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Abstract
To enable automated analysis of human motion data collected by acceleration sensors, gyro
senors, or motion capture devices, an approach for accurately segmenting primitive actions
is required. Whereas most existing approaches use templates of basic actions such as “stand
up”, “walk” and “sit down”, we introduce a novel problem called “structural motif discovery”
that aims to find segments without templates from repetitive routine motion that consists of
regularly ordered (actions?). We also propose a novel segmentation method that approximates
the time series with a sequence of convex-shaped patterns by means of leg analysis, which is
parameter-free and its complexity is O(N), where N is the length of a given time series. The
experimental results show that our proposed method is effective for both simulation data and
real data and real data from repetitive assembly operations,
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Abstract – To enable automated analysis of human motion 

data collected by acceleration sensors, gyro sensors, or 

motion capture devices, an approach for accurately 

segmenting primitive actions is required. Whereas most 

existing approaches use templates of basic actions such as 

“stand up”, “walk” and “sit down”, we introduce a novel 

problem called “structural motif discovery” that aims to find 

segments without templates from repetitive routine motion  

that consists of regularly ordered (actions?). We also propose 

a novel segmentation method that approximates the time 

series with a sequence of convex-shaped patterns by means 

of leg analysis, which is parameter-free and its complexity is 

�(�) , where N is the length of a given time series. The 

experimental results show that our proposed method is 

effective for both simulation data and real data from repetitive 

assembly operations.  

 

Keywords: Time series, Segmentation, Human motion 

analysis, Sensor data mining, Convex-shaped pattern 

1 INTRODUCTION 

To enable automated analysis of human motion data such as 

exercise monitoring, gesture recognition, human machine 

interaction, and robot imitation learning, segmenting 

primitive actions is critical [1][2][3]. Time series 

segmentation is the process of identifying the temporal events 

of movements of interest, making a continuous sequence of 

time series into smaller subsequences to facilitate movement 

identification, modeling, and learning.  

We have developed two applications of human motion 

analysis with acceleration sensors, gyro sensors, and motion 

capture devices. The application domains are factory work 

processes [4] and baggage lifting work [5].  In these 

applications, time series segmentation is critical. Therefore, 

we propose a novel segmentation method that approximates 

the time series with a sequence of convex-shaped patterns 

from a continuous motion sequence with leg analysis [6]. 

The rest of our paper is organized as follows. Section 2 

describes the problem statement, our approach, and the scope 

of this paper. Section 3 describes our method that consists of 

convex feature extraction and symbolic convex 

approximation. Section 4 evaluates our method on one 

simulation and one real data sets. 

2 BACKGROUND 

2.1 Problem Statement  

A typical method for human motion analysis is a 

combination of template matching by dynamic time warping 

(DTW) and change point detection by segmentation 

according to Zero Velocity Crossing (ZVC) with given 

general templates such as “stand up”, “walk” and “sit down” 

[1][2][3]. However, factory worker motions are complicated 

and depend on the target product and the target process, so it 

is difficult to prepare specific templates that correspond to 

such motions for  the purpose of analysis. Therefore, we need 

to deal with the problem of how to extract basic actions 

without templates from time series collected by sensors such 

as acceleration, gyro and motion capture. The type of motion 

targeted in this paper is a repetitive routine operation that 

consists of regularly ordered basic actions.  

Figure 1 shows an example of a repetitive routine operation. 

The routine operation consists of three basic actions, which 

are “(a) carry a main body product from a previous process”, 

“(b) attach a part to the main body product (action B)” and 

“(c) carry the main body product to the next process”. 

Hereafter, we call a repetitive routine process a cycle. A cycle 

is important in the factory domain, because it corresponds to 

a process in production. If we can extract a cycle correctly, 

we can measure the working time of a process. The automatic 

measurement of each working process time for each worker 

helps us to find bottleneck operations, an operation error, and 

also possibly measure the fatigue level of the worker, which 

are useful for improving product efficiency.  

The cycle in Figure 1 is expressed by  ”abbc”,  ”abbbc” or  

“abc”, if the action “b” repeats more than once depending on 

the specification of a product. By using a regular grammar, 

the cycle can be expressed by ”a(b+)c”. The problem in this 

paper is described by the following. 

