, i.e., the total left and right context relative to the cen-
ter frame amounts to 15 feature frames on both sides. We also
experimented with delayed LSTM outputs similar to [13] but
this did not help to improve results, which might be due to the
alignment-free training of end-to-end ASR systems, whereby
an LSTM-based system could potentially learn to delay outputs
on its own.
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Figure 2: Three different neural network building blocks are
shown in a dotted box from a) to c). Each of the long input ar-
rows represents an input from a different time-delay. Each solid
box denotes one of the following processing operations: con-
catenation of inputs (cat), feed-forward neural network (Lin-
ear), rectified linear unit activation function (ReLU), LSTM
layer (LSTM), or bottleneck feed-forward neural network with
37.5% fewer neurons compared to a preceding neural network
block (Bottleneck).

2.3. Proposed architectures

Our proposed encoder architectures for end-to-end ASR are
based on feed-forward and unidirectional neural networks only,
which avoids additional computational costs that occur due to
processing of overlapping chunks such as in LCBLSTM se-
tups. Figure 1 illustrates our proposed deep time-delay neu-
ral network architecture, where the solid black lines and blue
rectangles denote the processing path for a single encoder out-
put frame. The time-delay tree structure of Fig. 1 is designed
to limit the overlap of leaves within each layer similar to [22],
while capturing a large temporal context, which here amounts
to 25 past and 25 future feature frames of 10 ms frame rate, thus
inducing a latency of 250 ms. In this architecture, each of the
rectangles represents a neural network building block, of which
we consider three types shown in Fig. 2. Building block a) of
Fig. 2 is similar to a TDNN-LSTM setting [13], while build-
ing blocks b) and c) are newly proposed settings. Figure 2 b)
shows a time-delay LSTM (TDLSTM) neural network, which
differs from the TDNN-LSTM by its reversing of the order
of the feed-forward and the LSTM neural network layers, i.e.,
the LSTM processes the time-delayed and concatenated input
prior to the feed-forward neural network and the rectified linear
unit (ReLU) activation function. In addition, the feed-forward
neural network layer acts as a bottleneck, whose dimension is
62.5% of that of the preceding LSTM layer, which aims at re-
ducing the input size to the following layer. Figure 2 c) shows a
parallel time-delayed LSTM (PTDLSTM) neural network layer,
where each time-delayed input stream is processed by a separate
LSTM layer, whose parameters are not shared, prior to concate-
nating LSTM outputs and further processing using a bottleneck
layer and a ReLU nonlinear function. This architecture is in-
spired by the parallel forward and backward LSTM streams of
a BLSTM neural network. Note that if a TDLSTM or PTDL-
STM building block is used in our deep time-delay architecture
for the 5th layer, i.e., the final layer, we do not use an addi-
tional projection layer but instead set the size of the bottleneck
layer to be equal to the encoder state dimension, and no acti-
vation function is applied, which in our experiments has lead
to slightly better results compared to applying a tanh or ReLU
nonlinearity.

Table 1: ASR corpora information.

WSJ1 (English) [24] #Utterances Size [h]
Training 37,416 80

Development (dev93) 503 1.1
Test (eval92) 333 0.7

HKUST (Mandarin) [25] #Utterances Size [h]
Training 197,391 174

Development 4,000 4.8
Test 5,413 4.9

LibriSpeech (English) [26] #Utterances Size [h]
Training 281,231 960

Development [clean/other] 2,703 / 2,864 5.4 / 5.3
Test [clean/other] 2,620 / 2,939 5.4 / 5.1

3. Experimental Setup
We conducted ASR experiments on three different data sets of
different size, ranging from 90 to 960 hours of training data,
and of different language, which are English and Mandarin Chi-
nese. We use the Wall Street Journal (WSJ) corpus of read En-
glish newspapers [24], the LibriSpeech corpus [26], which is
based on an open-source English audio books project featuring
various recording qualities, and the Mandarin telephone speech
corpus developed by the Hong Kong University of Science and
Technology (HKUST) [25]. Basic information about the cor-
pora are shown in Table 1.

