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Abstract
This paper introduces a B-spline chained ellipses model representation for extended object
tracking (EOT) using high-resolution automotive radar measurements. With offline auto-
motive radar training datasets, the proposed model parameters are learned using the ex-
pectationmaximization (EM) algorithm. Then the probabilistic multi-hypothesis tracking
(PMHT) along with the unscented transform (UT) is proposed to deal with the nonlinear
forward-warping coordinate transformation, the measurement-to-ellipsis association, and the
state update step. Numerical validation is provided to verify the effectiveness of the proposed
EOT framework with automotive radar measurements.
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ABSTRACT

This paper introduces a B-spline chained ellipses model representation
for extended object tracking (EOT) using high-resolution automotive
radar measurements. With offline automotive radar training datasets,
the proposed model parameters are learned using the expectation-
maximization (EM) algorithm. Then the probabilistic multi-hypothesis
tracking (PMHT) along with the unscented transform (UT) is
proposed to deal with the nonlinear forward-warping coordinate
transformation, the measurement-to-ellipsis association, and the
state update step. Numerical validation is provided to verify the
effectiveness of the proposed EOT framework with automotive radar
measurements.

Index Terms— Extended object tracking, automotive radar,
unscented transform, PMHT, B-spline, random matrix model.

1. INTRODUCTION

With increasingly higher angular resolution and rapid advances in
automotive radar, more and more detection points per time scan are
obtained for a single object and, as a result, extended object tracking
(EOT) is well suited to summarize the statistics from the multiple
detection points and track the object. Compared with traditional
point object tracking, EOT can estimate not only the kinematic state
but also the extent state including the length and width of objects [1].

One key issue in EOT is to capture the spatial representation
of multiple detection points given the object state including the
position, orientation, length, and width. EOT is commonly used
together with LIDAR measurements and/or image processing than
automotive radar. As a consequence, the spatial representation can
be classified into two main categories: 1) contour models including
rectangular shape models [2,3], the star-convex shape models [4–8],
and B-spline curve [5], which reflect the measurement distribution
along the object contour, a case suitable to the LIDAR application;
and 2) surface models such as the random matrix model [9–12],
image moments [13] and a graph model [14], which assume that the
measurements are generated from the object surface.

Real-world automotive radar measurements are, however,
more complex and can neither be well described by the contour
model nor by the surface model, see, e.g., [15, 16]; see Fig. 1
for an illustration of the real-world accumulated automotive radar
measurements [17] in a unit coordinate where the origin is located
at the middle of the rear axle. This has motivated the third
category of models, the surface-volume models, to balance between
the contour models and the surface models with more realistic
features customized to the automotive radar measurements. Typical
examples of surface-volume models in the literature include the
volcanormal measurement model [18], the variational Gaussian
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Fig. 1. Accumulated automotive radar measurements in a unit
coordinate [17] and a B-spline chained ellipses model.

mixture model (GMM) [17], and the hierarchical truncated Gaussian
(HTG) model [19–22].

In this paper, we combine the contour and surface models to
introduce a new surface-volume model for the automotive radar
measurements. As illustrated in Fig. 1, we propose a regularized
multiple ellipses model to describe the spatial representation of
automotive radar measurements given the object state. Such a
regularization is enforced by the requirement that the center of each
ellipsis component (e.g., a typical surface model) has to be located
on an enclosed B-spline curve that represents the vehicle contour
(e.g., a typical contour model). Each ellipsis component is used to
cover the measurement spread along the B-spline object contour.
Our contour-based regularization of multiple ellipses is different
from the variational Gaussian mixture model of [17], where a
hierarchical signal model with prior distributions on ellipsis means
and covariance matrices, and a prior Dirichlet distribution on the
mixture coefficient, is used to regularize the spatial representation
and the conventional Gaussian mixture model of [23], where no
regularization was introduced.

With the proposed spatial representation model, we propose to
learn associated model parameters from offline automotive radar
measurements via the expectation-maximization (EM) algorithm
[24]. Once the proposed B-spline chained ellipses model is learned,
the unscented Kalman filter (UKF) [25] is used for forward-
warping the learned measurement model from the unit coordinate
into the global coordinate of the automotive radar measurements.
Probabilistic multi-hypothesis tracking (PMHT) is then applied to
assign the automotive measurements to different ellipsis components
in a probabilistic fashion and update both the kinematic and extent
states.



