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Abstract

This paper considers target detection in distributed multiple-input multiple-output (MIMO)
radar with imperfect waveform separation at local receivers. The problem is formulated as a
binary composite hypothesis testing problem, where target residuals due to imperfect wave-
form separation are explicitly modeled as a subspace component in the alternative hypothesis,
while disturbances including the clutter and thermal noise are present under both hypothe-
ses. Under assumptions of fluctuating and non-fluctuating target amplitude over a scan, e.g.,
Swerling models, we particularly consider a distributed hybrid-order Gaussian (DHOG) signal
model and develop the generalized likelihood ratio test (GLRT) which relies on the maximum
likelihood (ML) estimation of the target amplitude and the residual covariance matrix under
the alternative hypothesis. The Cramer-Rao bounds (CRBs) on estimating the target ampli-
tude and residual subspace covariance matrix are derived. Simulation results in both local
and distributed scenarios confirm the effectiveness of the proposed GLRT and show improved
performance in terms of receiver operating characteristic (ROC) by exploiting the existence
of target residual component.
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Abstract— This paper considers target detection in distributed
multiple-input multiple-output (MIMO) radar with imperfect
waveform separation at local receivers. The problem is for-
mulated as a binary composite hypothesis testing problem,
where target residuals due to imperfect waveform separation are
explicitly modeled as a subspace component in the alternative
hypothesis, while disturbances including the clutter and thermal
noise are present under both hypotheses. Under assumptions of
fluctuating and non-fluctuating target amplitude over a scan,
e.g., Swerling models, we particularly consider a distributed
hybrid-order Gaussian (DHOG) signal model and develop the
generalized likelihood ratio test (GLRT) which relies on the
maximum likelihood (ML) estimation of the target amplitude
and the residual covariance matrix under the alternative hypoth-
esis. The Cramér-Rao bounds (CRBs) on estimating the target
amplitude and residual subspace covariance matrix are derived.
Simulation results in both local and distributed scenarios confirm
the effectiveness of the proposed GLRT and show improved
performance in terms of receiver operating characteristic (ROC)
by exploiting the existence of target residual component.

Index Terms— Moving target detection, distributed MIMO
radar, hypothesis test, subspace model, generalized likelihood
ratio test, maximum likelihood estimation, Cramér-Rao bound.

I. INTRODUCTION

In recent years, target detection using orthogonal MIMO
waveforms have received significant interest. In this work,
we focus on target detection using distributed MIMO radar,
which employ widely separated antennas to form the transmit
and, respectively, receive aperture, and probe a scene using
multiple orthogonal waveforms. The distributed MIMO detec-
tion allows one to exploit the spatial or geometric diversity to
enhance target detection, since targets often exhibit significant
azimuth-selective backscattering with tens of dB of fluctuation
in their radar cross section (RCS) [1]-[4]. The effect of clutter
was also studied in [3], [5]-[7] for moving target detection.
Other related efforts have been placed to waveform design [8]—
[13], synchronization effect [14]-[16], exploitation of target
sparsity in the spatial and/or Doppler domains [17], [18],
impact of nonhomogeneous interference and registration errors
[19]-[21], optimal transmit power allocation and antenna
configuration [22]-[25], exploitation of prior knowledge [26]-
[28], deployment on moving platforms [29] and cooperative
radar-communication platforms [30]—[32]
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These studies usually assume the multiple transmitters trans-
mit orthogonal probing waveforms with zero cross-correlation,
and these transmit waveforms are perfectly separated at each
receiver by matched filter processing. However, such ideal
waveform separation is impossible across all Doppler fre-
quencies and time delays [33], [34]. Therefore, the effect
of waveform residuals has to be considered in the target
detection for distributed MIMO radars. Particularly, [34] and
[35] investigated the sensitivity or robustness of distributed
MIMO detectors under the condition of imperfect waveform
separation. In the following, we provide a mathematical model
explicitly accounting for target residuals due to imperfect
waveform separation. It is interesting to see that, the target
residuals only appear when the target of interest is present,
i.e., in the alternative hypothesis, and the residual content
shows a subspace structure spanned by Fourier bases of bistatic
Doppler frequencies over different transmitter-receiver (Tx-
Rx) pairs.

In this paper, we take into account the existence of such
target residuals in the baseband receiving signal and formulate
the target detection as a binary composite hypothesis testing
problem where the alternative and null hypotheses differ from
not only the target signal but also the target residual. We
consider several standard models on the target amplitude over
a scan, fluctuating, non-fluctuating or both, and propose a
distributed hybrid-order Gaussian (DHOG) model. Under the
DHOG model, we derive the exact ML estimation under the
alternative hypothesis and the exact GLRT. It is found that the
exact ML estimation yields closed-form solutions in certain
circumstances depending on the geometry of terms related to
the received signal, target steering vector, residual subspace
matrix, and disturbance covariance matrix, and requires a
numerical optimization of a monotonically increasing function
over a confined region. The Fisher information matrix (FIM)
associated with the parameter estimation problem is also
derived and utilized to find the Cramér-Rao bounds (CRBs) on
unknown parameter estimation under the alternative hypothe-
sis. Simulation results in both local and distributed scenarios
confirm the effectiveness of the proposed GLRT and show
much improved performance in terms of receiver operating
characteristic (ROC) by exploiting the existence of target
residual component.

The remainder of the paper is organized as follows. The
signal model is introduced in Section II. In section III, we
present the distributed MIMO detection problem with three
formulations of the target residuals: 1) distributed first-order
Gaussian model (DFOG); 2) distributed second-order Gaussian
model (DSOG); and 3) a new distributed hybrid-order (first-
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order and second-order) Gaussian model. Section IV proposes
the GLRT solution to the DHOG formulation with exact ML
estimation for the target amplitude and the residual covariance
matrix. Simulation results are provided in Section V. Finally,
conclusions are drawn in Section VI.

