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Abstract
Self-attention has become an important and widely used neural network component that
helped to establish new state-of-the-art results for various applications, such as machine
translation and automatic speech recognition (ASR). However, the computational complex-
ity of self-attention grows quadratically with the input sequence length. This can be par-
ticularly problematic for applications such as ASR, where an input sequence generated from
an utterance can be relatively long. In this work, we propose a combination of restricted
self-attention and a dilation mechanism, which we refer to as dilated self-attention. The re-
stricted self-attention allows attention to neighboring frames of the query at a high resolution,
and the dilation mechanism summarizes distant information to allow attending to it with a
lower resolution. Different methods for summarizing distant frames are studied, such as sub-
sampling, mean-pooling, and attention-based pooling. ASR results demonstrate substantial
improvements compared to restricted self-attention alone, achieving similar results compared
to full-sequence based self-attention with a fraction of the computational costs
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ABSTRACT

Self-attention has become an important and widely used neural
network component that helped to establish new state-of-the-art re-
sults for various applications, such as machine translation and auto-
matic speech recognition (ASR). However, the computational com-
plexity of self-attention grows quadratically with the input sequence
length. This can be particularly problematic for applications such
as ASR, where an input sequence generated from an utterance can
be relatively long. In this work, we propose a combination of re-
stricted self-attention and a dilation mechanism, which we refer to
as dilated self-attention. The restricted self-attention allows atten-
tion to neighboring frames of the query at a high resolution, and the
dilation mechanism summarizes distant information to allow attend-
ing to it with a lower resolution. Different methods for summariz-
ing distant frames are studied, such as subsampling, mean-pooling,
and attention-based pooling. ASR results demonstrate substantial
improvements compared to restricted self-attention alone, achieving
similar results compared to full-sequence based self-attention with a
fraction of the computational costs.
Index Terms: dilated self-attention, transformer, automatic speech
recognition, computational complexity

1. INTRODUCTION

The attention mechanism has become a central component in many
neural network architectures for machine translation, speech pro-
cessing, language modeling, and computer vision [1–5]. It is fre-
quently used as a relay between encoder and decoder neural net-
works or as a substitute for recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) [6, 7]. Recently, the trans-
former architecture [8], which utilizes attention throughout all model
components, has set new state-of-the-art results for many different
machine learning applications, including many speech and audio
processing tasks [9–12]. As attention-based architectures have been
successfully applied for various domains, the number of model pa-
rameters have tended to increase to further improve results using
deeper and wider architectures [13, 14]. However, in particular at
inference time, computational costs must be kept small to enable
scalability of a model for cloud-based services that serve many users
simultaneously or to allow local computation on mobile devices.

The attention mechanism is a method to query information from
an input sequence, which can also be regarded as reading from a
memory [1]. In self-attention, each frame of an input sequence is
used once as a query to read information from itself [6, 8]. In auto-
matic speech recognition (ASR), neighboring frames of such a query
frame may belong to the same phone, syllable, or word, where de-
tailed information is required to recognize their coherency. On the
other hand, distant information is relevant to recognize the context of
sounds and words in an utterance and to adapt to speaker or record-
ing characteristics, which typically requires less fine-grained infor-
mation. This line of arguments is also applicable to other tasks, e.g.,

to machine translation or language modeling, where close-by words
are more likely to have a dependent relationship, while only a few
distant words or word groups are relevant to trace the semantic con-
text and syntax of a sentence [15].

This hypothesis is investigated in this work by combining re-
stricted (or time-restricted) self-attention with a dilation mechanism,
whereby a high self-attention resolution for neighboring frames and
a lower self-attention resolution for distant information are achieved.
The proposed method, named dilated self-attention in analogy to di-
lated convolution [16], alleviates the quadratic computational cost
growth of self-attention with the input sequence length. Various
frame rate reduction methods are studied for the dilation mecha-
nism, including subsampling as well as pooling methods that extract
or compress the relevant information within a chunk of frames. We
compare mean-pooling to a newly proposed attention-based pool-
ing approach in this work. In such a setup, the computational cost
of the restricted self-attention grows only linearly with the input
sequence length, and the computational costs for attending to a
dilation sequence are smaller by a factor M compared to standard
self-attention, where M denotes the subsampling or the chunk size
of the pooling operation. Thus, the overall complexity of dilated
self-attention is significantly reduced, while the full context of an
input sequence is still captured with different resolutions.

