
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Motion-Planning for Unicycles using the Invariant-Set
Motion-Planner

Danielson, Claus; Berntorp, Karl; Di Cairano, Stefano; Weiss, Avishai

TR2020-089 July 01, 2020

Abstract
This paper adapts the invariant-set motion-planner to systems with unicycle-like dynam-
ics. The invariant-set motion-planner is a motion-planning algorithm that uses the positive-
invariant sets of the closed-loop dynamics to find a collision-free path to a desired target
through an obstacle filled environment. The main challenge in applying the invariant-set
motion-planner to unicycles is that the positive invariant sets of the unicycle under discon-
tinuous feedback control have complex geometry. Thus, we develop numerically efficient
mathematical tools for detecting collisions. We demonstrate the invariant-set motion-planner
for unicycles in an automated perpendicular parking case study.

American Control Conference (ACC) 2020

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Motion-Planning for Unicycles using the Invariant-Set
Motion-Planner

Claus Danielson, Karl Berntorp, Stefano Di Cairano, Avishai Weiss

Abstract—This paper adapts the invariant-set motion-planner to sys-
tems with unicycle-like dynamics. The invariant-set motion-planner is
a motion-planning algorithm that uses the positive-invariant sets of the
closed-loop dynamics to find a collision-free path to a desired target
through an obstacle filled environment. The main challenge in applying
the invariant-set motion-planner to unicycles is that the positive invariant
sets of the unicycle under discontinuous feedback control have complex
geometry. Thus, we develop numerically efficient mathematical tools for
detecting collisions. We demonstrate the invariant-set motion-planner for
unicycles in an automated perpendicular parking case study.

I. INTRODUCTION

The invariant-set motion-planner (ISMP) is an algorithm for gener-
ating dynamically feasible trajectories from an initial state to a target
state through an obstacle-filled environment [1]–[6]. Like many other
motion-planning algorithms, the ISMP abstracts the motion-planning
problem as a graph search. The defining feature of the ISMP is that
knowledge of the closed-loop system dynamics is incorporated into
the search graph using obstacle-free positive invariant (PI) sets. These
sets describe regions of the state-space where the system can safely
track the corresponding references. Thus, the ISMP can safely omit
collision checks for the fine-scale trajectories of the system inside
these sets. The coarse motion of the system is bisimulated by the
edges of the graph, which indicate that the system will enter another
safe set without leaving the current safe set. Thus, the ISMP finds
a corridor of safe sets that safely guides the system through the
obstacle filled environment to the target state, eliminating the need
for expensive collision checks.

The ISMP has several advantageous properties. It allows for ag-
gressive but safe maneuvers since the system state will never leave
the safe PI sets by construction. It is inherently robust since it
incorporates feedback into the design and the PI sets provide a natural
buffer that can absorb tracking errors due to model uncertainty and
disturbances [6]. It does not require dense sampling since the PI sets
can cover large volumes of the state/output-space. It reduces the
curse-of-dimensionality by sampling from the output-space instead
of the state-space (although for the unicycle considered in this paper
the state-space and output-space are identical). It typically has low
online computational costs since the PI sets can be pre-computed as
they only depend on the time-invariatn closed-loop dynamics, rather
than the time varying environment.

This paper applies the ISMP to systems with unicycle dynamics.
The unicycle model is a kinematic vehicle model widely used to
describe the behavior of mobile robots and other non-holonomic
vehicles. We exploit Lyapunov-based controllers for unicycles [7]–
[11], since the level-sets of their Lyaponov functions are PI sets
that can be used by the ISMP. It is well known that the unicycle
cannot be stabilized by smooth state-feedback in the Cartesian state-
space [12]. Thus, unicycle controllers typically exploit the polar
state-space representation of the dynamics [7]–[11]. The nonlinear
and discontinuous transformations between the Cartesian and polar
state-spaces are the source of the main challenge for implementing
the ISMP for unicycles. To avoid obstacles, the level-sets of the

Lyapunov function must be transformed into the Cartesian state-
space in which the obstacles are described. Although the level-sets of
the Lyapunov functions have beneficial geometry in the polar state-
space, in the Cartesian state-space they are non-convex and scale
nonlinearly with the parameters of the Lyapunov function. Thus, this
paper derives numerically efficient methods for detecting whether
these PI sets collide with obstacles. Furthermore, we provide methods
for selecting the parameters of the PI sets to expand their volume
while guaranteeing safety.

Motion-planning is a well studied area. One popular class of path-
planners is sampling-based algorithms. Rapidly-exploring random
trees (RRT) abstract the motion-planning problem as a graph search,
where the graph vertices are points sampled from the obstacle-free
region and the graph edges indicate collision-free geometric paths
connecting these vertices [13]–[15]. Kinodynamic RRT [13], [14] and
closed-loop RRT [16] are variants of RRT that construct the search
graph edges by sampling control inputs and references, respectively,
and then simulating the resulting motion of the system over a finite-
time horizon. By construction, this produces dynamically feasible
trajectories, provided that the model used in the simulations is correct
and there are no disturbances. The works [6], [17]–[19] consider
sampling-based motion-planning under uncertainty.