II. SIGNAL MODEL: ACCOUNTING FOR TARGET
RESIDUAL FROM IMPERFECT WAVEFORM SEPARATION

Consider a distributed MIMO system with M transmit sites
(Tx) and N receive sites (Rx) in Fig. 1. We assume that the
distributed MIMO system probes a common area of interest
using M orthogonal waveforms from M transmit antennas.
Pulsed transmission is employed as in standard Doppler radars.
Each transmitter sends a succession of K periodic pulses, i.e.,
K repetitions of an orthogonal waveform, over a coherent
processing interval (CPI). Specifically, at the m-th transmit
site, the transmitted burst of pulses are given as

Sm(t) = 5mum(t)ej(2wfot+wm) 1)
where
K—-1
um(t) = Z upm(t - kTPRI) (2)
k=0

is the baseband transmitted signal, upy,(t) is the complex
envelope of a single pulse, (,, is the transmit amplitude at
the m-th transmitter, fj is the carrier frequency, and 1), is the
initial phase. The pulse waveform w,,, (t) is of duration T}, and
has unit energy. Assuming a moving target at a distance R,,
to the m-th transmitter and a distance R,, to the n-th receiver
with a speed of v = [v,,v,]7, the observed signal 3,,(t) (see
Fig. 1) at the n-th receiver consists of echoes from a moving
target illuminated by M orthogonal transmitting waveforms
(3]

M-1

Sn (t) = Z anmfnmﬁmum (t - Tnm)
m=0

X €j271'(f0 +frm)(t—=Tnm) e]wm

3)

where «,,, accounts for the channel gain for the (m,n)-th
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Moving target detection of distributed MIMO radar and baseband signal at local receivers.

given the transmitting and receiving antenna gains G7/' and G'g
and the wavelength A\ = ¢/ fo with ¢ denoting the waveform
speed, &, is the target reflection amplitude for the (m,n)-th
Tx-Rx pair, 7pm = (R +Ry,)/c is the delay for the (m, n)-th
Tx-Rx pair, and

[v3 (€08 Oy, + €OS O,p,) + vy (S0 Oy, + 8I0 6,1, )]
(5

is the normalized bistatic target Doppler frequency with 6, ,.
denoting the transmitting/receiving angles with respect to the
target. It is worth noting that, for a distributed MIMO radar
with widely separated Tx-Rx pairs, it can observe both v, and
vy due to multiple different projections of the velocity vector
v into distinct observable bistatic velocities. For a mono-static
radar, only the radial target velocity can be observed.
Equation (3) can be rewritten as

M-—1

gn (t) — Z dnmum (t _ Tnm)ej27r(f0+fnnL)te_jQﬂ'fOTrnn ejd)rn
m=0

(6)

. . - A
where the equivalent target complex amplitude &g, =

Arm&nm Bme 32 frm™m absorbs all time-independent phase
terms for the (m,n)-th Tx-Rx pair including the channel
gain qy,,, target reflection amplitude &,,,,, and the phase term
e =927 famTnm - After demodulation, the baseband signal at the
n-th receiver is
M—1
sn(t) = Z Gy U, (t — Tnm)ej%f"mtefj%f‘”"’" eI¥m .
m=0

)

A. Matched Filter Bank at Local Receivers

At the n-th receiver, a set of M matched filters as shown in
Fig. 1, each matched with one of M orthogonal transmitting
waveforms, are used to extract baseband signals corresponding
to the (m,n)-th Tx-Rx pair. For the i-th matched filter at
the n-th receiver, each pulse of s, (t) is matched separately
with the receiver filter h;(t) = us,(—t)e™7¥i, where wp;(t)
is the complex envelope of the i-th waveform in (2), i =
0,---,M — 1, and ®; denotes the phase mismatch due to



synchronization errors at local matched filters. The output at
the -th matched filter is given as

Tni(t) = /sn(y)hi(t —v)dv

M-—1
— § dnme_jQWfOTn7n€j(¢m_1/)i)
=0
K-1

Z / Upm (V — Trm — KT )uny; (v — t)eﬂ”f”m”dy (8)
k=0 “Y

X

By defining the cross ambiguity function (AF) as
X7 £) = [t )0 = ), ©)

Zni(t) of (8) can be rewritten as

M—-1
xnz(t) = Z dnmeij%rfo‘rnmej(wmiwi)
m=0
K-1
X Xmi (t - Tnm — KT, fnm)eJ%rkaMTT- (10)
k=0

The continuous signal of x,,;(¢) is then sampled by analog-
to-digital converters (ADCs) at instants ¢ = 7,; + k1, k =
1,2, K

xm(k) :xni(t)lt:TerkTr
M-—1
— Z dnme*jQ‘ﬂ'fonn eI (Pm—1i)

m=0

j 270K from T
X Xmi (Tni — Tnm, fn'rn)ej27r f

=atpie 12T (0, fi)ed 2RI T

3 G2 IoTom im0

X Xmi (Tni — Tnms fnm)ejQﬂ—kanTh

(1)
where 7,,; needs to be aligned over different Tx-Rx pairs to
make sure all Tx-Rx pairs probe the target at the same range
bin. Therefore, {z,;(k)},k =1,2,---, K, represent K slow-
time samples corresponding to a target at a given range bin for
all Tx-Rx pairs. It is seen that the output of the i-th matched
filter x,;(k) consists of M components: the first term is the
auto-component between the ¢-th transmit waveform and the
i-th matched filter, and the other term sums up the cross-
components residuals between the remaining M — 1 transmit
waveforms and the 7-th matched filter.

B. Modeling of Target Residuals due to Imperfect Waveform
Separation

Current studies usually assume that the mutual orthogonality
across different waveforms holds everywhere in the range-
Doppler plane, i.e., Xmi(Tni — Tnm, fam) = 0 in (11), and
none of these cross-components are present at outputs of
matched filter banks. However, this assumption cannot be met
in practice [33], [34]. As also shown in [36], [37], the largest
range-Doppler area without ambiguity (“the clean area”) is
reduced from (ATAfq)max = 1 for a singe-waveform radar

to 1/M for MIMO radar using M orthogonal waveforms.
It quantitatively confirms that the zero cross components for
the MIMO radar case is only possible for smaller Doppler
velocities and time delays than the traditional phased array
radar with coherent waveforms. In the following, we model
the outputs of matched filters consisting of a target signal and
a target residual with a subspace structure.

Stacking the K discrete samples into a vector and defining
Onpm = dnme_jZﬂfoTnmei (Tni — Tnm, fnm)» we have

Xni :@nis(fni> + Z @nmej(wm_wi)s(fnm)
m#£i

(12)

A .
where s(f) = [1,e/2™/Tr ...
written as in a matrix form

78j27r(K—1)fTr]T, This can be

Xni :&nzs(fnv) + an',enia (13)

where the subspace matrix is of dimension K x (M — 1)

Hni = [S(fnl); Ty {S(fnm)}m;ﬁia s 7S(f7lM)]7 (14)
and the subspace coefficient vector is given as
Aipp el (1=vi)
0, = {@nmeg‘(wmwi)}m# (15)

@nMej(diM —;)

From (12), it is seen that the target signal has an unknown am-
plitude @.,; and a steering vector s(f,,;) at the corresponding
(n, 1)-th bistatic Doppler frequency f,;. Meanwhile, the target
residual due to imperfect waveform separation is shown to fall
within an (M — 1) subspace spanned by (M — 1) steering
vectors at the other (M — 1) bistatic Doppler frequencies

Remark: It is seen from (12) that the residual amplitude &y,
is a function of the ambiguity function X, (Tni — Trm, frm) at
given delay difference 7,,; — 7,,,, and Doppler frequency f,;,.
As a result, the minimum possible residual can be determined
by the highest sidelobe in the ambiguity function which is a
function of the used orthogonal waveforms. If one has prior
knowledge on possible locations (7,,,,) and velocities f,,
the minimum possible residual may be confined to the local
maximum value of the ambiguity function over the possible
delay-Doppler area. In case that the local maximum is neg-
ligible, the residual amplitude {G,m }m=; may be negligible
compared with the target amplitude &,,;.