Problem: Let X be a time series that corresponding to a series 

of repetitive routine operations that consist of regularly 

ordered actions. Find a repetitive routine pattern in X and find 

a regular expression to represent that pattern. 

Hereafter, we call the above problem structural motif 

discovery. 

(a) (b+) (c) 

1 cycle

(a) (b+) (c) 

1 cycle

(a) (b+) (c) 

1 cycle

 
Figure 1: An example of time series with substructure 

2.2 Approach  



A typical existing method to solve the structural motif 

discovery problem is motif discovery [7][8]. Because the 

subsequences corresponding to the same action are similar to 

each other, we can find the basic actions as repeatedly 

occurring subsequences by means of motif discovery. 

However, existing motif discovery algorithms require 

subsequence lengths for basic actions. In our problem setting, 

we do not know the subsequence length of a basic action. 

Furthermore, the complexity order of motif discovery is 

�(��) or �(��), where N denotes the length of the time 

series, because of the embedded calculation of Euclidean or 

DTW distances. 

 

 
Figure 2: An example of the result by leg analysis 

We investigate a novel approach to approximating a time 

series with a series of convex-shaped patterns by means of a 

leg analysis algorithm, which is parameter free and its 

complexity order is �(�). We expect that our approach has 

advantages over the existing motif discovery algorithms with 

Euclidian or DTW distances in the following aspects.  

(i) Feature extraction:  The highest-cost process in solving 

structural motif discovery problems is the feature extraction 

to recognize actions. The feature extraction in our approach 

is convex-shaped pattern extraction by leg analysis, whereas 

that in existing approaches is nearest neighbor search with 

Euclidian distance. Our computational complexity is O(N), 

vs. �(��) of existing methods. 

(ii) Parameter selection: A required parameter of our 

approach is the magnitude level of a convex-shaped pattern, 

whereasexisting methods require the subsequence length. 

Though the subsequence length varies for each basic action, 

the magnitude level can be expected to be more independent 

from each basic action, because the magnitude level depends 

on small primitive human motions that construct a basic 

action. This hypothesis is perhaps not self-evident, so it 

requires exhaustive experiments to test it. 

(iii) Parameter optimization: When we try another parameter 

value, our approach does not need recalculation for feature 

extraction, which existing methods do. The difference is that 

leg analysis is parameter-free so that extracted features are 

also independent of this parameter. Our approach is easier to 

try for various parameter values than existing methods. 

(iv) Robustness: Our approach approximates time series with 

convex-shaped patterns, while existing methods treat a strict 

shape by Euclidean distance. This difference has pros and 

cons. With regard to robustness to the noise in time series, our 

approach has the possibility to be superior. Structured motif 

discovery requires a huge combinatorial calculation cost, 

therefore an approximation approach has the possibility to be 

able to prune search trees efficiently. On the other hand, with 

regard to the precision of pattern recognition, existing 

methods might be superior to our method.  This hypothesis 

also requires exhaustive experiments to test it. 

2.3 Scope 

The purpose of this paper is an early stage trial to confirm 

if our approach can provide an insight into the structural 

motif discovery problem.  We formulate our approach and 

evaluate it one two examples: one simulation data set and 

one real data set. A quantitative evaluation on exhaustive 

experiments and parameter optimization methods are left as 

future work.  

3 METHOD 

3.1 Convex Feature Extraction  

Leg analysis [6] provides a convex pattern extraction 

algorithm to extract every convex-shaped pattern which has 

local maximal or local minimum values. A convex-shaped 

pattern is characterized by a 4-tuple (“peak position”, 

“magnitude”, “left terminal”, “right-terminal”). In a precise 

definition, we should treat a trapezoid as a convex-shaped 

pattern in the case when its peak is a flat region, but here we 

only show a simplified definition of it for readers to 

understand the key idea of our approach. The precise 

definition and a detail algorithm for its computation are 

covered by the original paper [6]. 