Recently, set-based motion-planning algorithms have been growing
in popularity [20]–[26]. Like sampling-based algorithms, set-based
algorithms abstract the motion-planning problem as a graph search.
However, set-based algorithms sample subsets of the state-space or
output-space, rather than just points. For the invariant-set motion-
planners [1]–[6], the vertices of the graph index equilibrium states
as well as a surrounding obstacle-free positive-invariant subset of the
state-space, in which the closed-loop system is guaranteed to avoid
collisions, i.e., the sampled set is safe. The edges indicate that it is
possible to enter another safe-set without leaving the current safe-set.
A similar concept is reachable-set based verification methods [20]–
[22] in which an edge of the search graph indicates that the target
vertex lies in an obstacle-free reachable-set of the current vertex.
LQR-trees [23]–[26] is another example of set-based motion-planners.
In [26] an edge is added to the search graph if a two-point boundary
value problem can be solved to find a trajectory connecting a pair
of vertices and a sum-of-squares program can be solved to find a
full-dimensional invariant set around this trajectory. Model predictive
control has also been used for motion-planning [27]–[29], but has
high computational cost and lacks convergence guarantees due its
formulation as a non-convex optimization problem.

This paper is organized as follows. In Section II, we define the
motion-planning problem and briefly summarize the ISMP algorithm.
In Section III, we adapt the ISMP to systems with unicycle dynamics.
More specifically, in Section III-A, we present the closed-loop model
of the unicycle dynamics. In Section III-B, we provide a numerically
efficient method for performing collision checks. In Section III-C,
we describe how to select the parameter of the PI sets to expand
their volume while maintaining safety. In Section III-D, we describe
how to connect the PI sets to form the edges of the search graph.

Finally, in Section IV, we demonstrate the ISMP for unicycles in a
perpendicular parking case study.

Notation: Consider an autonomous dynamic system ẋ=f(x). The
notation x(t) → x̄ is shorthand for limt→∞ x(t) = x̄. A set O is
positive invariant if x(t0) ∈ O implies x(t) ∈ O for all t > t0.
A (global) Lyapunov function V (x) is a scalar continuously differ-
entiable positive definite function that satisfies ∇V (x)ᵀf(x) < 0
for all x 6= 0. Level-sets {x : V (x) ≤ l} of Lyapunov functions
are positive invariant. S1 and SE(2) = R2×S1 denote the groups of
planar rotations and planar translations and rotations, respectively (or,
with a minor abuse of terminology, any isomorphic groups). The cone
of a set S is defined as cone(S) =

{
[xy] : x ∈ yS, y ≥ 0

}
. The dual

of S is defined as S◦ =
{

(a, b) : ax + by ≤ 0, ∀ [xy] ∈ cone(S)
}

.
A directed graph G=(I, E) is a set of vertices I together with a set
of ordered pairs E ⊆ I × I called edges. Vertices i, j∈I are called
adjacent if (i, j) ∈ E is an edge. A path is a sequence of adjacent
vertices. A graph search is an algorithm for finding a path through a
graph. The planar rotation matrix is defined as

R(ψ) =
[

cosψ − sinψ
sinψ cosψ

]
.

II. BACKGROUND: INVARIANT-SET MOTION-PLANNER

This paper applies the ISMP to systems with unicycle dynamics.
In this section, we define the motion-planning problem for a generic
nonlinear system and summarize the ISMP [1]–[6] used to solve this
problem. In the next section, we will adapt the generic ISMP for the
unicycle.

A. Motion-Planning Problem

The objective of the motion-planning problem is to plan the
trajectory s(t) of a dynamic system from an initial state s(0) = s0 to
a target state s∞ while the position p(t) = Cs(t) avoids p(t) 6∈ Bk
obstacles {Bk}k∈K in the environment ⊂ Rnp . The trajetory s(t) is
produced by providing a sequence {s̄i}Ni=1 of intermediate references
s̄i ∈ Rnp , called a path, to a generic closed-loop nonlinear system

ṡ(t)=f(s(t), s̄(t)) (1a)

p(t)=Cs(t) (1b)

where the position p(t) = Cs(t) of the system is a linear function
of its state s(t). We assume that the closed-loop system (1) asymp-
totically tracks s(t) → s̄(t) = s̄i constant reference s̄(t) = s̄i i.e.
it is asymptotically stable with unitary dc-gain from the reference to
the steady-state state.

The motion-planning problem is stated formally below.

Problem 1 (Motion-Planning). Construct a path {s̄i}Ni=1 such that
the resulting trajectory s(t) of the closed-loop system (1) avoids
obstacles p(t) 6∈ Bk for all k ∈ K and reaches the target state
s(t)→ s̄∞.

B. Invariant-Set Motion-Planner

The ISMP described by Algorithm 1 can solve Problem 1. The
ISMP abstracts motion-planning as the search for a path {σi}Ni=0 ∈ I
through a graph G = (I, E). The vertices i ∈ I of the graph G =
(I, E) index reference states s̄i that can be tracked by the closed-loop
system (1) where the initial s̄σ0 = s(0) and target s̄σN = s̄∞ states
are included σ0, σN ∈ I.