ASR results are reported for two different data sets using a
transformer-based end-to-end ASR system. It is shown that di-
lated self-attention can reduce self-attention costs by several orders
with almost no performance degradation for offline and streaming
ASR applications. In addition, dilated self-attention demonstrates
clear advances in terms of word error rates (WERs) over restricted
self-attention alone. An attention-based pooling method is proposed
that uses learned query vectors to compute the weighted average of
each chunk by attention, where optionally a post-processing stage
can be applied, e.g., to merge outputs of multiple attention heads.
Among the tested pooling methods, attention-based pooling with
post-processing is shown to achieve the highest robustness.

2. SYSTEM ARCHITECTURE
In this work, a joint connectionist temporal classification (CTC) and
transformer-based end-to-end ASR system is used, which combines
the advantages of both model types for training and decoding [10,17]
achieving state-of-the-art ASR results [18] and enabling streaming
recognition of encoder-decoder based ASR systems [11, 19].

The transformer model leverages two different attention types:
encoder-decoder attention and self-attention [8]. Encoder-decoder
attention uses a decoder state as a query for attending to an input
sequence, the encoder output. In self-attention, the queries are com-
puted from the same input sequence, which results in an output se-
quence of the same length. Both attention types of the transformer
model are based on the scaled dot-product attention mechanism,

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (1)



where Q ∈ Rnq×dq , K ∈ Rnk×dk , and V ∈ Rnv×dv are the
queries, keys, and values, where the d∗ denote dimensions and the
n∗ denote sequence lengths, dq = dk, and nk = nv [8]. Instead of
using a single attention head, multiple attention heads are used with

MHA(Q̂, K̂, V̂ ) = Concatf(Head1, . . . ,Headdh)WH (2)

and Headi = Attention(Q̂WQ
i , K̂W

K
i , V̂ W

V
i ), (3)

where Q̂, K̂, and V̂ are inputs to the multi-head attention (MHA)
layer, Headi represents the output of the i-th attention head for a
total number of dh heads, WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv as well as WH ∈ Rdhdv×dmodel are trainable

weight matrices with typically dk = dv = dmodel/dh, and Concatf

denotes concatenation along the feature dimension of size dv .
The transformer encoder architecture consists of a two-layer CNN

module ENCCNN and a stack of self-attention based layers ENCSA:

X0 = ENCCNN(X) + PE, (4)
XE = ENCSA(X0), (5)

where PE are sinusoidal positional encodings [8] and X denotes a
sequence of acoustic input features, which are 80-dimensional log-
mel spectral energies plus 3 extra features for pitch information [20].
Both CNN layers of ENCCNN use a stride of size 2, a kernel size
of 3 × 3, and a ReLU activation function, which reduces the output
frame rate by a factor of 4. The ENCSA module of (5) consists of
E layers, where the e-th layer, for e = 1, . . . , E, is a composite of a
multi-head self-attention layer

X ′e = Xe−1 + MHAe(Xe−1, Xe−1, Xe−1), (6)

and two feed-forward neural networks of inner dimension dff and
outer dimension dmodel that are separated by a ReLU activation
function as follows:

Xe = X ′e + FFe(X ′e), (7)

with FFe(X ′e) = ReLU(X ′eW
ff
e,1 + bffe,1)Wff

e,2 + bffe,2, (8)

where Wff
e,1 ∈ Rdmodel×dff , Wff

e,2 ∈ Rdff×dmodel , bffe,1 ∈ Rdff , and
bffe,2 ∈ Rdmodel are trainable weight matrices and bias vectors.

The transformer objective function is defined as

patt(Y |XE) =

L∏
l=1

p(yl|y1:l−1, XE) (9)

with label sequence Y = (y1, . . . , yL), label subsequence y1:l−1 =
(y1, . . . , yl−1), and the encoder output sequence XE = (xE1 , . . .
,xEN ). The term p(yl|y1:l−1, XE) represents the transformer de-
coder model, which consists of a stack ofD layers each applying two
MHA layers, one performing self-attention using y1:l−1 as an input
and one for encoder-decoder attention, followed by a feed-forward
neural network similar to (8). Finally, the posterior probabilities are
estimated by applying a fully-connected neural network to the last
decoder layer and a softmax distribution over that output.