With N receivers and M matched filters at each receiver,
the overall received signals are x,;, ¢ = 1,2,--- .M, n =
1 N.

I

III. PROBLEM FORMULATION OF MOVING TARGET
DETECTION

In the following, we formulate moving target detection as
a binary hypothesis testing problem by explicitly accounting
for the target residual described in the above section.



A. Problem Formulation

In addition to the target signal and its residual, the dis-
turbance signal due to ground clutter, jamming signals and
thermal noise is present in the received signal. It is generally
assumed that the disturbance component for the (n,¢)-th Tx-
Rx pair, w,,;, has a complex Gaussian distribution with zero
mean and covariance matrix R,,;, i.e., w,; ~ CA(0,Ry;).

With the above modeling, the moving target detection with
the distributed MIMO radar is then formulated as the following
binary hypothesis testing problem:

HO: Xni = Wnyg,
Hl : Xni = Oénis(fni) + HTILOTI’L +Wni7 (16)
n=1....,N; 1=1,..., M,

where x,,; is the output of the i-th (out of M) matched filter
at the n-th receiver, «,; is the unknown amplitude, 0,,; is the
target residual coefficient, H,,; is the target residual steering
matrix of (14), and the disturbance w,; ~ CN(0,R,;).
We further assume that the range spaces of s and H are
linearly independent, since all M Doppler frequencies are bi-
static projections of the same target Doppler frequency onto
M transmitting angles (and the same receiving angle) in the
view of (5) and (13). In addition to the test signal, G target-
free training signals g,i(¢g),g = 1,--- , G, are available from
neighboring range cells. The purpose here is to detect if the
target signal is present in the M N matched filter outputs
while exploiting the subspace target residual whose existence
is associated with the target signal of interest.

B. Distributed First-Order Gaussian Model - DFOG

First, we model both the target amplitude «,,; and residual
coefficient 0,,; as deterministic unknown parameters. In other
words, we assume the RCSs are different from different Tx-
Rx pairs but non-fluctuating from pulse to pulse throughout
a single scan (e.g., Swirling model I). With this assumption,
we can group the signal steering vector and residual subspace
as an expanded subspace S,,; = [spi, Hp;] and the unknown
coefficient B = [, 02,]7. As a result, we have the following
distributed first-order Gaussian (DFOG) model:

Hy: n=1,---,N,
Hl L Xpig = Snzﬁnz + Wi,

Xni = Wni, 7,:1,---7M,

a7)

where one needs to determine if the subspace signal is present
or not.

It is easy to recognize that (17) is an extension of the
FOG model of the MTD with colocated phased array of
N =1 and M = 1. One can readily apply classical solutions
such as matched subspace detectors [38], adaptive subspace
detector (ASD) [39], the Kelly’s GLRT [40], and the adaptive
coherence estimator (ACE) [39], [41], [42] with R estimated
from the G training signals. The distributed GLRT for the
distributed DFOG model has been considered in [6].

C. Distributed Second-Order Gaussian Model - DSOG

In the case of fluctuating RCS from pulse to pulse (e.g.,
Swerling model IV), we assume the target amplitude o,;

and the subspace coefficient 6,; are random parameters.
As a result, we have the following distributed second-order
Gaussian (DSOG) model where the signal of interest is a
random subspace signal

Hy: n=1,...,N;
Hi: Xpi = SniYns + Wi,

Xni = Wni, 1=1,..., M,

(18)

where v,,; = [ni, 02,]7 ~ CN(0ar,T;) with 05 denoting
an all-zero vector of dimension M/ and T',,; € CM*M denoting
the covariance matrix. It is easy to see that (18) is an extension
of the traditional SOG model considered in [43]. The detection
problem in the SOG model was solved from a GLRT principle
in [43].

D. Distributed Hybrid-Order (First-Order and Second-Order)
Gaussian Model - DHOG

Finally, we consider a hybrid case where the target am-
plitude a,; follows a non-fluctuating model while the target
residual 6,; are fluctuating from pulse to pulse due to the
phase mismatch ¢,, — ¢; in (15). As a result, «,; are treated
as deterministic unknown parameters while 6,,; are modeled
as random parameters, leading to

Hy: n=1,...,N;
Hy Xni = anis(fni) + Hnieni + Wi,

Xni = Wni, t=4 M,

(19)

where 6,,; ~ CN(0,X,;) with X,; denoting the unknown
residual subspace covariance matrix and «,,; is deterministic
unknown. Unlike the DFOG and DSOG models, the DHOG
model distinguishes the two hypotheses not only in the first-
order statistic but also the second-order statistic of the received
signal. It is worth noting that such a hybrid model may
be useful to represent a compound cluster of scatterers, a
portion of which exhibit non-fluctuating reflection character-
istics while the others show more rapid fluctuating reflection
characteristics during a CPL.

Given knowledge of the residual subspace H,;, one is
tempted to project the observation x,,; to the subspace orthogo-
nal to H,,;, which eliminates the residual interference, and then
apply the conventional matched filter to the projected signal
for target detection. Note that the projection is an irreversible
compression process that will lead to a loss of the signal
energy (unless the signal steering vector lies in the orthogonal
subspace). This resulting detector, henceforth referred to as the
projection matched filter (PMF), is in general suboptimal. In
the following, we introduce an alternative and better solution
by jointly estimating the parameters associated with the signal
and residual interference.

IV. PROPOSED DISTRIBUTED GLRT

In this section, we assume the target velocity is known. It
is standard in radar signal detection to divide the uncertainty
region of the target velocity or Doppler frequency into small
cells and each is tested for the presence of target [45].
Therefore, we drop the dependence of s on f,; herein. We
adopt a two-step approach (like the AMF [46]) to develop the
distributed MTD scheme based on the DHOG model in (19).



First, we develop a distributed GLRT for (19) by assuming
that the disturbance covariance matrix R,,; is known. Then,
R,; in the test statistic is replaced by its sample covariance
matrices from training signals.