The defining feature of the ISMP is that knowledge of the closed-
loop system (1) is incorporated into the graph G using PI sets.
Associated with each vertex i∈I is an obstacle-free PI set Oi. Each
set Oi is safe since it is obstacle-free COi ∩ Bk = ∅. Furthermore,
since the set Oi is positive invariant, we know that the closed-loop

Algorithm 1 Invariant-Set Motion-Planner

1: use search graph G = (I, E) to find path {s̄σ0 , . . . , s̄σN } from
s̄σ0 = s(0) to s̄σN = s̄∞

2: set k ← 0
3: repeat
4: if s(t) ∈ Oσk+1 then
5: k ← k + 1
6: end if
7: track current target state s̄(t) = s̄σk
8: until s(t) = s̄∞

system (1) will remain inside this safe set s(t) ∈ Oi as long as it
is tracking the i-th reference s̄i. The edges (i, j) ∈ E of the graph
G = (I, E) indicate that the system (1) will enter the j-th safe-set
Oj while tracking the i-th vertex without leaving the current safe-set
Oi. Thus, the ISMP avoids obstacles by moving the system through
a corridor of safe-sets Oσi for {σi}Ni=0.

This paper applies the ISMP (Algorithm 1) to systems with unicycle
dynamics. The main challenges is that the PI sets Oi of the unicycle
have complex geometry. Thus, we develop numerically efficient
mathematical tools for finding large regions Oi of the state-space
that are verifiably safe COi ∩ Bk = ∅ for each obstacle k ∈ K.

III. INVARIANT-SET MOTION-PLANNER FOR A UNICYCLE

In this section, we adapt the ISMP (Algorithm 1) for systems with
unicycle dynamics.

A. Closed-Loop Unicycle Dynamics

The open-loop dynamics of a unicycle are modeled by the follow-
ing nonlinear system [12]

ẋ(t) = v(t) cos(ψ(t)) (2a)

ẏ(t) = v(t) sin(ψ(t)) (2b)

ψ̇(t) = ω(t) (2c)

where the state s = (x, y, ψ) ∈ SE(2) is comprised of the Cartesian-
position p = (x, y) ∈ R2 and orientation (yaw) ψ ∈ S1 of the
unicycle. The position p = (x, y) ∈ R2 and state s = (x, y, ψ) ∈
SE(2) are related p = Cs by the matrix C = [1 0 0

0 1 0]. The control
inputs are the velocity v ∈ R and yaw-rate ω ∈ R.

Given a reference position (x̄i, ȳi) and orientation ψ̄i, the unicycle
dynamics (2) can also be expressed in the polar state-space

ṙi(t) = −v(t) cosαi(t) (3a)

θ̇i(t) = −v(t) sinαi(t)
r(t)

(3b)

α̇i(t) = ω(t) + v(t) sinαi(t)
ri(t)

(3c)

where ri ∈ R and θi ∈ S1 are the magnitude and angle, respectively,
of the position error (x− x̄i, y− ȳi) and αi = ψ−ψ̄i−θi ∈ S1 is
the heading angle error. The polar-state (ri, θi, αi) is defined by the
following nonlinear, discontinuous coordinate transformation

ri =
√

(x−x̄i)2 + (y−ȳi)2 (4a)

θi = arctan(y−ȳi, x−x̄i)− ψ̄i (4b)

αi = ψ − arctan(y−ȳi, x−x̄i) (4c)

where the range of the two-argument arc-tangent is (−π, π].

The Cartesian-state (x, y, ψ) can be recovered using the inverse of
the transformation (4),

x = x̄i + ri cos(ψ̄i+θi) (5a)

y = ȳi + ri sin(ψ̄i+θi) (5b)

ψ = ψ̄i + θi + αi. (5c)

The following controller from the literature [8] can be used to drive
the unicycle (2) to the reference (x̄i, ȳi, ψ̄i)

v(t) = krri(t) cosαi(t) (6a)

ω(t) =−kααi(t)−kr
sinαi(t) cosαi(t)

αi(t)
(αi(t)−θi(t)) (6b)

where the gains kr ∈ R+ and kα ∈ R+ tune the relative convergence
rates of the magnitude of the position error (4a) and heading angle
error (4c). The angle of the position error (4b) is irrelevant when
the position error magnitude (4a) and heading angle error (4c) are
zero. The unicycle moves in reverse v < 0 when the target is behind
|α| > π

2
.

The following proposition shows that the controller (6) will drive(
x(t), y(t), ψ(t)

)
→ (x̄i, ȳi, ψ̄i) the unicycle (3) to any desired

reference (x̄i, ȳi, ψ̄i) from any initial condition
(
x(0), y(0), ψ(0)

)
.

Proposition 1. The controller (6) asymptotically stabilizes the state
(x̄i, ȳi, ψ̄i) for the unicycle (3).