2. LEARNED B-SPLINE CHAINED ELLIPSES MODEL

2.1. Proposed B-Spline Chained Ellipses Model

The proposed spatial model consists of L Gaussian components
(i.e., ellipses) with their component means located on a B-spline
curve. For each ellipse centered at µl with an extent Σl, we can
associate the Nk measurements with an association probability
ρli. Given the measurement-to-ellipse assignment, the likelihood
function becomes
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are, respectively, the sample mean and spread of the l-th ellipse, N
denotes the Gaussian distribution andW is the Wishart distribution.
With allL ellipses and given the measurement-to-ellipse association,
the L random matrices model is defined as

p(Z|θ, ρ) =

L∑
l=1

πlφ (Zk|Nl, µl,Σl, ρ) , (3)

where the mixture weights πl are assumed to equal πl = 1/L.
Moreover, we assume that the ellipse centers are located on a

B-spline curve define by c(r)∈ R2×1 of degree d [26]

c(r) =

m∑
j=0

pjBj,d(r), 0 ≤ r ≤ m− d+ 1, (4)

where pj ∈ R2×1 is the j-th control point, m + 1 is the number
of control points, and Bj,d(r) is the basis function with a parameter
r [26]. By enforcing µl = c(rl) with rl denoting the corresponding
parameter of the l-th ellipse center µl, the B-spline chained ellipses
model is defined as

p(Z|θ, ρ) =

L∑
l=1

πlφ (Zl|Nl, c(rl),Σl, ρ) , (5)

where the parameters of the proposed model are the number of
measurements for each componentNl, control points of the B-spline
curve {pj}mj=0 and the covariance matrices of each component
{Σl}Ll=1.

2.2. Offline Model Learning via EM

To learn the model parameter in the above section, we apply the
following coordinate transformation to convert the training dataset
Z = {zi}Ni=1 into a unit coordinate system that originates at the
object center m = [xm, ym]∈ R2×1 and is oriented such that the
x-axis points towards the front:

z̃i = S−1R−1
ψ (zi −m) , (6)

where Rψ∈ R2×2 is the rotation matrix as a function of the
orientation angle ψ and S = diag(l, w) is a scaling matrix. With

the transformed training measurements Z̃ = {z̃i}Ni=1, we derive
the EM algorithm to estimate the associated parameters (i.e., hidden
random variables and deterministic model parameters) of the B-
spline chained ellipses model.

Expectation step is to update the hidden random variables
{ρl, z̄l, Z̄l}. First we calculate the mixture weights from the
posterior association probability ρli for z̃i [27]

ρli =
1
L
×N (z̃i;µl, 4Σl)

1
L
×
∑L
l=1N (z̃i,;µl, 4Σl) + λ

, (7)

where µl and 4Σl are, respectively, the mean and covariance matrix
of each component, the scaling factor 4 is used to approximate a
uniform distribution [10] and λ is the probability of the uniformly
distributed outliers. Then, the remaining hidden variables z̄l and Zl
can be updated using (1) and (2), respectively.

Maximization step is to update the model parameters θ =
{pj ,Σl} based on the Q-function of (5) as
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We can reformat the B-spline curve in a matrix-vector form as µl =
Blp, where Bl = blkdiag

(
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)
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in the x- and y- coordinates, respectively. By setting the derivative
of Q(θ) (with respect to θ) to 0, we have p = H+M, where H+

is the Moore-Penrose inverse of H =
∑L
l=1

(
N̄lB

T
l Σ
−1
l Bl

)
and

M =
∑L
l=1

(
N̄lB

T
l Σ
−1
l zl

)
, and

Σl =
1

N̄l + 1

[
N̄l (z̄l − µl) (z̄l − µl)T + Z

T
l

]
. (9)

We then iterate between the estimates of p and Σl until the
convergence is achieved, where the convergence criterion can
be a predetermined likelihood in (8), the relative changes of the
estimated parameters over consecutive iterations, or a predetermined
maximum iteration number.