All encoder architectures are tested within an end-to-end
ASR system based on a hybrid CTC/attention model trained on
a multi-objective loss function

L = λ log pctc + (1− λ) log patt, (1)

where pctc and patt denote the CTC and attention model ob-
jectives, and λ controls their relative weight [14]. As input
to the system, we use 80-dimensional log Mel-filterbank fea-
tures and a pitch feature plus its first and second order derivative
(80+3=83 feature dimensions).

Specific model and training parameters are summarized in
Table 2. The number of trainable encoder parameters is constant
for all tested encoder configurations and only depends on the
training data size. The number of output targets of the WSJ and
HKUST end-to-end systems amount to 50 (number of English
characters in WSJ) and 3653 (number of Mandarin characters
in HKUST), respectively. The LibriSpeech ASR system uses
5000 sentence-pieces as output targets, which are derived by
the sentence-piece tokenizer proposed by [27]. In this work, an
RNN-based language model (LM) is applied to the output of the
end-to-end ASR system via shallow fusion. A word-based LM
of 65k words is applied to the WSJ test data [28] and character-
based LMs are applied to the HKUST and LibriSpeech data sets
[29].

4. Results
Results of our proposed encoder architectures as well as of the
baseline encoder models are shown in Table 3. Note that the
number of parameters of all encoder neural networks is the
same and is only varied depending on the ASR task. How-
ever, an exception is made for the “Kaldi”-TDNN-LSTM model
on the LibriSpeech data set: this model had to be limited to
a maximum of approximately 80M parameters in our experi-
ments because of GPU-related out-of-memory errors that oc-



Table 2: Experimental hyperparameters.

WSJ model parameters
# trainable encoder parameters 18M
Size of projection layer 320
# decoder LSTM cells / layers 300 / 1

HKUST model parameters
# trainable encoder parameters 80M
Size of projection layer 1024
# decoder LSTM cells / layers 1024 / 2

LibriSpeech model parameters
# trainable encoder parameters 115M
Size of projection layer 1024
# decoder LSTM cells / layers 1024 / 2

Common training parameters
Optimization AdaDelta
Adadelta ρ 0.95
Adadelta ε / ε decaying factor 10−8 / 10−2

Maximum # epochs 15 (WSJ, HKUST)
10 (LibriSpeech)

λ 0.2 (WSJ)
0.5 (HKUST, LibriSpeech)

Decoding parameters
Language model / CTC weight 1.0 / 0.3 (WSJ)

0.3 / 0.6 (HKUST)
0.5 / 0.5 (LibriSpeech)

curred at training time. These errors are due to the fact that the
initial three TDNN layers of the “Kaldi”-TDNN-LSTM model
are running at the higher frame rate, and to the high memory de-
mands of attention model training. Thus, the “Kaldi”-TDNN-
LSTM encoder has fewer parameters compared to other set-
tings in the LibriSpeech experiments, since we preferred not
to change the model topology or the training batch size for this
architecture.

The “Google”-BLSTM model serves as a benchmark to
determine the discrepancy between offline and online (stream-
ing) encoder models. By comparing the “Google”-BLSTM to
its unidirectional LSTM counterpart, it becomes obvious that
the missing future information incorporated by the backward
LSTM increases error rates significantly between 1.6% and
5.6% on an absolute scale. The “Kaldi”-TDNN-LSTM model
can compensate for this lack of information to some extent by
analysing 150 ms of future context, which improves error rates
for the WSJ and HKUST tasks by 1.1% on average, while er-
ror rates of the LibriSpeech data have slightly increased, which
may be explained by the reduced model size as explained in
the previous paragraph. The LCBLSTM model further en-
hances recognition results, especially for the HKUST and Lib-
riSpeech data sets. The TDNN-LSTM encoder model, which
is based on our proposed deep time-delay architecture shown in
Fig. 1, demonstrates improved recognition results for the WSJ
and HKUST tasks compared to all three streaming baseline en-
coder architectures, whereas word error rates (WERs) of Lib-
riSpeech are deteriorated. The reason is not obvious and will
require deeper investigation.