A. The GLRT Principle

The GLRT principle for (19) requires the ML estimates
of the unknown parameters including the target amplitudes
o and the subspace covariance matrices X,;. Invoking the
statistical independence across multiple transmit-receive pairs,
the MIMO-GLRT detector takes the form of

[T max fi(%ni|oni, Zni)

n,i Xni y i

r= Hfo(Xm) ’

(20)

where f1(Xpi |oni, Zni) and fo(x,;) denote the likelihood

functions for the (n,i)-th Tx-Rx pair under H; and H,,

respectively. With known R,,;, we can apply a pre-whitening
. —1/2

process, i.e., yni = R,,’ X, to convert the problem of

interest (19) to an equivalent binary hypothesis testing as

Ho: yni ~CN(0,I),

X2

21

where §,; = R,}/?s,;, Hy = R,/?H,,; and the distur-
bance covariance matrix is an identity matrix due to the pre-
whitening process.

It is clear that all unknown parameters, i.e, 3,; and oy,
are both under the alternative hypothesis, whereas there is no
unknown parameters in the null hypothesis. Subsequently, the

MIMO-GLRT detector takes the form of

max fi (Yni |04m‘, Eni)
T= H Tm' =

H QniyXni
where T),; is the test statistic of local GLRT at one Tx-Rx pair,
f1(¥ni |ani, 2ni) and fo(yn:) are, respectively, the likelihood
function of the whitened signal for the (n,7)-th T-R pair under
both hypotheses:

(22)

e—()’m‘, —0ni8ni) T CLH (Yni—anidng)

ng ni;zni = s
fl(y |Oé ) 7TK|Cn7,|

e_yyjji)'ni

Jo(yni) = T LK

(23)

with C,,; £ I:ImEmI:If;IZ + I > T implying 3,,; is positive
definite, and |C| denoting the determinant of the matrix C.
In the next two subsections, we derive the ML estimates of
the subspace covariance matrix 3,,; and the amplitude ;.
Then, we develop the test statistic of the local GLRT T,
followed by the derivation of the distributed GLRT 7.

B. Local ML Estimation of the Residual Covariance 3,,;

As seen in (22), the maximization over X,; and «,,; can
be performed separately over each Tx-Rx pair. Therefore, we
drop the index (-),; of Tx-Rx pairs for notation simplicity.

Note that C = HXH” + I. To compute |C| and C~*
in the local likelihood function of (23) under the alternative
hypothesis, we first represent the subspace term as

asa’ = apa’. 24)

where

H=HH"H) /U, (25)

is a K x r matrix with » = (M — 1) orthonormal columns,
U € C™" is an unitary matrix and E € R™*" is a diagonal
matrix with e; denoting its ¢-th diagonal element. Equivalently,

the residual covariance matrix is represented by the unitary
matrix H and the diagonal matrix E. With (24), we have
C'=HE+I) 'HY +HB'HY
—HE+ID) "H! + (1-Py),
Cl=]](ei+1).
i=1

Remark: Essentially, the unitary matrix U plays as a rotation
matrix in the subspace (H) spanned by the (orthonormalized)
columns of H. This can be seen from the fact that the
projection matrix Py in (26)

Py = H(HYH) ' HY — AE"H) 'HY =Py, (28)
is the same as the projection matrix Pg, which is hence
independent of the rotation matrix U. In other words, (H) =
(H).

Define

(26)

27)

z2[H B " (y—0s) (29)

and denote z; as its i-th element. With the help of (26) and
(27), the negative log-likelihood function (NLLF) under Hi,
ie., f1(y|a,3) in (23), can be expressed as

—1In fl(y |C¥,E,I:I) x In |C| + (y _ Oéé)HC_l(y _

r T K
KZln(ei+1)+Z + Z |Zv|2 (30)
i=1 i=1

1=r+1
The ML estimate of E can be obtained by taking the
derivative of the NLLF with respect to e; and equating it to
zero, i.e.,

é; =max{|z|* — 1,0}, i=1,2---,r
With the ML estimate of E, the NLLF (30) reduces to

K
Sl Y (mlaf 1)+ Y al G2

1<i<r: 1<i<r: i=r-+1
|22 <1 |z:|>>1

as)
Ell
e; +1

(3D

The next step is to derive the ML estimate of H which is
equivalent to the ML estimate of U according to (25). Note
that the last term of the NLLF (32) reflects the energy of the
whitened target-free observed signal (y — a8) projected into
the orthogonal complement space of (H)

K
3l = (y - a8)THTEY (y - 08)
i=r+1

=(y—o8)"I-Py)(y—0s), (33)



which is hence independent of the rotation matrix U.
With these observations, the ML estimate of U is obtained
by minimizing the sum of the first two terms (32) w.r.t. U:

Soolalf+ >, OM%F+1)

1<i<r: 1<i<r:
|z:|? <1 |z:>>1

(34)

Denote n = 5 |z|°. It is noted that
1<i<r

n= > |ul’ = (y - a8) THH" (y — a8)
1<i<r
=(y — a8)"Pg(y — 08), (35)

is also independent of the rotation matrix U. Depending on
the value of 7, the ML estimate of U (or, equivalently, H)
can be obtained as
e < 1:m < 1 implies that |z]?> < 1,i =1,2,--- ,r. The
cost function (34) reduces to

T
2
PETE
=1

which is hence independent of U (see also (35)). There-
fore, in this case, U can be an arbitrary r X 7 unitary
matrix. And the NLLF (32) reduces to

T K
Dolal+ Y Jal =y — o8],
=1

i=r+1
e 7 > 1: The ML estimate of H is a matrix with one
column given by (without loss of generality, we assume
the first column)

(36)

(37

_ Pply—os)
Py —as)|’
and the remaining (r — 1) columns are orthonormal to
Hyy [:, 1]. It follows z, = [/7,0,---,0]7. The proof
can be found in [44, Section. II.B, Appendix]). Geomet-
rically, in this case, we choose the rotation matrix U

which rotates the coordinate in (H) such that one axis

aligns perfectly with the projection of (y —a8) into (H).
Then, the NLLF (32) reduces to

Hy [, 1] (38)

K K
In|z? +1+ Z |zi\2 =lnnp+1+ Z |zi|2
i=r+1 i=r+1
=In(y — a8)"Pg(y — a8) + 1

+(y —a8)T(I-Pg)(y —as). (39

The above ML estimates of E and H are based on a given
amplitude . The next step is to find the ML estimate of «.

C. Local ML Estimation of Amplitude o

In this subsection, we develop the exact ML estimate of «,
which is different from the ad hoc solution in [44]. Due to the
condition on 7 for the ML estimate of H, the cost function for
the ML estimate of « is a composite function which combines

Im{a}

Fig. 2. Feasible areas of the cost function g(a) for the ML estimate of the
amplitude o

two sub-functions given by (37) and (39), respectively. More
precisely, we have the cost function for the ML estimate of «

wo-{2 aen @

where
g1(a) = lly — as|*, (41)
g2(0) =[Py (y — a8)|* + 1+ |[ P (v — a8)[|*, 42)

and

Uy = {a e C:nla) <1}, (43)
Uy ={aeC:inla)>1}, (44)

with
n(a) =[Py (y — ad)|*. (45)

1) Geometry of V1 and Wy: It is easy to see that the
feasible set ¥; of (43) is a disk centered at avy, with radius
7w, while U5 complements ¥, in the complex-valued domain.
As shown in Fig. 2, the center and radius of ¥; are given,
respectively, by

SHPI:Iy
= = 46
a1 = ay, TP s’ (46)

ve—a
Ty, = 5 (47)

e
where
2 112 - 2

a=|Pgay|”Pgsl” - [|s"Pgayl (48)
e=|Pgs|®. (49)

It is worth noting that the feasible sets ¥; and W, are
adaptively determined by the (whitened) observed signal y,
the (whitened) subspace matrix H and the (whitened) steering
vector S. Therefore, they are fully determined by observed
signals but may vary from one scan to another scan.