Proof Sketch from [8]. The stability of the origin (ri, θi, αi) =
(0, 0, 0) under these closed-loop dynamics (3) and (6) can be verified
using the Lyapunov function

V
(
ri, θi, αi

)
=

(
ri
pr

)2

+

(
θi
pθ

)2

+

(
αi
pθ

)2

(7)

for any pr, pθ > 0. Asymptotic stability can be proven us-
ing LaSalle’s invariance principle. Thus,

(
x(t), y(t), ψ(t)

)
→

(x̄i, ȳi, ψ̄i) since the origin (ri, θi, αi) = (0, 0, 0) of the polar state-
space (4) corresponds to the reference state (x̄i, ȳi, ψ̄i) in Cartesian
state-space.

A sketch of the proof of Proposition 1 was included since the
Lyapunov function (7) is used throughout the paper.

This paper considers the motion-planning (Problem 1) for the non-
linear system (1) comprised of the unicycle (3) in closed-loop with
the controller (6). The obstacles {Bk}k∈K are modeled by subsets
Bk ⊂ R2 of the Cartesian-plane R2 through which the unicycle
moves. The objective of the unicycle motion-planning problem is to
construct a path {(x̄σ, ȳσ, ψ̄σ)}Nσ=0 that safely guides the closed-loop
unicycle (3) and (6) from the initial state

(
x(0), y(0), ψ(0)

)
to the

target state (x̄∞, ȳ∞, ψ̄∞) while avoiding obstacles
(
x(t), y(t)

)
6∈

Bk. For now, we will model the unicycle as a point and later we will
consider when the unicycle has a rectangular shape.

B. Collision-free Invariant-Sets

In this section, we describe regions Oi ⊂ SE(2) of the state-space
SE(2) in which the closed-loop system (3) and (6) can safely track
the i-th reference (x̄i, ȳi, ψ̄i) without colliding with any obstacles
Bk for k ∈ K. Since finding the largest PI set Oi is a non-convex
problem, we focus on finding a computationally tractable, rather than
optimal, method for computing the PI sets Oi.

The following proposition characterizes the PI sets of the closed-
loop system (3) and (6).

Proposition 2. The set

Oi =

[
R(ψ̄i) 0

0 1

]
O0 +

[
x̄i
ȳi
ψ̄i

]
(8)

is a PI set for the closed-loop unicycle (3) and (6) where s̄ =
(x̄i, ȳi, ψ̄i) ∈ SE(2) and O0 ∈ SE(2) is the PI set (8) corresponding
to the origin (x̄, ȳ, ψ̄) = (0, 0, 0)

O0 =


r cos θ
r sin θ
θ+α

 :
r2
i

p2
r

+
θ2
i

p2
θ

+
α2
i

p2
θ

≤ `2
 . (9)

Proposition 2 says that the PI set corresponding to the i-th reference
(x̄i, ȳi, ψ̄i) can be obtained by rotating and translating (8) the base
PI set O0 corresponding to the origin (x̄, ȳ, ψ̄) = (0, 0, 0). The
parameters pr, pθ, ` > 0 can be chosen to shape the base invariant-set
O0(pr, pθ, `), and thus any other PI sets Oi.

Since the controller (6) will keep the unicycle (3) inside the PI

set (8), we can prevent collisions by ensuring that the PI set does not
intersect an obstacle. More precisely, the projection COi ⊂ R2 of
the PI set Oi ⊂ SE(2) onto the Cartesian-plane R2 does not intersect
COi ∩ Bk = ∅ any obstacles Bk ⊂ R2.

Fig. 1 shows the projection CO0 ⊂ R2 of the origin PI set (9)
with parameters pr = 1 and pθ = π

4
. The parameter pr = 1 means

that the level-sets have length ` i.e. |x| ≤ `. For `=1, the parameter
pr determines the length of the set O0 i.e. |x| = r ≤ pr for θ = 0.
The parameter pθ determines the angle the set makes near the origin
r ≈0. Increasing the scaling `>1 increases the length and angle of
the set.

Fig. 1: Projection CO0 ⊂ R2 of the PI set O0 ⊂ SE(2) for different
levels ` > 0.

The non-convexity of the projected PI sets COi complicates the
collision checking COi ∩ Bk = ∅. To remedy this issue, we outer-
approximate the set COi using a convex set. The following propo-
sition outer-approximates the projected PI set COi by a rectangle.

Proposition 3. The PI set (8) satisfies

COi ⊂ R(ψ̄i)R+
[
x̄i
ȳi

]
(10)

where R ⊂ R2 is a rectangle defined by

R =

{[
x
y

]
:
|x| ≤pr`
|y| ≤ 1

2
prpθ`

2

}
. (11)

Proposition 3 says that we can approximate the projected PI sets
COi by translating and rotating (10) a rectangle (11), which is
parametrized by the parameters pr , pθ , ` of the Lyapunov func-
tion (7). Thus, we can efficiently (but conservatively) guarantee

that there are no collisions COi ∩ Bk = ∅ by checking whether
the obstacles Bk intersect R(x̄i, ȳi, ψ̄i) ∩ Bk = ∅ a rectangle
R(x̄i, ȳi, ψ̄i)=R(ψ̄i)R+

[
x̄i
ȳi

]
.