The proposed TDLSTM encoder architecture improves er-
ror rates for all tested ASR conditions on average by 0.3%
compared to the best baseline model, which is the LCBLSTM.
WSJ-based results of the TDLSTM neural network are better
compared to the “Google”-LSTM model and marginally worse
compared to the “Kaldi”-TDNN-LSTM neural network. How-

Table 3: Word error rates (WSJ/LibriSpeech) as well as char-
acter error rates (HKUST) of different encoder architectures
with a joint CTC-attention based ASR system. The upper sec-
tion presents results of the BLSTM-based baseline model, which
cannot be used in a streaming fashion, whereas the middle
and lower sections present results of the baseline and our pro-
posed encoder architectures, respectively, which are suitable for
streaming applications. Note that the “Kaldi”-TDNN-LSTM
model has fewer model parameters compared to the other en-
coder neural networks for the LibriSpeech data set, see Sec-
tion 4 for explanation.

WSJ HKUST LibriSpeech

Encoder Architecture dev test dev test dev
clean

dev
other

test
clean

test
other

“Google”-BLSTM 7.9 4.7 29.9 28.9 4.7 14.1 4.9 15.2
“Google”-LSTM 9.9 6.5 35.5 33.8 6.3 18.2 6.5 19.4
“Kaldi”-TDNN-LSTM 8.8 5.3 34.5 32.7 6.8 18.7 6.9 19.9
LCBLSTM 9.1 5.8 33.4 31.6 6.0 17.4 6.1 18.6
TDNN-LSTM 8.5 5.3 33.0 31.3 7.4 19.9 7.4 21.1
TDLSTM 9.1 5.7 32.7 31.0 5.9 17.0 6.0 18.2
PTDLSTM 8.0 5.4 31.4 30.1 5.6 16.2 5.7 16.9

ever, for the larger ASR data sets HKUST and LibriSpeech, the
TDLSTM architecture clearly outperforms the TDNN-LSTM
architecture, with the essential differences between the two be-
ing that in the former case the LSTM receives the time-delayed
and stacked input, while in the latter case a feed-forward neu-
ral network processes this input prior to the LSTM layer. The
PTDLSTM encoder architecture further improves ASR results
by using parallel LSTMs to process each input of different time
delay separately, which is inspired by BLSTM neural networks
that process the forward and backward sequences using two par-
allel LSTMs as well. Note that the first layer of our PTDLSTM
encoder model is composed of a TDLSTM building block and
layer two to five are PTDLSTM neural networks, cf. Figs. 1
and 2. The results of Table 3 demonstrate that our PTDLSTM
architecture achieves the lowest errors rates among all investi-
gated streaming architectures and reduces the performance gap
towards the BLSTM model. In addition, the PTDLSTM is en-
tirely unidirectional unlike the LCBLSTM, which explains the
training and inference speed advantages we could observe with
our implementation.

5. Conclusions
In this paper, we presented and compared various encoder neu-
ral network architectures for end-to-end ASR that are suit-
able for streaming applications. We proposed two novel uni-
directional architectures, the time-delay LSTM (TDLSTM) and
the parallel time-delayed LSTM (PTDLSTM) neural network,
whose analyzed future context and processing delay, respec-
tively, is limited to 250 ms by our deep time-delay setup. Both
encoder neural network models demonstrated improved ASR
results compared to LSTM and TDNN-LSTM based models,
whose setups are similar to “Google” and “Kaldi” implemen-
tations, as well as compared to a latency-controlled BLSTM
(LCBLSTM) of similar latency. ASR performances were mea-
sured using three ASR tasks of different size (80h to 960h of
training data) and language (English and Mandarin Chinese).
The average relative word/character error rate improvement
of the proposed PTDLSTM model amounts to 12.3%, 10.7%,
and 6.8% compared to our baseline LSTM, TDNN-LSTM, and
LCBLSTM models, respectively.
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