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Abstract

We study the problem of reconstructing an object from phaseless measurements in the con-
text of inverse multiple scattering. Our formulation explicitly decouples the variables that
represent the unknown object image and the unknown phase, respectively, in the forward
model. This enables us to simultaneously optimize over both unknowns with appropriate
regularization for each. The resulting optimization problem is nonconvex due to the nonlin-
ear propagation model for multiple scattering and the nonconvex regularization of the phase
variables. Nevertheless, we demonstrate experimentally that we can solve the optimization
problem using a variation of the fast iterative shrinkage-thresholding algorithm (FISTA)—a
convex algorithm, popular for its speed and simplicity—that converges well in our experi-
ments. Numerical results with both simulated and experimentally measured data show that
the proposed method outperforms the state-ofthe-art phaseless inverse scattering method.
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ABSTRACT

We study the problem of reconstructing an object from
phaseless measurements in the context of inverse multiple
scattering. Our formulation explicitly decouples the variables
that represent the unknown object image and the unknown
phase, respectively, in the forward model. This enables us to
simultaneously optimize over both unknowns with appropri-
ate regularization for each. The resulting optimization prob-
lem is nonconvex due to the nonlinear propagation model
for multiple scattering and the nonconvex regularization of
the phase variables. Nevertheless, we demonstrate experi-
mentally that we can solve the optimization problem using
a variation of the fast iterative shrinkage-thresholding algo-
rithm (FISTA)—a convex algorithm, popular for its speed and
simplicity—that converges well in our experiments. Numeri-
cal results with both simulated and experimentally measured
data show that the proposed method outperforms the state-of-
the-art phaseless inverse scattering method.

Index Terms— phaseless inverse scattering, nonconvex
optimization, nonlinear forward model, phase retrieval, total
variation regularization.

1. INTRODUCTION

Inverse scattering problems use the scattered wave measure-
ments from a bounded medium to estimate the spatial profile
of an object. Inverse scattering has several applications, in-
cluding, but not limited to, diffraction tomography, coherence
tomography, digital holography, microscopy and subsurface
radar [1-5]. Most of the traditional methods addressing this
problem have considered linear forward models that enable
an efficient convex formulation of the inverse problem by ne-
glecting multiple scattering. However, these linear models
tend to be highly inaccurate in high contrast settings or when
the object size is large compared to the wavelength of the inci-
dent wave [6, 7]. These observations have sparked interest in
nonlinear formulations that provide a more accurate represen-
tation of the physical setup by modeling multiple scattering
and facilitate imaging in high contrast settings [8,9].

In this context, a very interesting and widely applica-
ble problem is recovery from phaseless measurements, i.e.,
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lacking phase information of the measured scattered wave.
Thanks to recent advances in the phase retrieval literature,
this problem has gained renewed attention and importance.
Imaging with phaseless measurements occurs in and has
been explored in a variety of applications, including Fourier
ptychographic microscopy [10-12], and optical diffraction
tomography [13—15], among others [16-19]. The common
approach in all those applications is alternating minimization,
i.e., methods that alternates between phase estimation (using
phase retrieval techniques) and the inversion problem (based
on the estimated phase). This is the most popular approach in
practical problems.

There exist other phase retrieval approaches, not based
on alternating minimization, that are less effective in prac-
tice. For example, Wirtinger Flow [20] and PhaseMax [21]
exploit a good initialization or initial guess to determine a so-
lution. They enjoy performance guarantees when the forward
model operator is a matrix with independent and identically
distributed (i.i.d.) Gaussian entries. However, their empiri-
cal performance for the inverse scattering problem, where the
forward model is nonlinear and structured, is poor in our ex-
periments. Alternatively, PhaseLift [22, 23] performs phase
retrieval in a lifted higher dimensional space, where the re-
sulting optimization problem is convex if the forward model
operator is linear. Theoretical performance guarantees for
PhaseLift have been provided when the forward model ma-
trix is i.i.d. Gaussian [22] or discrete Fourier transform (DFT)
with random masks [23]. While we had some limited success
with PhaseLift in our experiments for inverse scattering prob-
lems, the computational cost is high and makes image priors
difficult to impose in the lifted space.