C. Scaling the Invariant-Sets

Next, we consider how to select the parameters pr , pθ , ` of the
invariant-sets (8) to increase their volume, while still ensuring that
they are collision-free. There are several advantages to having large PI

sets. Larger PI sets cover more of the state-space SE(2) meaning that
the search graph G = (I, E) needs fewer vertices |I| to find a path
to the target (x̄∞, ȳ∞, ψ̄∞). Furthermore, the controller (6) is more
aggressive inside larger PI set Oi, which means that the unicycle will
reach the target (x̄∞, ȳ∞, ψ̄∞) more quickly.

Previously [1]–[6], the PI sets were scaled by taking different
level-sets of the Lyapunov function. However, the PI sets (8) for
the unicycle scale nonlinearly with the level ` of the Lyapunov
function (7) i.e. different level-sets of the Lyapunov function (7) not
only have different sizes, but also different shapes, see Fig. 1. This
nonlinear scaling is also reflected in Proposition 3. The length pr`
of the rectangle (11) grows linearly with the level `, while the width
1
2
prpθ`

2 grows quadratically. Thus, for the unicycle we fix the level
` = 1 and scale the PI sets (8) using the parameter pr > 0 which
effects both the length and width linearly. The choice of pθ > 0 is
discussed later in this section.

The following theorem shows that the maximum scaling pr can be
determined by solving a convex optimization problem.

Theorem 1. Let the obstacle Bk ⊂ R2 be convex. The PI set (8)
corresponding to the i-th reference (x̄i, ȳi, ψ̄i) does not intersect
COi ∩ Bk=∅ the obstacle Bk if

prik ≤ max
a,b

axx̄i + ay ȳi − b (12a)

s.t. (a, b) ∈ B◦k (12b)∥∥∥∥[1 0
0 pθ/2

]
R(−ψ̄i)a

∥∥∥∥
1

= 1 (12c)

where pθ is fixed, B◦k is the dual of the set Bk, and ‖ · ‖1 is the
1-norm.

Proof. The largest safe scaling pr of the rectangle R(pr, pθ) would
be the solution of

max pr

s.t.
(
R(ψ̄i)R(pr, pθ)+

[
x̄i
ȳi

])
∩ Bk=∅

where pθ > 0 is fixed and COi ⊂ R(ψ̄i)R(pr, pθ)+
[
x̄i
ȳi

]
according

to Proposition 3. Since the rectangle (11) and obstacles Bk are both
convex, the optimization problem above is equivalent to finding a
separating hyper-plane for the sets R(pr, pθ) and Bk

max pr

s.t. Bk ⊆ H(a, b)

R(ψ̄i)R(pr, pθ)+
[
x̄i
ȳi

]
⊆ Hc(a, b)

where Hc(a, b) = {(x, y) : axx + ayy > b} is the complement of
the half-space H(a, b) = {(x, y) : axx + ayy ≤ b}. Note that the
condition Bk ⊆ H(a, b) is equivalent to (12b).

By convexity, R(ψ̄i)R(pr, pθ)+
[
x̄i
ȳi

]
⊆ Hc(a, b) holds if and only

if it holds at each of the vertices of the rectangle (11)

a

([
x̄i
ȳi

]
+R(ψ̄i)

[
±1
± pθ

2

]
pr

)
≥ b.

Rearranging terms yields

axx̄i + ay ȳi − b ≥ aR(ψ̄i)

[
1 0
0 pθ/2

] [
±1
±1

]
pr

which must hold for each of the four combinations of signs (±) that
correspond to the four vertices of (11). For the worst-case choice of
signs (±)

axx̄i + ay ȳi − b ≥
∥∥∥∥[1 0

0 pθ/2

]
R(−ψ̄i)aᵀ

∥∥∥∥
1

pr (13)

where pr > 0 and R(ψ̄i)
ᵀ = R(−ψ̄i). Since half-spaces are scale

invariant (i.e. H(a, b) = H(µa, µb), ∀µ > 0), we can select a ∈ R2

such that the 1-norm has unit length i.e. (12c) holds without loss of
generality. Then, the cost (12a) directly follows from (12c) and the
bound (13).

Theorem 1 means that we can guarantee that the PI set Oi does
not collide COi ∩ Bk = ∅ with the k-th obstacle Bk by solving a
convex optimization problem. Thus, we can guarantee that the PI set
Oi is safe by taking worst-case scaling pri = mink∈K prik over all
the obstacles {Bk}k∈K.

For polyhedral obstacles Bk, the convex program (12) reduces to
a linear program, as shown in the following corollary.

Corollary 1. Let Bk = {(x, y) : A(x, y) ≤ b}. Then PI set (8)
corresponding to the i-th reference (x̄i, ȳi, ψ̄i) does not intersect
COi ∩ Bk=∅ the obstacle Bk if

pri ≤ max
z≥0

(
A(x̄i, ȳi)− b

)ᵀ
z (14a)

s.t.