Fig. 3. The solution region of unconstrained gz ().

2) Solutions to Unconstrained g1 () and g2(c): Before we
move to the ML estimation of the amplitude, let us first look
at the unconstrained optimization of ¢;(«) and go(«).

To minimize g;(a) = ||y — a8||°, the solution to uncon-
strained g; () is
sfly
sHg’

a3 = (50)

To minimize g2(a) of (42), we notice that it consists of two
o-related terms:
o the term d; () 2 |Pg (y — as)||* + 1 that is mini-
mized at
_s"Pgy
W= sH Pys

= o = oy, (28

which is also the center avy, of the feasible set ¥y; see
Fig. 3.
A - . .
o the term dy(a) = [P (y — a8)||® that is a quadratic
function minimized at

HpLl
sPﬁy

Hplg’
S HS

Qg = (52)
Both d; and ds are monotonically increasing w.r.t. @ when
«a moves away from the corresponding minimizer oy or ao.
Therefore, the solution to the unconstrained g»(«) falls within
a square area cornered at oy and a in the two-dimensional
complex-valued domain; see the shaded square in Fig. 3 for
illustration. Without of losing generality, we assume o{ca; } >
R{az} and S{az} > I{a1} and denote the square area as

U3 = {a € C:R{az} <R{a} < R{a},
S{ar} < S{a} < S{az}}

3) Local ML Estimation of Amplitude: Depending on the
geometry of W; and Wy, we have the following cases to
develop the ML estimate of a:

Case I (I = 0 and ¥, = C): Let us look at one extreme
case when the feasible set ¥; is an empty set and Wy covers
all complex-valued domain. In this case, the cost function g(«)
of (40) reduces to the unconstrained gs(«). As stated above,
the solution to the unconstrained go(«) is confined in the set
Ws. It can be effectively found by a gradient descent method
initiated at either «; or .

(53)

The existence of Case I can be determined by the following
sufficient condition (recall the geometry of ¥; and W)

a>eande<oo = 71y, <0 54

The condition of e = ||Pﬁ§||2 < o0 is satisfied as long as the
steer vector s has a finite energy, since e reflects the energy
of the whitened steering vector S projected into the whitened

subspace (H). The other condition of a > e can be checked
as

~ ~ 2 ~
a>ec= |Pay|® |Pgs|” > 5" Pay|” + P8l 5)

once the observed signal, steering vector and residual subspace
are given.

Case II (I'; = C and ¥, = (): On the other hand, ¥,
can expand to the whole complex-valued domain while ¥,
vanishes to an empty set. Correspondingly, the cost function
g(a) of (40) reduces to the unconstrained g; («). As also stated
above, the solution to the unconstrained ¢ («) is given by ag
of (50).

The existence of Case II can be readily checked as

e=|Pgs’=0 = (56)

Ty, = 00

which is equivalent to saying that the whitened subspace (H)
is orthogonal to the whitened steering vector (S), i.e.,

(H) L (3). (57)

In the considered distributed MIMO scenario, the condition

of (H) L (8) implies that s(f,;) is completely orthogonal to
its target residual subspace H of (14) formed by other (M —1)
Doppler frequencies s( f,,,) with m # . Since all M Doppler
frequencies are bi-static projection of the same target Doppler
frequency onto M transmitting angles (and the same receiving
angle), it is highly unlikely that (H) L (8) holds.

Case III (¥; # () and U5 # ()): When neither ¥; nor ¥,
is an empty set, we need to evaluate the two constrained cost
functions: g;(a) over ¥y and go(a) over Wy, then compare
the two minimum values, and find the global minimum for
g(«). Further depending on the geometry of ¥y and ag, we

have the following two scenarios in Case III (see Fig 4):

e Scenario A (U5 N U3 # (): As shown in Fig. 4 a), the
feasible set W5 is partially overlapped with the solution
set U3 to the unconstrained g2(a). As a result, the solu-
tion to the constrained optimization g2(a)) must happen
to the overlapping area between ¥, and V3, the grey
region in Fig 4 a). Denoted by of, the optimal solution
can be numerically found by a gradient descent method
over the grey region. On the other hand, the solution to
the constrained optimization of g;(«) over ¥4, denoted
as a*, can be derived by a Lagrangian method, given in
Appendix A. Therefore, the global optimized solution in
Case III.A is given by

# ; * #
. af, if g1(a*) > ga(a?)
QMLIII-A = N . N 0 (58)
o, if g1(a") < g2(af)
The sufficient condition of Scenario A is given by
0<ry, <l|ar—asl? (59)



L mm i T

P/ I 2

L/ .

| 1 7

I & }
{ (6 (0%
\ 1 — ‘I’l/[ >
\ Re{a}
\\ \Pl //

(a) Scenario A: Wy N W3 £ ()

Im{a}

Y,  tmeae
< \Pl N
s N
/ Qg // \

! e ees \
/ I } Z \
A O A 4 0| \
1 ! 7 \
[ & |
l\ Q] = I
\\ / Re{;}

\ /
\ 7
N 7
N 7

(b) Scenario B: ¥o N U3 = ()

Fig. 4. The geometry for Case III; a) Scenario A: W5 N W3 # (J; and b) Scenario B: ¥o N W3 = ().

where ry,, a; and o are defined in (47), (46) and (52),
respectively.

e Scenarios B (U5 N W3 = ()): As shown in Fig. 4 b), the
feasible set W5 has no overlapping with the solution
set ¥3. Given that go(«r) is a monotonically increasing
function, the fact that the feasible set V5 excludes V3
implies that the optimal solution must be located at
the boundary of the feasible set W,. As a result, the
constrained optimization go(a) over Wy reduces to

mingz(a), st |Pgly —ad)[’=1  (60)

where the equality constraint denotes the circle lower
bounded ¥,. With the equality constraint, go(c) can be
rewritten as

Case III. B. The existence conditions for various cases can
be explicitly determined with ry,, a; and g defined in (47),
(46) and (52), respectively.