In this paper, we propose a new formulation of the non-
linear forward model for inverse scattering in the presence
of phaseless measurements. Our formulation decouples the
unknown object and the unknown phase. The decoupling
allows us to design an accelerated proximal gradient opti-
mization procedure, which resembles fast iterative shrinkage-
thresholding algorithm (FISTA) [24], to jointly optimize over
both unknowns. This is in contrast to most existing tech-
niques that are based on alternating minimization. One ad-
vantage of the joint optimization scheme over the alternating
minimization scheme that we have observed in our experi-
ments is that the convergence and reconstruction quality of
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Fig. 1: Imaging setup for phaseless inverse scattering.

the joint optimization scheme is less sensitive to optimization
parameters, and consequently less manual tuning is required.
Moreover, we solve the problem directly in the image space
(as opposed to a lifted space), which circumvents the prob-
lem of high computational cost and allows us to conveniently
incorporate image priors.

The rest of the paper is organized as follows. In the next
section we describe the phaseless inverse scattering problem
and our proposed formulation. Section 3 details our proposed
joint recovery algorithm PISTA. In Section 4 we validate the
performance of our method on both simulated and real data.
We discuss our results and conclude in Section 5.

2. PROBLEM FORMULATION

We consider the imaging setup in Fig. 1, where an object of
spatial permittivity profile e(x) is imaged in a bounded do-
main €. Here, x € R? represents the spatial coordinates
in the ambient space. We denote the field due to the inci-
dent wave illuminating the object using u;,(x) and the field
due to the scattered wave, also measured by the sensors po-
sitioned outside the bounded domain, as wus.(x). The total
field w that exists in the medium is the sum of the two fields:
u(x) = uin(x) + usc(x). Moreover, the total field can be
related to the incident field and the scattering object through
the scalar Lippmann-Schwinger equation [6] as:
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where f(x) = k2(e(x) — ;) represents the scattering po-
tential, €, denotes the permittivity of the background and
k = 2x/)\ is the wavenumber in vacuum. Moreover,

g(x) = %H(()l)(kaxH) is the free-space Green’s function

in 2D, with H(gl) representing the zero-order Hankel function
of the first kind, k;, = k,/€, representing the background
wavenumber, and || - || denoting the Euclidean norm.
The (ideal) discretized system for our setup can be ex-
pressed as:
y = Hdiag(u)f o
u = u;, + Gdiag(f)u,

where f € RN, u € CV, and u;,, € CV are samples of
f(x), u(x) and u;,(x), respectively, obtained at N equis-
paced points in the domain . Moreover, diag(f) represents a
diagonal matrix with f on its main diagonal, and y € CM rep-
resents the scattered wave observed in the sensor domain I'.
The matrix H € CM*¥ in (1) is a mapping from the image
domain to the sensor domain, as defined by discretizing the
continuous Green’s function g(x —x’) forx € I'and x’ € Q.
Similarly, the matrix G € CN*¥ is the mapping within the
image domain, as defined by discretizing the Green’s function
g(x —x') forx,x’ € Q.

If the measurement system is phaseless, only the magni-
tude of the scattered wave is recorded. Thus, the acquired
data (in the absence of noise) can be expressed using (1) as:

y = |Hdiag(u)f] @

u = u;, + Gdiag(f)u,
where y € Rg’o represents the magnitude of the scattered
wave y observed in the sensor domain I'. We model the un-
known phase of the scattered wave through a complex phase-
only vector p € CM,ie.,y = y ® p, where ® denotes
element-wise product. Thus, phaseless observations satisfy
y © p = Hdiag(f)u. In the presence of noise, (2) can be
expressed as:

diag(y)p = Hdiag(u)f + e 3

u = u;, + Gdiag(f)u, ©)

where e € CM represents the noise. Our main objective is

to estimate the unknown object f and the unknown phase p

given the phaseless observations y and the incident wave u;,,,

under the constraints that f is piecewise constant and that p is
a phase-only vector.

The reformulated model in (3) is nonlinear due to the in-
terdependence of the permittivity contrast f and the total field
u. However, if the total field u is known, the problem be-
comes linear because our formulation decouples the unknown
phase p from the unknown image x. In contrast, existing
formulations maintain a multiplicative coupling between the
unknown phase and the recovered image, necessitating either
lifting the problem to a higher dimensional space to convexify
it [22] or using alternating minimization to solve the noncon-
vex formulation [15]. Both approaches have their limitations,
as we mentioned in Section 1.