The transformer model is trained jointly with the CTC objective
function pctc [18, 21] using the multi-objective loss function

L = −γ log pctc − (1− γ) log patt, (10)

where hyperparameter γ controls the weighting between the two ob-
jective functions pctc and patt.

3. DILATED SELF-ATTENTION

Self-attention, restricted self-attention, and dilated self-attention are
illustrated in Fig. 1. For restricted self-attention, the past and fu-
ture context (blue frames) relative to a current query vector (green

b) Restricted self-attention:

query frame restriction window of size R
c) Dilated self-attention:

a) Self-attention:

query frame

Input

sequence:

Input

sequence:

query frame restriction window of size R

Pooling or

subsampling

Input

sequence:

dilation

sequence

chunk of size M

Fig. 1. Full-sequence based self-attention is shown in a), where each
bar of the input sequence represents an input frame or vector. A
current query frame is highlighted in green color and blue arrows
represent allowed attention connections. Restricted self-attention is
depicted in b), where frames within the restriction window are high-
lighted in blue color. Dilated self-attention is shown in c), where a
dilation sequence (in yellow) is generated for the keys and values
by a pooling or subsampling mechanism and appended to keys and
values of the restricted sequence prior to self-attention.

frame) is limited by using a fixed number of look-back and look-
ahead frames. For dilated self-attention, restricted self-attention is
combined with a dilation mechanism, which is shown in Fig. 1c. The
dilation mechanism subsamples or summarizes the keys/values and
appends the generated dilation sequence, which is of lower frame
rate than the input sequence, to the restricted keys/values for the re-
stricted self-attention process.

3.1. Dilation Mechanisms
The dilation mechanism at the e-th encoder layer first splits the keys
Ki = Xe−1W

K
i = (ki1, . . . ,k

i
N ) and values Vi = Xe−1W

V
i =

(vi1, . . . ,v
i
N ) each of length N , cf. (3), into L = d N

M
e non-

overlapping key chunks CKi,l and value chunks CVi,l each of length
M , such that

CVi,l = (viM(l−1)+1, . . . ,v
i
M(l−1)+M ), (11)

CKi,l = (kiM(l−1)+1, . . . ,k
i
M(l−1)+M ), (12)

for l = 1, . . . , L, where the last chunks, CVi,L and CKi,L, are zero-
padded if they have fewer than M frames. Next, subsampling or
pooling techniques are applied to each chunk, to generate dilation
sequences ∆K

i and ∆V
i that are appended to the restricted keys and

values, respectively, by modifying (3) as follows:

Headi,n,e = Attention(xe−1
n WQ

i , K̄i,n,e, V̄i,n,e) (13)

with K̄i,n,e = Concatt(k
i
n−νlb:n+νla ,∆

K
i ), (14)

and V̄i,n,e = Concatt(v
i
n−νlb:n+νla ,∆

V
i ), (15)

for n = 1, . . . , N , where νlb and νla denote the number of look-back
and look-ahead frames for the time-restriction, which corresponds to
a window size of R = νlb + νla + 1, and Concatt denotes concatena-
tion along the time dimension (frames).

The subsampling-based dilation mechanism selects the first
frame of each chunk to form the dilation sequences ∆K

i = (ki1,
. . . ,kiM(l−1)+1, . . . ,k

i
M(L−1)+1) and ∆V

i = (vi1, . . . ,v
i
M(l−1)+1,

. . . ,viM(L−1)+1). Alternatively to subsampling, pooling methods



can be applied to summarize the frames of each chunk. In this work,
we compare three different pooling mechanisms: 1) mean-pooling
(MP), 2) attention-based pooling (AP), and 3) attention-based pool-
ing with post-processing (AP+PP).

For the mean-pooling (MP) based dilation mechanism, frames in
each chunk are averaged to the mean vectors

µ
[V,K]
i,l =

1

M

∑
m

C
[V,K]
i,l [m], (16)

for l = 1, . . . , L, where the notation [V,K] denotes the processing of
either the values or the keys. We will continue to use this notation
for the following equations. The sequence of mean vectors is used
to form the dilation sequences ∆

[V,K]
i = (µ

[V,K]
i,1 , . . . ,µ

[V,K]
i,L ).