D. Test Statistic of Local GLRTs

Given the ML estimates under H; and the likelihood
functions under both hypotheses, it is straightforward to show
that the local GLRT test statistic of (22) is given as follows

lf n(dML) S ].,
(66)
if n(am) > 1

N ~112
vy = lly — émcs||
vy —In||Pg (y — dwi8)||”
N ~ 2
—1—[[Pg (v — awmwd)||

where y = R~1/2x is the whitened received signal, Py =

T(y) =

92(0) = (y — a8) Py (y — a8) + (v — a8) P (y — o) HHTH)"'H” and Py = I - Py with H = R™'/?H

H
= [ly — 8] = g1 (a). (61)
Therefore, (60) reduces to
mingi(a), st () =|Pgly —ad)|* = 1. (62)

Now it is clear to see the the constrained minimization
of ga(a) over Uy is a special case of constrained min-
imization of g1(«) over W;. Therefore, the global cost
function g(«) reduces to

mingi(a), st () =|Pgly —ad)|* <1, (63)

which is minimized at

GmLire = o (64)
See Appendix A for the details.
The sufficient condition for this case is given as
|y — o] < 1y, < oo. (65)

where ry,, a1 and oy are defined in (47), (46) and (52),
respectively.

In a short summary, the local ML estimate of amplitude can
be numerically found in Case I and Case III. A by optimizing
a monotonically increasing function over a confined area in the
complex-valued domain with explicitly computed initial values
and directly solved in closed-form expression in Case II and

denoting the whitened target residual steering matrix, and s =
R~'/2x is the whitened target steering vector. In addition,
n(a) = [|Pg(y — a8)||” and Gy is given in Section IV-C.
If R is unknown, we can replace R in the local GLRT
by the sample covariance matrix from G target-free training

Signals g(g)ag = 1a e 7G

R=> g(9g" ()

g=1

G
(67)

and the local GLRT can be equivalently expressed as
XHR71X — (X — OA[MLS)Hﬁ,il(X — CAYMLS)7 if n(&ML) S 17
IR 1x — In {(x - dMLs)Hf’H(x —éams)| —1

—(x— dMLS)Hf’Jﬁ(X — GMmLS), if n(am) > 1,

where Py = R-'TH(HR'H) 'HR ! and P§; = R—Py.
An interesting observation is that n(ém) can be considered
as an estimate of the significance of the target residual. If
n(amL) < 1, the local GLRT reduces to the conventional AMF
which essentially ignores the presence of the target residual.
Otherwise (if (émr) > 1), the local GLRT takes into account
the target residual in the test statistic.

In [44], we developed an early ad hoc solution to the local
GLRT. Instead of explicitly solving the ML estimation of the
amplitude, it finds an estimate of the amplitude « based on
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a quantity which cannot be computed from the observations.
Then, this quantity is replaced by a posterior estimate with
the amplitude estimate. Based on the ad hoc estimate of «,
an approximate GLRT is derived. Albeit simpler, it loses
the asymptotic optimality of the true ML estimation and
the GLRT. In Section V-A, we compare the proposed exact
GLRT with the ad hoc GLRT of [44] and show the improved
performance of the true local GLRT proposed in this section.

E. Distributed MIMO-GLRT

According to (22), the MIMO-GLRT detector non-
coherently combines the local GLRT test statistics as

Tavomro(Y) = Y T(Yuis i Hai) (68)

where Y = [yi1, -+, yin,y21,- - ynvu] with yni =
wa-l/me- in the case of a known R or y,; = RT_L;/QXM-
if R,,; is unknown

G
R, = g.i(9)gl(9)- (69)
g=1

with g,,;(g) denoting the g-th training signal for the (n,4)-th
Tx-Rx pair. Furthermore, s,; = R;il/ 2sm- and G, M1, given

by the exact ML solution in Section IV-C. It is worth noting

that the final decision is made by aggregating the local test
statistics to a central unit.

FE. Cramér-Rao Bound for Amplitude Estimation

It is seen that the main step of deriving the GLRT statistic is
to derive closed-form ML estimation of the residual subspace
covariance matrix 3 and the amplitude «. Therefore, it is
worth examining the ML estimation performance and compar-
ing it with corresponding CRB. As detailed in Appendix B,
the FIM for estimating « and ¥ is decoupled and shows a
diagonal block structure; see Eq. (90). Thanks to the diagonal
block structure, the diagonal FIM block Ig,g, for estimating
the real and imaginary parts of amplitude 8; = [R{a}, S{a}]
can be computed as

Ip,0, = 2R {s" (HZH"” + R) " 's} L. (70)

By taking the inverse of the FIM block, the CRB for the
amplitude estimation is given as
1

CRB() = S asHT T R)Ts

(71)

Similarly, the CRB for estimating the residual subspace
covariance matrix X can be found by taking the in-
verse of the FIM block Ig.g, of (92) where 8, =
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Fig. 6. MSE of the ML estimation of amplitude and corresponding CRB.

[diag{32, }, vec{R(Xy)}, vec{I(Xy)}] groups all real param-
eters in 3 with X, denoting the upper triangular matrix of X
and diag{X} denoting the diagonal elements of X.

V. SIMULATION

In this section, simulation results are provided to demon-
strate the performance of the proposed MIMO-GLRT detector.
We compare the proposed exact MIMO-GLRT with 1) the
clairvoyant matched filter (denoted as MF1) which is aware
of the target residual and also has perfect knowledge of the
residual covariance matrix X,,; and the disturbance covariance
matrix R,,;, 2) matched filter (denoted as MF2) that ignores
the target residual but assumes the knowledge of R,,;, and 3)
the ad hoc GLRT proposed in [44]. For the local GLRT, we
also include the PMF.

A. Detection Performance of Local GLRT

In the case of M = 1 and N = 1, i.e., mono-static
transceivers, the distributed MIMO-GLRT reduces to the local
GLRT. To evaluate the detection performance, we consider
the same example used in [44]. Specifically, we have K =
16 and the steering vector s is given by the Fourier basis
vector u(f) = [1,e=927f ... =72m(K=DST /\/K with f =
3.8/K, i.e., s = u(3.8/K). The signal-to-noise ratio (SNR)
is defined as

SNR = |a|?’s" R !s, (72)

where the noise covariance matrix R is chosen as [R]y, =
pl!=*l with p = 0.9 [44]. The target residual with r = 3 is
generated by using H = [u(f1), u(f2), u(fs)] with {f;}2_, =
[1/K,2/K,3/K] and the covariance matrix X is chosen as
[2]ex = vp!~"! with p = 0.6, where ~ is properly chosen to
meet the preset covariance mismatch ratio

_ tr{HZH"} + tr{R}  tr{=}
‘= tr{R} ~ w(R}

The performance is evaluated in terms of the receiver operating
characteristic (ROC) by using Monte-Carlo trials.