 

 
Figure 3: An example of a convex-shaped pattern and 

its convex index 
 

We define a time series, a subsequence, a convex pattern 

index and a convex profile as a data-structures to describe a 

convex-shaped pattern. Figure 3 shows an example of a 

convex-shaped pattern and its convex index. 

 

Definition: Time series 
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A Time Series X=[x1,…,xm] is a continuous sequence of 

real values. The value of the i-th time index is denoted by 

X[i] = xi.  

 

 

Definition: Subsequence 

  A subsequence � = [xp, xp+1,...,xq] = X[p:q] is a continuous 

subsequence of X starting at position p and ending at position 

q.  We denote the length of a subsequence � by len: 

�	
(S) ≡ 
 − � + 1 

 

Definition: Convex index 

A convex index is a 4-tuple (peak position, magnitude, left 

position, right position). A peak position is a time index at 

which the peak of a convex-shaped pattern is. A magnitude is 

a height of a convex-shaped pattern. A positive magnitude 

value means that a pattern is convex, and a negative 

magnitude value means that a pattern is concave. A left 

terminal is a time index at which a convex-shaped pattern 

starts. A right terminal is a time index at which a convex-

shaped pattern ends.  

 

Definition: Convex profile 

Let X be a time series. A convex profile of X is a list of 

convex indexes that correspond to an output of convex pattern 

extraction process for input X. We denote a convex profile as 

CP and the i-th convex index in CP as CP(i). We denote a 

peak position, magnitude, left position and right position of 

CP(i) as CP(i).p, CP(i).m, CP(i).l and  CP(i).r respectively. 

  

Convex pattern extraction is represented as a function from 

a time series X to a convex profile of X. A subsequence 

corresponding to a convex index C(i) is represented as 

X[C(i).left: C(i).right] where X is a time series. We also 

define a magnitude function to plot the magnitude values to 

visualize the outline of a convex profile. 

 

Definition: Magnitude function 

Let X and CP be a time series and the convex profile of X 

respectively. Magnitude function mf is a function from each 

time index of X to a real value.  

If t is a time index at which a convex index CP(i) has a value 

as a peak position, then mf[t] =CP(i).m, otherwise mf[t] = 0. 

 

 

Figure 4: An example of a magnitude function 
 

Figure 4 shows an example of a time series and its 

magnitude functions. Top graph is a line graph of the original 

time series data. The second graph is its magnitude function. 

We see that a convex-shaped pattern in the original data 

corresponds to a spike in the magnitude function. The bottom 

graph is the magnitude function that has only positive values. 

Heareafter, we use only positive magnitudes in this paper.  

Table 1 shows an example of a convex profile of a time 

series shown in Figure 3. One line of a convex profile 

corresponds to one peak value in the magnitude function. 

 

Table 1: An example of a convex profile 

Peak 

position 

Magnitude Left 
termnal 

Right 
terminal 

16 0.52  1 32 

38 0.17  35 42 

50 0.11  35 51 

63 0.53  35 92 

75 0.10  74 81 

100 0.16  92 104 

128 0.52  92 145 

140 0.09  139 145 

172 0.50  145 190 

187 0.10  186 190 

3.2 Symbolic Convex Approximation  

Symbolic convex approximation is a means to approximate 

a time series with a set of convex-shaped patterns by means 

of a magnitude constraint bin, which is a rule for selecting a 

convex index and its mapping to a symbol. A magnitude 

range bin is defined by the following. 

  

Definition: Magnitude constraint bin 

A magnitude constraint is a logical formula that consists of 

inequalities on magnitude. A magnitude constraint bin is a list 

of range constraints which are exclusive of each other.  

 

A convex decomposition is a set of convex-shaped patterns 

to approximate a time series. A required magnitude level 

depends on the application, and we can control a magnitude 

constraint bin to get convex-shaped patterns that are suitable 

for an application. Symbolic convex approximation is a 

sequence of symbols used to extract a cycle that consists of 

regularly ordered patterns by means of a string matching 

technique. A convex decomposition and a symbolic convex 

approximation are defined in the following. 