3. PHASELESS RECONSTRUCTION ALGORITHM

By rearranging, we can express (3) as:

[diag(y), — Hdiag(u)] m =e 4)
[I — Gdiag(f)]u = u;p, 5)

The unknown p and f in (4) lie in the null space of the matrix
[diag(y), —Hdiag(u)], which might not be unique. It also in-
cludes the trivial all-zero solution. Although the constraint (5)
on the total field reduces the size of the solution space, we
need to introduce more constraints in order to further resolve
the ambiguity. We first observe that the object permittivity
contrast is typically piecewise constant in spatial coordinates
and that it only takes non-negative values. We impose this
model using total variation (TV)-based regularization and a
non-negativity constraint. We also observe that through our
formulation, we assume p to be a phase-only complex vec-
tor with unit entrywise magnitudes such that |p;| = 1 for
1=1,..., M.

With these additional priors and constraints, phaseless in-
verse scattering requires solving the following optimization:
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where TV(f) = Zf:’:l V/|D1f|? + |D2f|? denotes TV reg-
ularization, D; represents the discrete difference operator in
the i-th spatial dimension, and ) is a regularization parameter.

The objective function in (6) consists of a smooth data
fidelity term and a non-smooth regularization term. Objective
functions of this kind are well suited for accelerated proximal
gradient methods like FISTA [24]. Additionally, since the
gradient of the objective depends on one of the constraints, it
can be efficiently computed via the adjoint-state method. To
solve (6), we propose Algorithm 1, which we call Phaseless
Iterative Shrinkage-Thresholding Algorithm (PISTA).

In the algorithm, « represents the step size and Pry,x,(.)>0
denotes the proximal mapping for TV regularization with

ding(y). — Hang(w)] |?]
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non-negativity constraints, which admits efficient solutions [25].

Similarly, P|.|—; denotes the nonconvex proximal mapping
onto the surface of the M-dimensional complex sphere, ob-
tained by scaling each complex entry of a vector to have unit
magnitude. Finally, V¢(f, p) and V(f, p) denote the com-
ponents associated with f and p, respectively, of the gradient
V(f, p) of the smooth data fidelity term. The explicit expres-
sion for the overall gradient can be found in the following
proposition:

Proposition 1. The p and f components of the gradient of the
data fidelity term in (6) is equal to:

Vp(f,p) = —diag(y)"r, @)

Algorithm 1: PISTA — Phaseless Iterative Shrinkage-
Thresholding Algorithm
Data: y, H,G,a,A
q=f =081 =po=1;
while stopping criteria do
k=k+1;
£ = Prva,()>o(qk — aVe(aqr, sk));
Pr = Ppj=1(sk — aVp(qk,sk));

144/14+487
lht1 = —5 3
Qi1 = B + P (B — fi)s
Sk+1 = Pr + tt’;;l (Pr — Pr-1);
end
Result: f),/f
and
Ve(f, p) = diag(w)” (Hr + G"'w), ®)

respectively, where r = [Hdiag(u)f — diag(y)p] is the resid-
ual vector, A = I — Gdiag(f), and u and w are found as
solutions of the following linear systems:

Au=u;, , Aflw= diag(f)HHr. 9)

Proof. The gradient of the data term with respect to p can
be found trivially through matrix derivatives. The derivative
with respect to f is equal to

1
v [2

where J¢ denotes the Jacobian with respect to f, equal to

(ing(y). ~Fratag(w)] 7 2

] =Jf'r,  (10)
2

d
J¢ = — (Hdiag(u)f). (11)
df
Using differentials, this derivative can be determined as:
d(Hdiag(u)f) = Hdiag(u)df + Hd(diag(u))f
= Hdiag(u)df + Hdiag(f)du, (12)

where we used the fact that u is a function of f and that
when taking the differential with respect to only u we have
d(diag(u))f = d(diag(u)f) = d(diag(f)u) = diag(f)du.
Moreover, with u = A~'u;,,, we can express the differential
of u as:

du=—-A"'dAAtu;, = —A"1dA u. (13)
Finally, the differential of A, is equal to
dA = d(I — Gdiag(f)) = —Gd(diag(f)). (14)

Therefore, dAu = —Gd(diag(f))u = —Gdiag(u)df. Us-
ing all of the differentials, we can express the Jacobian as:

J; = Hdiag(u) + Hdiag(f) A~ Gdiag(u). (15)
Finally, combining (15) with (10) we derive (8). |



Fig. 2: Comparison of PISTA (center) with ADMM (right)
for a simulated objects (left) of different contrast.