In attention-based pooling (AP), we train embedding vectors to
query summary information from the key and value chunks by using
the attention mechanism as follows:

g
[V,K]
i,l =

1

B

B∑
b=1

a
[V,K]
i,b,l , (17)

a
[V,K]
i,b,l = Attention(q̄Kb , C

K
i,l, C

[V,K]
i,l ), (18)

q̄Kb = EmbedK(b), (19)

for l = 1, . . . , L, where q̄Kb represents a query, EmbedK(b) maps
the attention head numbers b = 1, . . . , B to trainable vectors of
dimension dk, and B denotes the total number of attention heads.
The attention outputs a[V,K]

i,b,l are averaged along b = 1, . . . , B to

form the dilation sequences ∆
[V,K]
i = (g

[V,K]
i,1 , . . . , g

[V,K]
i,L ).

Post-processing (PP) can be applied to a[V,K]
i,l to further process

the AP output and to effectively join the output of multiple atten-
tion heads using a two-layer feed-forward neural network of inner
dimension din and outer dimension d[v,k]:

p
[V,K]
i,l = FF [V,K](a

[V,K]
i,l ) + g

[V,K]
i,l , (20)

FF [V,K](a
[V,K]
i,l )= ReLU(ā

[V,K]
i,l W

[V,K]
1 +b

[V,K]
1 )W

[V,K]
2 +b

[V,K]
2 ,

(21)

ā
[V,K]
i,l = Concatf(a

[V,K]
i,1,l , . . . ,a

[V,K]
i,B,l ), (22)

where W [V,K]
1 ∈ Rd[v,k]B×din , W [V,K]

2 ∈ Rdin×d[v,k] , b[V,K]
1 ∈ Rdin ,

and b[V,K]
2 ∈ Rd[v,k] are trainable weight matrices and bias vectors

and Concatf denotes concatenation of the vectors a[V,K]
i,b,l for b =

1, . . . , B along the feature dimension. The PP results p[V,K]
i,l are then

used to form the dilation sequences ∆
[V,K]
i = (p

[V,K]
i,1 , . . . ,p

[V,K]
i,L ).

3.2. Computational complexity estimation
The computational complexity estimation in this work is based on
the number of floating-point multiplications of vector and matrix
products, which is described here by the M notation. For sim-
plicity, we ignore in the estimation scalar multiplications as well
as additions, since including these operations does not significantly
change the relative complexities when comparing the different meth-
ods. The complexity of the full-sequence based self-attention pro-
cess is M(N2dmodel), where N denotes the length of an input se-
quence and dmodel the attention model dimension, cf. Section 2. The
complexity for restricted self-attention is M(NRdmodel), where R
is the size of the restriction window, which is constant and typically
significantly smaller than N . The computational complexity of di-
lated self-attention isM(N(R + d N

M
e)dmodel) + ξ, which includes

the attention costs for restricted self-attention with the appended di-
lation sequence plus ξ, the complexity of the dilation mechanism.

The complexity ξ of the AP mechanism amounts toM(NdmodelB)
for the dot-product attention of the learned queries q̄ and the key
chunks CKl , where the computed attention weights are reused to
summarize the value chunks CVl as well. The complexity of PP
amounts toM(2(B + 1)dmodeldind NM e) for post-processing the at-
tention results of the key and value chunks as described in (20).
In order to reduce the computational complexity for the following
experiments, the feed-forward neural network of the post-processing
stage uses a bottleneck of inner dimension din = 16.

3.3. Related Work
The closest prior art to this work is Transformer-XL [22] and the re-
cently proposed self-attention with augmented memory [23]. How-
ever, both are different in various ways, e.g., Transformer-XL in-
corporates history information at each layer only from the previous
chunk and from a lower layer. Self-attention with augmented mem-
ory uses mean-pooling on chunks of the input sequence to form a
summarization query for computing attention weights over the cur-
rent chunk plus the summarization outputs from previous chunks.
This is a recursive operation, which cannot be easily parallelized,
unlike our proposed solution. Moreover, we use learned embed-
ding vectors for the summarization queries instead of mean-pooling,
whereby the characteristics of the relevant frames are learned and
which also allows us to use multiple queries per chunk.