  

Definition: Convex decomposition 

Let CP be a given convex profile, and let MB be a magnitude 

constraint bin. A convex decomposition is a set of convex 

patterns in CP that satisfy either one of the magnitude 

constraints in MB. Each convex index �(�) is modified to 

��(�)  so as not to cross another convex pattern by the 

following formulas: 
��(�). � = max(�(�). �, max��(�). � | � ∈ ��|�(�). � < �(�). �}}) 

��(�). � = min(�(�). �, min��(�). � | � ∈ ��|�(�). � > �(�). �}}) 



 

Definition: Symbolic convex approximation 

Let CP and MB be a convex profile and a magnitude 

constraint bin respectively. If a convex index C(i) satisfies a 

magnitude constraint j, symbolic convex mapping is defined 

to be a function from C(i) to a symbol that corresponds to j. 

That is, if a magnitude constraint j is different, the mapped 

symbol of j is different. The image of a symbolic convex 

mapping from a convex profile is called a symbolic convex 

approximation. 

 

Figure 5 shows the convex decomposition and the symbolic 

convex approximation of a raw data shown in the top graph 

of Figure 4. The top graph is the line graph for the original 

data. The second graph is a convex decomposition that 

corresponds to  a magnitude constraint “M >= 0.4”, which 

means its magnitude is greater than or equal to 0.4. The 

corresponding convex shaped-patterns are labeled as “A”. 

The third graph is a convex decomposition that corresponds 

to  a magnitude constrant “0.075 < M and M<=0.4”. The 

corresponding convex shaped-patterns are labeled as “B”. 

The bottom graph is a convex decomposition that 

corresponds to  a magnitude constraint bin {“M >= 0.4”, 

“0.075 < M <=0.4”}. Note that the left and right terminals of 

the extracted convex-shaped patterns are modified by the 

definition of convex decompostion. The symbolic convex 

approximation by this decomposition is “ABBABBABAB”. 

A      B  B      A    B       B           A      B           A      B 

A A A A

B B B B B B

Symbolic Convex Approximation

A A A A
B B B B B B

 
Figure 5: An example of a convex decomposition and 

its corresponding symbolic convex approximation 

4 EXPERIMENTAL VERIFICATION 

This section evaluates our method on one simulation and 

one real data sets. 

4.1 An experiment on a simulated time series  

Figure 6 shows the magnitude functions corresponding to 

serveral magnitude constraints for the simulated time series 

shown in Figure 1. The top graph is a line graph of the 

simulated data. The second graph is a magnitude function 

graph that corresponds to a magnitude constraint “M > 0”, 

which means the magnitude value is greater than 0. The third 

graph is the magnitude function that corresponds to a 

magnitude constrant “8.5 < M”. This graph shows that  the 

convex patterns “a” and “c” in Figure 1 can be extracted by 

this magnitude constraint. The bottom graph is the magnitude 

function that corresponds to a magnitude constrant “4.5 < M 

and M<=8.5”. This bottom graph shows that a magnitude 

convex pattern “b” in Figure 1 can be extracted by that 

magnitude constraint. 

 
Figure 6: The magnitude functions of a simulated 

data set 
 

 
Figure 7: The convex decompositions and the 

symbolic convex approximation of simulated data 
 

Figure 7 shows the convex decomposition and the symbolic 

approximation of the simulated data. The top graph is the line 

graph for the original data. The second graph is a convex 

decomposition that corresponds to a magnitude constraint of 

“M >= 8.5”. The extracted convex-shaped patterns are 
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labeled as “A”. The third graph is a convex decomposition 

that corresponds to  a magnitude constrant “4.5 < M and 

M<=8.5”. The extracted convex-shaped patterns are labeled 

as “B”. The bottom graph is a convex decomposition that 

corresponds to a magnitude constraint bin of {“M >= 8.5”, 

“4.5 < M and M<=8.5”}.  

The symbolic convex approximation by this decomposition 

is “ABBABABBBABABAB”. If we replace a pattern “AB”  

followed by the repetition of pattern “B” with “c”, we get  

“ABBcABBBcABc”. After this step, if we replace “A” with 

“a” and replace the repetition of “B” with (b+), we get  

“a(b+)ca(b+)ca(b+)c”.  This regular exparesion is what we 

wanted to find. The above procedure contains an ambiguous 

step, because a single occurrence of “B” after “A” can match 

two patterns “AB” and A(B+). In the case of this example, we 

can disambiguate it to use the peak positions of convex 

shaped patterns “A” and “B”. An algorithm to aquire regular 

expression by using both a magnitude and a peak position can 

be considered in future work. 