+1>1. (73)
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Fig. 7. The distributed MIMO radar configuration considered in simulation.

Fig. 5 shows the ROC performance of the proposed detector
with four mismatch ratios. First, the results confirm that, by
exploiting the target residual (i.e., MF1, ad hoc GLRT and
the exact GLRT), the detection performance can be improved.
Specifically, the detection performance of the three detectors
that acknowledging the target residual is better than that of
MF2 which simply ignores the existence of target residual.
Second, larger performance improvement can be achieved if
the target residual component is stronger (i.e., with larger
mismatch ratio). This observation is intuitive as the stronger
the target residual, the larger the separation between the null
and alternative hypotheses and, hence, the better detection
performance. Third, the proposed exact local GLRT obtains
further performance gain over the ad hoc GLRT of [44]. In
fact, the exact GLRT almost achieves the performance of the
clairvoyant MF1 that requires the perfect knowledge of the
residual covariance matrix. Finally, the proposed exact local
GLRT provides improved performance than the projection-
based PMF by a large margin.

B. ML Estimation of Amplitude

Next, we evaluate the ML estimation of the amplitude in
terms of mean-square error (MSE) and compare it with the
CRB derived in Section. IV-F. As shown in (71), the CRB
for amplitude estimation is inversely proportional to the factor
s (HXH” + R)~!s which is used as the SNR here. We
generate the received signal under H; as the same as the
previous section. Fig. 6 shows the MSE computed from 200
Monte-Carlo runs at each SNR and the corresponding CRB
for the amplitude estimation. It is shown that the MSE and
CRB linearly decrease in the dB scale. And the simulated
MSE matches well with the CRB over all considered SNRs.

C. Detection Performance of Distributed MIMO Radar

Next, we consider a scenario of distributed MIMO
configuration. As shown in Fig. 7, the distributed
MIMO radar has four transmitters (blue squares) at

{6}, = (0°,45°,90°,180°) with corresponding distances



o o
© 2 ©
CINRCHIR- P

Probability of detection
o g
N &

o
o
o

o
o

~O MFT (clairvoyant)
~{-+ MF2 (ignore mismatch)
——ad hoc GLRT H
—5— exact-GLRT

il n PR

0.55

05 Ll
10° 102 107! 10°
Probability of false alarm

(a) SINR=0 dB, RINR=-20 dB

K—16 §INR— -10 dB, RINR=-15 dB

‘ eI eEenecevesseas
095 o 9090@‘ & i
<&
08607 i
c
S0.85 -
|53
Q
3 081 -
el
2
S0.75 -
2
So7r -
8
Soss- -
06— —~G- MF1 (clairvoyant)
&+ MF2 (ignore mismatch)
055 —%—ad hoc GLRT H
—5— exact-GLRT
0.5 L ol n n T n PR
10° 1072 107! 10°

Probability of false alarm

(c) SINR=-10 dB, RINR=—15 dB

06~ —~G - MF1 (clairvoyant)
—{- MF2 (ignore mismatch)
——ad hoc GLRT H

—5— exact-GLRT

05 L Lol n L ol n MR

10° 10 107 10°
Probability of false alarm

(b) SINR=0 dB, RINR=-22.5 dB

K=16, SINR=-10 dB, RINR=-20 dB

o

c
kel
©
2
()
el
o
2
3
©
8
Lo, v
06 /Q} —~G - MF1 (clairvoyant)
@ & MF2 (ignore mismatch)
055 & —>ad hoc GLRT H
& —5— exact-GLRT
0.5 L Lol L L LT n MR
10° 1072 10” 10°

Probability of false alarm

(d) SINR=—10 dB, RINR=-20 dB

Fig. 8. ROC curves for various distributed MTD detectors as a function of SINR and RINR. First row: SINR = 0 dB with RINR = {—20, —25} dB; Second

row: SINR = —10 dB with RINR = {—15, —20} dB.

(3,3,5,2.5) km with respect to the target, and two receivers
(red circles) at {0.,}2,_; = (150°,270°,330°) with
respective distances (2,3,2.5) km. Moreover, the pulse
repetition frequency (PRF) is 500 Hz, the carrier frequency
is 1 GHz, and the number of pulses within a CPI is
K = 16. The target (dark hexagram) is located in the center
with a velocity 108 km/h moving toward 30°. The above
parameters lead to a normalized target Doppler frequency
given by (5). For a given (ni)-th Tx-Rx pair, the Doppler
steering vector s(fn;) is given by the Fourier basis vector
u(f) =[1,e927f ... =327(K=DFT /\/K with f given by
(5), while the target residual matrix H,; € CK*(M-1) jg
given as

Hni = [u(fnl); R {u(fnm)}myﬁza T 7u(fn]V[)]

where {fnm }mzi 18 also computed by (5) but with differ-
ent {6;;, 0, }. In addition, the disturbance (interference-plus-
noise) covariance matrix R,,; is given as
’
[an}én = P‘m N‘a
with p,; is chosen to be different for different Tx-Rx pairs,
and the target residual covariance matrix X,; is given as

[Siles = B, (76)

where (,; is chosen to be different for different T-R pairs.
The average signal-to-interference-plus-noise ratio (SINR) is
defined as

(74)

(75)

> Lo 2s(fi) "R S (fi)

SINR = 2 ,

UN amn

and the residual-to-interference-plus-noise ratio (RINR) is
defined as

tr{X,;}
RINR = Z MNtr{Ry}

Fig. 8 shows the ROC performance of the considered
distributed MTD detectors with different SINRs and RINRs.
Fig. 8 a) considers a case of SINR = 0 dB. Since the target
residual may be weak compared with the target signal, we
consider a case of RINR = —20 dB and RINR = —25 dB,
which is 20 dB weaker than the target signal. In fact, consider
K = 16 and the high target velocity, the target residual
may appear to be even smaller than what may be observed
in practice. The results in Fig. 8 a) confirm that, the larger
the target residual, the better the detection performance. At a
probability of false alarm at Py = 0.001, the proposed exact
GLRT can achieve a probability of detection around P; =
95%, while the MF2 detector that ignores the target residual
yields a performance around Py; = 77%. When the target
residual is even weaker, e.g., RINR = —25 dB, it appears
that the exact GLRT detector shows a smaller performance
gain over the MF2, while the clairvoyant MF1 still holds a
reasonable performance margin over the MF2.

Next, we reduce the SINR to SINR = —10 dB. As shown
in Fig. 8 b), with the same RINR of RINR = —-20 dB,
the detection performance is reduced compared with the case
of SINR = 0 dB (comparing red curves in Fig. 8 a) and
Fig. 8 b)). Particularly, the detection performance of the
MF1 is significantly lower and has a detection performance
around P; = 20% when Py = 0.001, while the proposed

(78)
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GLRT detector can still achieve a performance around P; =
75%. By increasing the strength of the target residual to
RINR = —15 dB, the detection performance (blue curves)
of the proposed GLRT detector almost reaches the detection
performance at P; = 100%, while the MF2 achieves a
detection performance around P; = 90% when Py = 0.001.