4. EXPERIMENTS
4.1. Datasets
The LibriSpeech corpus and the Wall Street Journal (WSJ) corpus
are used in this work [24, 25]. LibriSpeech is a corpus of read En-
glish audio books with about 960 hours of training data, 10.7 hours
of development data, and 10.5 hours of test data. The develop-
ment and test data sets are both split into approximately two halves
named “clean” and “other”, based on the quality of the recorded
speech utterances as assessed using an ASR system [24]. WSJ is
a data set of read English newspapers with approximately 81 hours
of training data, 1.1 hours of development data, and 0.7 hours of test
data [25]. The average duration of a LibriSpeech utterance amounts
to 12.3 seconds, the median duration to 13.8 seconds, and the maxi-
mum duration to 29.7 seconds. For the WSJ corpus, the average du-
ration of an utterance is 7.8 seconds, the median duration is 7.7 sec-
onds, and the maximum duration 24.4 seconds.

4.2. Settings
For LibriSpeech-based experiments, the transformer model parame-
ters are dmodel = 512, dff = 2048, dh = 8, E = 12, and D = 6.
They are the same for WSJ except dmodel = 256 and dh = 4. The
Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9 and learn-
ing rate scheduling similar to [8] is applied for training using 25000
warmup steps. The learning rate factor and the maximum number
of training epochs are set to 5.0 and 120 for LibriSpeech, and to
10.0 and 100 for WSJ. Output tokens for the LibriSpeech model con-
sist of 5000 subwords obtained by the SentencePiece method [26].
For WSJ, the number of output tokens amounts to 50, the number
of characters in WSJ. Weight factor γ, which is used to balance
the CTC and transformer model objectives during training, is set to
0.3. Layer normalization is applied before and dropout with a rate
of 10% after each MHA and FF layer. In addition, label smooth-
ing with a penalty of 0.1 is used and SpecAugment is applied for
the LibriSpeech-based ASR experiments [27]. An RNN-based lan-
guage model (LM) is employed via shallow fusion for each data
sets: a word-based LM of 65k words is applied for WSJ [28] and a



Table 1. WSJ-based ASR results for self-attention, restricted self-
attention, and dilated self-attention. R denotes the symmetric re-
striction window size and M the chunk size in number of frames.
M denotes the number of multiplications for self-attention with
N = 195 (average input length) and dmodel = 256. Numbers af-
ter a hyphen denote the number of attention heads for AP.

self-attention
type

dilation
mechanism

WER [%]
R M M dev test

full-sequence - - - 9.8M 7.7 4.7
restricted - 35 - 1.8M 8.7 5.9
restricted - 21 - 1.1M 8.7 5.6
restricted - 15 - 0.8M 8.6 5.8
restricted - 13 - 0.7M 9.0 5.7
restricted - 11 - 0.6M 8.9 6.2
dilated subsampling 15 10 1.8M 8.0 5.2
dilated MP 15 10 1.8M 7.9 5.4
dilated AP-1 15 11 1.8M 7.7 4.9
dilated AP-2 15 12 1.8M 7.7 4.9
dilated AP-1+PP 21 20 1.8M 7.7 4.9
dilated AP-2+PP 21 27 1.8M 7.6 5.1
dilated subsampling 11 20 1.1M 8.1 5.3
dilated MP 11 20 1.1M 7.7 5.2
dilated AP-1 11 22 1.1M 7.6 5.1
dilated AP-2 11 28 1.1M 7.7 5.1
dilated AP-1+PP 9 24 1.1M 8.2 5.2
dilated AP-2+PP 9 33 1.1M 7.6 4.9

subword-based LM is applied for LibriSpeech [20]. The LM weight,
CTC weight, and beam size for joint CTC-attention decoding are set
to 0.6, 0.4, and 30 for LibriSpeech and to 1.0, 0.3, and 10 for WSJ.

4.3. Results
Table 1 shows the WSJ-based ASR results for full-sequence based
self-attention, restricted self-attention, and dilated self-attention.
Different settings for restricted and dilated self-attention are com-
pared. In addition, subsampling, mean-pooling (MP), and attention-
based pooling (AP) with and without post-processing (PP) are inves-
tigated, where the number of attention heads B is shown by AP-B.
The corresponding computational costs are given as an example for
a WSJ utterance of average length (7.8 sec.), which corresponds to
a sequence length of 195 frames for a frame rate of 40 ms. It can be
noticed that restricted self-attention considerably increases WERs
by more than 1% for all tested restriction window sizes. Dilated
self-attention can compensate to a large extent this loss in accu-
racy, achieving consistently better WERs compared to restricted
self-attention. The overall best performing dilation mechanism
is AP, achieving similar results compared to full-sequence based
self-attention with more than 88% fewer computational operations.