∥∥∥∥[1 0
0 pθ/2

]
R(−ψ̄i)Aᵀz

∥∥∥∥
1

= 1. (14b)

Although linear programs can be solved efficiently, solving (14) for
hundreds or thousands of references (x̄i, ȳi, ψ̄i) would be computa-
tionally prohibitive. Thus, we use a heuristic to approximate (14).
Any feasible solution of the optimization problem (12) provides a
safe scaling pri = mink∈K prik of the PI set Oi(pri, pθ). In other
words, the scaling

prik = min
k∈K

axx̄i + ay ȳi − b∥∥ [1 0
0 pθ/2

]
R(−ψ̄)a

∥∥
1

is safe for any (a, b) ∈ B◦k where ax and ay are the x and y
components of a, respectively. Thus, our heuristic approximates (14)
by evaluating the suboptimal solution above for a finite set of pre-
selected hyper-planes (aj , bj) ∈ B◦k

pri = min
k∈K

max
j

axj x̄i + ayj ȳi − bj∥∥ [1 0
0 pθ/2

]
R(−ψ̄)a

∥∥
1

. (15)

For polyhedral obstacles Bk a natural choice for the hyper-planes are
the hyper-planes that define the obstacle set.

Next, we will use the parameter pθ > 0 to account for the spatial
extent of the unicycle. We will assume that the spatial extent of the
unicycle can be covered by a rectangle

B0 =

{[
x
y

]
:
|x| ≤ l/2
|y| ≤ w/2

}
(16)

with length l > 0 and width w > 0. The following theorem
shows that we can combine the scaling of the rectangle (11) used
to outer-approximate the PI sets (8) with the collision check for a
rectangular (16) unicycle into a single operation.

Theorem 2. Let pri satisfy (12) and pθ = 2w/l. Then, the PI set
Oi = R(ψ̄i)O0(pri−l/2, pθ)+

[
x̄i
ȳi

]
is safe COi⊕R(ψ)B0∩Bk = ∅

for all k ∈ K.

Proof. The PI set Oi(pr−l/2, pθ) is safe if, for each possible position
(x, y) ∈ COi of the unicycle, the unicycle body B0 does not intersect
any obstacle Bk (

R(ψ̄i)B0 + [xy]
)
∩ Bk = ∅.

for all (x, y) ∈ CO0 and k ∈ K. Or equivalently(
R(ψ̄i)B0 ⊕

(
R(ψ̄i)CO0 +

[
x̄i
ȳi

]))
∩ Bk = ∅

where ⊕ is the Minkowski sum. Note that

R(ψ̄i)B0 ⊕
(
R(ψ̄i)CO0 +

[
x̄i
ȳi

])
=

= R(ψ̄i)
(⋃

p∈B0
CO0 + p︸ ︷︷ ︸

CO0⊕B0

)
+
[
x̄i
ȳi

]
.

For pθ=2w/l we have CO0 ⊂ R(pr−l/2, 2w/l). Thus, CO0⊕B0 ⊂
R(pr−l/2, 2w/l)⊕ B0 = R(pr, pθ). Therefore,

R(ψ̄i)(CO0 ⊕ B0)+
[
x̄i
ȳi

]
⊂ R(ψ̄i)R(pr, pθ)+

[
x̄i
ȳi

]
.

Since pri satisfies (12), we have
(
R(ψ̄i)R(pr, pθ)+

[
x̄i
ȳi

])
∩Bk = ∅

for all k ∈ K by Theorem 1.

Theorem 2 says that if the rectangle (11) bounding the PI set and
the rectangle B0 bounding the unicycle have the same aspect ratio
2pr/prpθ = l/w then we can guarantee that no collision occurs by
shrinking pri−l/2 the PI sets (8) by half the length l/2 of the unicycle.
If pri < l/2 then the reference (x̄i, ȳi, ψ̄i) collides with an obstacle
when the spatial-extend B0 of the unicycle is taken into account.

D. Connecting the Invariant Sets

Next, we describe how the PI sets Oi are used to construct the
edge list E for the search graph G=(I, E).

The edges (i, j) ∈ E of the search graph G = (I, E) indicate
that the trajectory (x(t), y(t), ψ(t)) of the closed-loop unicycle (3)
and (6) will enter the safe set Oj while tracking the i-th ref-
erence (x̄i, ȳi, ψ̄i) without leaving the current safe set Oi. Since
(x(t), y(t), ψ(t)) → (x̄i, ȳi, ψ̄i) according to Proposition 1, the
trajectory (x(t), y(t), ψ(t)) will enter the j-th invariant-set Oj if
(x̄i, ȳi, ψ̄i) ∈ Oj . From the definition (8) of the set Oj and the
polar transformation (4), we have (x̄i, ȳi, ψ̄i) ∈ Oj if(

x̄i−x̄j
)2

+
(
ȳi−ȳj

)2
p2
rj

+

(
ψ̄j−θ̄ij

)2
p2
θ

+

(
ψ̄i−θ̄ij

)2
p2
θ

≤1 (17)

where ` = 1 for the PI set (8) and θ̄ij is the angle of the vector from
(x̄j , ȳj) to (x̄i, ȳi)

θ̄ij = arctan

(
ȳi−ȳj
x̄i−x̄j

)
.

The first term of the connection rule (17) requires that the i-th and
j-th references are close (relative to pr) for the edge (i, j) ∈ E to
be included in the search graph G = (I, E). The second and third
terms of (17) require that the beginning ψ̄i and final ψ̄j orientations
must be closely aligned with the straight-line path (x̄j−x̄i, ȳj−ȳi)
connecting the i-th and j-th references.