4.2 Factory Work Process 

The second example involves human motion in a factory 

work process. Figure 8 shows an acceleration time series for 

a cardboard packaging process. Each cycle consists of 4 

basic operations: (a) Preparing  a cardboard, (b) labeling，
(c) packaging and (d) carrying a cardboard. The repeated 

process can be segmented by discovering a motif, which is a 

subsequence frequently occurring in a time series. In Fig. 1, 

the subsequences corresponding to (a), (b), (c) and (d) are 

examples of motifs. 

 

 
Figure 8: Time series of factory working process 

The segmentation problem for this data is to extract each 

cycle that consists of basic actions (a), (b), (c) and (d). 

 

Figure 9: The magnitude function of a factory work 

process data set 

Figure 9 shows the magnitude functions corresponding to 

serveral magnitude constraints for a factory work process 

data set shown in Figure 8. The top graph is the line graph for 

the raw data. The second graph is the magnitude function that 

corresponds to the magnitude constraint “0 < M”. The third 

graph is the magnitude function that corresponds to the 

magnitude constrant “11.2 <= M”. This graph shows that the 

peak of a segment “c” in Figure 8. can be extracted by this 

magnitude constraint. The bottom graph is the magnitude 

function that corresponds to a magnitude constrant “7 < M < 

11.2”. This bottom graph shows that the starting point of a 

segment “a” and the peak of a segment “b” in Figure 8 can be 

extracted by that magnitude constraint. 

 

 
Figure 10: The convex decomposition and the 

symbolic convex approximation of a factory work 

process data set 

 

 
Figure 11: The relation between the segments in a 

factory work process data set and the extracted 

convex-shaped pattern 
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Figure 10 shows the convex decompositions and the 

symbolic approximation of the factory work process data. 

The top graph is the line graph for the original data. The 

second graph is the convex decomposition that corresponds 

to  a magnitude constraint “11.2 <= M”. The extracted 

convex–shaped patterns are labeled as “A”. The third graph 

is the convex decomposition that corresponds to  the 

magnitude constrant “7 < M <11.2”. The extracted convex-

shaped patterns are labeled as “B”. The bottom graph is a 

convex decomposition that corresponds to  the magnitude 

constraint bin {“11.2 <= M”, “7 < M <11.2”}.  

The symbolic convex approximation by this decomposition 

is “BABBABBABBABAB”. This symbolic sequence does 

not correspond to the exact segments shown in Figure 8. 

However, a repeated sequence “BAB” corresponds to one 

cylcle, so that we can calculate the working time per one cycle. 

This result is useful from the point of view of  our application.  

Figure 11 shows the relation between the segments in the 

factory work process and the convex-shaped pattern 

extracted by our algorithm. The peak of convex-shaped 

pattern “A” seems to correspond to the starting point of a 

segment “a” and the ending point of a segment “d”.  How to 

obtain segments required by a given application by the 

convex-shaped pattern will also be considered in future 

work. 

5 CONCLUSION 

We defined the structural motif discovery problem and 

proposed a novel segmentation method that approximates the 

time series with a sequence of convex-shaped patterns by 

means of leg analysis. The experimental results show that our 

method has the potential to solve the structural motif 

discovery problem. We only evaluated our method on two 

simple examples. Evaluation on exhaustive data is future 

work. Technical future challenges include the following: 

(1) Magnitude constraint selection 

   We manually tuned magnitude constrains depending on the 

experimental data. How to select an appropriate magnitude 

constraint is the first major challenge. 

(2) Regular expression acquisition 

  An algorithm to aquire regular expression by using both 

magnitude and a peak position is also future work. 

(3) Segmentation with a convex-shaped pattern 

How to obtain segments required by a given application by 

the convex-shaped pattern will also be considered in our 

future work. 

This work is supported by JSPS KAKENHI Grant Number 

17K00161. 
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