LibriSpeech ASR results are shown in Table 2. Simply using
restricted self-attention increases WERs on test-other by 0.6%
(R=41), 1.0% (R=25), and 1.2% (R=13). Dilated self-attention
almost completely equalizes the disadvantages of restricted self-
attention, where the AP-2+PP setup shows the best ASR results.
For example, for R=25 and M=20, the AP-2+PP system achieves
a WER of 2.4% and 5.9% for test-clean and test-other, which is
even slightly lower compared to WERs of full-sequence based self-
attention with only 15% of the computational costs for self-attention.

Finally, the AP-2+PP approach is applied to a triggered attention
(TA) based streaming end-to-end ASR system [11], where a TA
look-ahead of 12 frames and an encoder look-ahead of 1 frame
are used, which results in an algorithmic delay of 480 ms for the

Table 2. LibriSpeech-based WER [%] for self-attention, restricted
self-attention, and dilated self-attention with results for streaming
end-to-end ASR at the bottom [11]. The computational complexity
estimateM is based on using dmodel = 512 and N = 310, which is
the average encoder sequence length of a LibriSpeech utterance.

self-attention
type

dilation
mechanism

dev test
R M M clean other clean other

full-sequence - - - 52M 2.3 5.7 2.6 6.0
restricted - 41 - 6.5M 2.5 6.5 2.7 6.6
restricted - 25 - 4.0M 2.4 6.5 2.6 7.0
restricted - 13 - 2.1M 2.5 7.0 2.7 7.2
dilated subsampling 25 20 6.5M 2.3 6.1 2.6 6.2
dilated MP 25 20 6.5M 2.3 6.1 2.6 6.2
dilated AP-1 25 20 6.7M 2.3 5.8 2.5 6.1
dilated AP-2 25 20 6.8M 2.3 6.1 2.5 6.1
dilated AP-1+PP 25 20 7.2M 2.3 5.9 2.5 6.1
dilated AP-2+PP 25 20 7.6M 2.2 5.8 2.4 5.9
dilated AP-2+PP 17 19 6.6M 2.2 5.8 2.5 6.0
dilated subsampling 13 40 3.3M 2.4 6.5 2.6 6.7
dilated MP 13 40 3.3M 2.5 6.6 2.6 6.6
dilated AP-1 11 34 3.5M 2.4 6.0 2.5 6.3
dilated AP-2+PP 11 50 3.5M 2.2 5.9 2.5 6.2

Triggered Attention-based Streaming End-to-End ASR [11]

self-attention
type

dilation
mechanism

dev test
vlb vla M clean other clean other

restricted - ∞ 1 - 2.8 7.5 3.1 8.1
dilated AP-2+PP 9 1 15 2.9 7.9 3.0 8.1

TA-based decoder plus 480 ms for the encoder. In this setup,
the dilation mechanism only processes past encoder frames, i.e.,
input frames up to the query frame. Results demonstrate that di-
lated self-attention, where the dilation mechanism is applied to past
frames only, achieves about similar ASR results compared to using
the full past for self-attention, while the computational complex-
ity is substantially reduced. For example, for computing the next
self-attention output with 4 or 8 seconds of past audio input, the
computational complexity of self-attention is reduced by a factor 7.2
or 11.8 if no new dilation output is computed and by a factor 1.25
or 2.4 when a new full chunk is processed for extending the dilation
sequences ∆

[V,K]
i , which is computed every M=15 frames.

5. CONCLUSIONS

We proposed a dilation mechanism to reduce the computational com-
plexity of self-attention by enabling attention to an input sequence
with different levels of resolution. Subsampling, mean-pooling,
and attention-based pooling techniques are investigated for sum-
marizing and capturing long-context information in self-attention
and to reduce the frame rate of distant information relative to a
query. Dilated self-attention is non-recursive, which allows it to be
parallelized for efficient implementation, and it has demonstrated
substantial improvements compared to restricted self-attention with
attention-based pooling leading to the best ASR results. Dilated self-
attention has reached WERs of 2.4% and 5.9% for the test-clean and
test-other conditions of LibriSpeech, which is even slightly lower
than the standard self-attention mode with only 15% of the com-
putational costs for self-attention. In addition, dilated self-attention
has been applied to a triggered attention-based ASR system, where
it has demonstrated to be effective for streaming ASR as well.
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