The search graph G=(I, E) is directed (i.e. (i, j)∈E 6⇒ (j, i)∈E)
since the connection rule (17) uses the scaling (15) parameter prj of
the j-th invariant-set Oj . This reflects the intuition that the path-
planner will be more cautious when prj is small since this means an

obstacle is nearby. In other words, it is easier to safely move away
from an obstacle than towards one.

IV. CASE STUDY: PERPENDICULAR PARKING

In this case study, the unicycle must perpendicular park in a
crowded parking garage, shown in Fig. 2. There are twelve obstacle
sets {Bk}12

k=1. The first three sets B1, B2 and B3 represent the
boundary of the parking garage. The remaining nine sets {B4}12

k=4

represent parking spaces occupied by cars. The unicycle is initially
at the entrance to the garage located at (x̄0, ȳ0) = (1.5, 17) meters
and is pointed inside ψ̄0 = −π

2
. We consider two target positions.

The first is the open parking space located directly in front of the
entrance at (x̄1

∞, ȳ
1
∞) = (1.5, 3) meters. The unicycle must back

into this parking space ψ̄1
∞ = +π

2
radians. The second target is the

open parking space located at (x̄2
∞, ȳ

2
∞) = (10, 15) meters. Again

the unicycle must back into this space ψ̄2
∞ = −π

2
radians.

Fig. 2: Automated perpendicular parking scenario.

Reference states {(x̄i, ȳi, ψ̄i)}i∈I were obtained by gridding the
plane R2 with a resolution of 0.5 meters. Sixteen discrete orientations
ψ̄i ∈ S1 were chosen

arctan

{[
1
0

]
,

[
2
1

]
,

[
1
1

]
,

[
1
2

]
,

[
0
1

]
,

[
-1
2

]
,

[
-1
1

]
,

[
-2
1

]
, (18)

[
-1
0

]
,

[
-2
-1

]
,

[
-1
-1

]
,

[
-1
-2

]
,

[
0

-1

]
,

[
1

-2

]
,

[
1

-1

]
,

[
2

-1

]}
where arctan([xy]) is the angle of the vector [xy]. The orienta-
tions (18) were not sampled uniformly, but rather selected to align
with paths between grid-points.

For each reference {(x̄i, ȳi, ψ̄i)}i∈I , the corresponding PI set (8)
was scaled (15) such that it does not collide with any obstacle
COi ⊕ B0 ∩ Bk = ∅. Scaling the |I|= 2, 268 PI sets required 1.3
seconds. The references {(x̄i, ȳi, ψ̄i)}i∈I were connected (i, j) ∈ E
using (17). Constructing the |E|=42, 760 edges required 1.9 seconds.
The prototype code was executed on a 2014 MacBook Pro with a
2.5 GHz i7 processor and 16 GB of RAM. No effort was made to
optimize the execution time of the prototype code.

The graph G=(I, E) was searched for two paths σ1,2
0 , . . . , σ1,2

N ∈
I from the invariant-set Oσ0 corresponding to the initial state s0 =
(x0, y0, ψ0) to the PI sets Oσ

N1 and Oσ
N2 corresponding to the two

target states s̄1,2
∞ =(x̄1,2

∞ , ȳ1,2
∞ , ψ̄1,2

∞). The resulting paths {s̄
σ
1,2
i
}N

1,2

i=1

are shown in Fig. 3a.
The first path {σ1

i }N
1

i=1 consists of N1 = 14 references and has a
total linear length of 17.9m. The second path {σ2

i }N
2

i=1 consists of

N1 = 15 references that have a total linear length of 21.8m. This
demonstrates that the ISMP does not require dense sampling of the
state-space since the PI sets Oi cover large areas in which the motion
does not need to be micro-managed to provide safety. Indeed, for the
second path {σ2

i }N
2

i=1 the PI set (8) corresponding to the reference
(x̄i, ȳi, ψ̄i) = (7.5, 9, 0) has a radius pri = 5.62m and covers an
area of approximately 42.1m2, which is approximately 22% of total
obstacle-free area of 189.6m2.

(a) Path (b) Trajectory

Fig. 3: (a) Paths {s̄
σ
j
i
}N

j

i=1 constructed by the ISMP and (b) the
resulting trajectories p(t)=

(
x(t), y(t)

)
of the unicycle.

The controller (6) was used to track the paths shown in Fig. 3a
resulting in the trajectories

(
x(t), y(t)

)
shown in Fig. 3b. Again,

the trajectories (x(t), y(t), ψ(t)) of the unicycle (2) do not per-
fectly track their corresponding paths {(x̄

σ
1,2
k
, ȳ
σ
1,2
k
, ψ̄

σ
1,2
k

)}N
1,2

k=1 ,
but nonetheless, the unicycle does not collide with an obstacle Bk
since the trajectory remains inside the corridor of PI sets Oσk .
Indeed, the trajectories are more curved in open spaces since the
ISMP allows the unicycle to follow its own natural trajectories. In
addition, larger PI sets allow the controller (6) to be more aggressive.
For the second trajectory, the unicycle has a maximum velocity
of 3.9m/s which occurs at the location

(
x(t), y(t)

)
= (2.8, 9.0)

where the unicycle enters the previously mentioned largest PI set. In
contrast, after the unicycle has turned and is backing into the parking
spot its maximum velocity is 2.1m/s which occurs at the location(
x(t), y(t)

)
= (10.5, 11.9) where the unicycle enters the first of 3

progressively smaller PI sets, each with a lower maximum velocity.