VI. CONCLUSION

In this paper, we considered moving target detection using
distributed MIMO radars with orthogonal transmitting wave-
forms. Particularly, we took into account target residual terms
in the baseband receiving signal due to imperfect waveform
separation and developed explicit subspace signal models for
the target residual component at local receivers. Depending
on assumptions on the target amplitude over a scan, fluctu-
ating or non-fluctuating, we re-formulated the moving target
detection problem into a binary composite hypothesis testing
in a distributed subspace framework. We paid attention to the
distributed hybrid-order Gaussian model and developed the
exact GLRT framework by finding the maximum likelihood
estimates of the amplitude and residual covariance subspace.
With numerical verification in local and distributed scenarios,
we confirmed the effectiveness of the proposed GLRT and
showed performance gain in terms of ROC by exploiting the
existence of target residual component. Future works may in-
clude analytical performance analysis of the proposed detector
(e.g., probability of false alarm and probability of detection)
and performance validation with more realistic datasets.

APPENDIX
A. Solution to (63)

First, we rewrite (63) as

min |y — a8|”, s.t. [Py (y —ad)|* < 1. (79
And note that g; () = [ly — as||” is optimized at
sy

On the other hand, the constraint set is given by V4, i.e.,
IPa(y — a8)||> < 1 which is centered at . It is easy to
see that both the cost function and constraint are quadratic
function over «. The equivalent unconstrained optimization

Contour of g4(a)

(b) rg, > | — a3

problem via the Lagrange multiplier method is to minimize
the expanded function over o and A

L(a,\) = [ly = a8]* + M(|[Pg(y —a8)|* = 1). 8D
Taking the derivative of £(a, A) over « gives
a=(1-0)a; +0as (82)
where a3 is given in (80),
sHPI;Iy
o] = 7SHPI:IS (83)

given in (46), and the weight 6 is a function of non-negative
A

<H
o— A(S"Pgs)
sHs + \sHPys
It is noted that 0 < 6 < 1 which implies that « is a convex
combination of «; and «3 and is located in between these two

points in the complex-valued domain.
Taking the derivative of (a, A) over A, we have

IPaly — a9l =1

(84)

(85)

which can be rewritten as e|a—aq|?+a/e = 1, where a and e
are defined, respectively, in (48) and (49). Plugging (82) into
the above equation and considering 6 € [0, 1], we have

Ve—a ’,"y
0* =min{ —&—1 :min{l,l}. (86)
lar — o] a1 — ag|

As a result, we can find a closed-form expression for « as

87)

o =(1-0%aq + 0%as.

Geometry Interpretation of o*: It is interesting to interpret
the solution a* in a geometric standpoint; see Fig. 9. First, if
rg, <= |a1 — agl, as shown in Fig. 9 a), it implies that the
global minimizer to ||y — a§||°, i.c., a3, is excluded from the
feasible set which is a disk centered at «; with a radius of
rw,. Since the cost function is a quadratic function over a,
the optimal solution in this case must lie on the boundary of
the feasible set. More precisely, it is located at the intersection
between the line connecting o; and a3 and the boundary of

the feasible set. This can be easily determined as
Ty o] — a3 — Ty

SR TR [y ¥ e

| — as

ag (88)
loaq — as]



which coincides with (87) when rg, <= |a; — ag|.

On the other hand, if ry, > |a; — as|, the case of Fig. 9
b), the global minimizer to ||y — as|%, i.e., as, is within the
feasible set which is a disk centered at «; with a radius of
Tw,. As a result,

o = as, (89)

which also reduces to (87) when ry, > |1 — asl.

B. FIM of Unknown Parameter Estimation under Hy

First, group unknown parameters under H; as
0 = [R{a}, S{a}, diag{3,}, vec{R(Z,) }, vec{S(Xu) }]

with 3, denoting the upper triangular matrix of 3 and
diag{X} denoting the diagonal elements of X. Overall, we
have (2 + 72) real unknown parameters in 6.

Next we derive the Fisher information matrix (FIM) of
the estimate of 6. Note that y ~ CN(as,C) where C =
HXH 41 It is easy to see that the mean o3 is only related
to the target parameter 8; = [R{a}, S{a}]T where R{-} and
${-} denote the real and imaginary parts, respectively, while
the covariance matrix C HXH"” + I is a function of
the parameter set corresponding to the subspace covariance
matrix 0, = [diag{3,}, vec{R(Z,)}, vec{SI(Xy,)}]. As a
result, the FIM on estimating 6 = [0, 8] is block diagonal
[47, Section 3.9], i.e.,

1(6) = {Iet"f

0,22

02 X T2:| (90)

Ig.6,

where 72 is the number of real parameters in X.
The first diagonal FIM block Ig,e, can be computed as

To,0, = 2R {gH(ﬁzﬁH + I)*lé} L. 1)

where I, denotes the identity matrix of dimension 2. For the
other diagonal FIM block Ig_g_, we have the following general
expression [47]

1)) 0x

o.0.),, = tr {01 (Ha[g]HH> o <ﬁa[eS]UﬁH)}
92)

where {u,v} = 1,2,---,r% and [0], denotes the y-th
element of 0. Noticing that X is a Hermitian matrix, i.e.,
> = 2 we have the following intermediate results,

0x ox
=Jiis A = i i
6[2]” 0 [%(E)LJ ’ ’
ox
=V -1J;; —vV-1J
RIS ’ !

where J;; denotes the single-entry matrix that is 1 at the (¢, j)-
th element and zero elsewhere. As a result, we have

. Y - . ..
H—H" =HJ,;H" = h,h?
. o . - - -~
H_———HY = h;h! 4 h;h!
9 [R(2)];; ! !
- o - ..
H HY = /=1(h;h¥ — h;h?
I, (B = Boh)

where h; denotes the i-th column of H. As a result, we have
Iz, (21, = B CTMh?

Iz, sy, =20 { (B C 'R (b C'hfT) |

Lz, om), = — 29 { (B CT'Rf) (B CT'RY) |

L, e, =20 { (B C7'B{)(B C 'R}

+ 2R {(ﬁfc—lﬁf)(ﬁﬁc—lﬁf)}

Lipesy), o2y, = — 29 {(ﬁffc_lﬁﬁ)(ﬁfc_lﬁf)}

~ 93 {(ﬁfc*ﬁ{f)(ﬁ;fc*flﬁ)}

Lo, s, =20 { (B C7 'R (b C 'Rl |

— 2R {(ﬁfc%ﬁ{f)(ﬁfc*ﬁ{f)}

which allows us compute the other diagonal FIM block I g, .
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