Fig. 3: Comparison of PISTA (center) with ADMM (right)

for FoamDielExtTM (left) when using single (top row) and
multiple (bottom row) frequencies

4. NUMERICAL EXPERIMENTS

To validate our approach, we perform numerical experiments
with both simulated and real data. Comparison with the state-
of-the-art ADMM based technique for phaseless inverse scat-
tering [15] is provided. The optimization parameters for all
methods were manually tuned for optimal performance. The
target scene for ADMM is always initialized to all ones, as
suggested in [15]. For PISTA, the same initialization can be
used but faster convergence is observed empirically for an ini-
tialization of all zeros. Additionally, phase estimate of PISTA
is also initialized to all ones, i.e., no complex phase.

4.1. Simulated data

In our first set of experiments, we simulated an object of phys-
ical size 15cm x 15cm with two cylinders of different permit-
tivity values. The imaging system comprised of 24 transmit-
ters and 36 receivers, uniformly placed in a circle of radius
1.67m around the object, as shown in Fig. 1. The pixel size
was set to 0.4688cm. In the first experiment, the permittiv-
ity contrast values of the two cylinders were 2 and 0.45, re-
spectively, and we illuminated the scene with light containing

multiple frequencies of wavelengths A = 6¢cm, 7.5cm, 10cm,
15c¢m, and 30cm. In the second experiment, the permittivity
contrast values of the two cylinders were 10 and 5, respec-
tively, and a single wavelength A\ = 30cm was used. Finally,
we simulate our synthetic experiments in the absence of noise.

The top row of Fig. 2 shows the results of our first ex-
periment, where the maximum permittivity contrast is 2. In
this moderate contrast scenario, PISTA and ADMM have ob-
tained similar performance. The bottom row of Fig. 2 shows
the results of our second experiments, where the maximum
permittivity contrast is 10. We notice that PISTA visibly out-
performs ADMM in this high contrast scenario.

4.2. Real data

In the second set of experiments, we use the the Fres-
nel Institute public dataset [26], and reconstruct the object
FoamDielExtTM. In this experiment, eight transmitters and
360 receivers are placed uniformly in a circle of radius 1.67m
around the origin. Transmitters are turned on, one at a time,
and data from only 241 receivers are used. The remaining
119 receivers closest to the transmitter are kept inactive. We
consider a region of 15cm x 15cm containing the object,
and reconstruct the image using both multiple and single
frequencies. In both cases we use a pixel size of 0.4688cm.
Fig. 3 displays the ground truth and the reconstructed images
for PISTA and ADMM for single frequency of wavelength
A =10cm (top row) and for multiple frequencies of wave-
lengths A =5cm, 6cm, 7.5cm, 10cm, and 15cm. For both
setups, we can see that PISTA results in better reconstruc-
tions than ADMM.

5. CONCLUSION

In this paper we reformulated the forward model for nonlin-
ear phaseless inverse scattering. This reformulation decou-
ples the two unknowns, namely the object to be recovered and
the unknown phase, which are multiplicatively coupled in ear-
lier approaches. Because of this coupling, existing strategies
either use alternating minimization, which is very sensitive to
noise and parameter tuning, or lift the problem to a higher di-
mension, which has impractically large computational costs.
In contrast, decoupling the variables allows us to simultane-
ously optimize over both unknowns efficiently, without lift-
ing. The proposed framework is general and can be used to
address other similar problems in phase retrieval.

Of course, this formulation raises a number of open the-
oretical and practical questions. For example, the problem is
nonconvex, lacking global convergence guarantees, and mak-
ing local guarantees more difficult to derive. However, the
decoupling of the unknowns seems to behave better in prac-
tice than alternating minimization. In addition, the non-linear
effects of the multiple scattering problem makes sample com-
plexity bounds more difficult to obtain.
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