REFERENCES

[1] A. Weiss, C. Petersen, M. Baldwin, R. Erwin, and I. Kolmanovsky, “Safe
positively invariant sets for spacecraft obstacle avoidance,” Journal of
Guidance, Control, and Dynamics, 2015.

[2] C. Danielson, A. Weiss, K. Berntorp, and S. Di Cairano, “Path planning
using positive invariant sets,” in Conference on Decision and Control,
2016.

[3] A. Weiss, C. Danielson, K. Berntorp, I. Kolmanovsky, and S. Di Cairano,
“Motion planning with invariant set trees,” in Conference on Control
Technology and Applications, 2017.

[4] K. Berntorp, A. Weiss, C. Danielson, S. Di Cairano, and I. Kolmanovsky,
“Automated driving: Safe motion planning using positive-invariant sets,”
in Intelligent Transportation Systems Conference, 2017.

[5] K. Berntorp, R. Bai, K. F. Erliksson, C. Danielson, A. Weiss, and
S. D. Cairano, “Positive invariant sets for safe integrated vehicle motion
planning and control,” IEEE Transactions on Intelligent Vehicles, 2020.

[6] C. Danielson, K. Berntorp, A. Weiss, and S. Di Cairano, “Robust motion-
planning for uncertain systems with disturbances using the invariant-set
motion-planner,” Accepted to Transactions on Automatic Control, 2019.

[7] C. C. de Wit and O. J. Sordalen, “Exponential stabilization of mobile
robots with nonholonomic constraints,” IEEE Transactions on Automatic
Control, 1992.

[8] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop
steering of unicycle like vehicles via lyapunov techniques,” IEEE
Robotics Automation Magazine, 1995.

[9] A. Astolfi, “Exponential Stabilization of a Wheeled Mobile Robot Via
Discontinuous Control,” Journal of Dynamic Systems, Measurement, and
Control, 1999.

[10] A. P. Aguiar, A. N. Atassi, and A. Pascoal, “Regulation of a non-
holonomic dynamic wheeled mobile robot with parametric modeling
uncertainty using lyapunov functions,” Proceedings of the 39th IEEE
Conference on Decision and Control (Cat. No.00CH37187), 2000.

[11] F. Pourboghrat, “Exponential stabilization of nonholonomic mobile
robots,” Computers and Electrical Engineering, 2002.

[12] R. Brockett, “Asymptotic stability and feedback stabilization,” Differen-
tial Geometric Control Theory, 1983.

[13] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[14] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” The

International Journal of Robotics Research, 2001.
[15] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The International Journal of Robotics Research, 2011.
[16] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,

L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, 2008.

[17] B. D. Luders, S. Karaman, and J. P. How, “Robust sampling-based
motion planning with asymptotic optimality guarantees,” in AIAA Guid.,
Nav., and Ctrl. Conf., Boston, MA, 2013.

[18] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, 2011.

[19] N. A. Melchior and R. Simmons, “Particle rrt for path planning with
uncertainty,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007.

[20] M. Althoff, D. Althoff, D. Wollherr, and M. Buss, “Safety verification
of autonomous vehicles for coordinated evasive maneuvers,” in Proc. of
the IEEE Intelligent Vehicles Symposium, 2010.

[21] M. Althoff and J. Dolan, “Online verification of automated road vehicles
using reachability analysis,” IEEE Transactions on Robotics, 2014.

[22] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2017.

[23] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms for
optimal motion planning using closed-loop prediction,” in International
Conference on Robotics and Automation, 2017.

[24] W. McConley, B. Appleby, M. Dahleh, and E. Feron, “A computationally
efficient lyapunov-based scheduling procedure for control of nonlinear
systems with stability guarantees,” Transactions on Automatic Control,
2000.

[25] F. Blanchini, F. Pellegrino, and L. Visentini, “Control of manipulators
in a constrained workspace by means of linked invariant sets,” Journal
of Robust and Nonlinear Control, 2004.

[26] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, 2010.

[27] Y. Gao, A. Gray, H. Tseng, and F. Borrelli, “A tube-based robust non-
linear predictive control approach to semiautonomous ground vehicles,”
Vehicle System Dynamics, 2014.

[28] P. Falcone, F.Borrelli, J.Asgari, H. Tseng, and D.Hrovat, “Predictive
active steering control for autonomous vehicle systems,” Transactions
on Control Systems Technology, 2007.

[29] S. Di Cairano, U. Kalabi, and K. Berntorp, “Vehicle tracking control on
piecewise-clothoidal trajectories by mpc with guaranteed error bounds,”
Conference on Decision and Control, 2016.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-089.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