3. ONLINE TRACKING USING PMHT AND UKF

This section introduces the UKF-PMHT tracking algorithm with
the offline learned spatial model. In a nutshell, we first use the
UKF to compute the approximate mean and covariance of ellipse-
assigned measurements in the global coordinate system, which
are nonlinearly converted from the predicted kinematic and extent
states and the corresponding measurement in the unit coordinate
system. Then, the PMHT is used to associate the measurements to
the ellipses in the global coordinates and update the object state.
Compared with the local linearization-based extended Kalman filter
and computationally more expensive particle filter, the UKF directly
approximates the posterior by a Gaussian density represented by a
set of deterministically chosen sample points and, hence, achieves a
trade-off between the state estimation accuracy (over the EKF) and
the complexity (over the particle filter) [25].

3.1. Forward-Warping Unscented Transformation

Given the learned B-spline chained ellipses model and assuming
a measurement xµ in the unit coordinate system is distributed



with respect to the l-th ellipse N (µl,Σl), the corresponding
measurement hl,k(xk|k−1) in the global coordinate system is
defined as

hl,k(xk|k−1) = mk|k−1 +Rψk|k−1
· Sk|k−1 · xµ (10)

where mψk|k−1
, Rψk|k−1

and S = diag(lk|k−1, wk|k−1) are
defined the same way as (6) except that all augments are given by the
predicted state (k|k− 1) with corresponding predictive distributions
(e.g., the Gaussian distribution).

Since the above transformation in (10) is nonlinear, particularly
with respect to the predictive orientation angle, we apply the
unscented transform (UT) [25] to determine the mean h̄l,k(xk|k−1)
and covariance matrix Xl of hl,k(xk|k−1). To this end, we augment
the predicted state with xµ as xaug =

[
xk|k−1,xµ

]T ∈ Rna×1

with na = 9. Then, 2na + 1 weighted sample points (Ai,Wi), i.e.,
the sigma points, are determined such that they can describe the true
mean x̄aug and covariance matrix Paug of xaug:

A0 = x̄aug, W0 = κ/(na + κ), Wi≥1 = 0.5(na + κ),

Ai≤na = x̄aug +
(√

(na + κ)Paug

)
i
, (11)

Ai>na = x̄aug −
(√

(na + κ)Paug

)
i−na

, (12)

where κ is a scaling parameter such that κ + na 6= 0 and (
√

A)i
denotes the i-th row of the matrix square root of A. Each sigma point
is then propagated through the nonlinear function of (10), i.e., Bi =
hl,k(Ai), and the first two moments of hl,k(xk|k−1) are computed
as

h̄l,k =

2na∑
i=0

WiBi, (13)

Xl =

na∑
i=0

Wi(Bi − h̄l,k)(Bi − h̄l,k)T . (14)

In the global coordinate system, a measurement zi that is
assigned to the l-th ellipse can be defined as

zi = hl,k(xk|k−1) + nl, (15)

where hl,k(xk|k−1) ∼ N (h̄l,k,Xl) is the corresponding reflection
center, and nl ∼ N (0,R) is the measurement noise.

Remark: It is worth noting differences between our approach
and the one in [23]. First, as we stated earlier, we impose a
regularization on the mixture model via the B-spline contour,
while [23] used a standard Gaussian mixture model. This results
in a different Maximization step in the previous section where our
focus is to maximize the likelihood function with respect to the
B-spline associated parameters. Second, with the learned spatial
model in the unit coordinate, we use the UT to convert the learned
likelihood function from the unit coordinate system to the global
coordinate system, which is referred to as the forward-warping
likelihood transformation. On the other hand, [23] invokes an
implicit measurement model transforming new measurements in the
global frame into the local frame as a function of the unknown state
vector at time k, which can be referred to as the backward-warping
likelihood transformation.

3.2. Probabilistic Multi-Hypothesis Tracking

Given Zk = {zi,k}Nk
i=1 and L offline learned {hl,k(xk|k−1)}Ll=1

obtained at time step k, the PMHT is used to assign the measurements

Algorithm 1: The UKF-PMHT Tracking algorithm .

1 Set the maximum iteration number Niter;
2 Set the initial state vector x0 and covariance C0 ;
3 Obtain offline learned mean {µl}L1 and spread {Σl}L1 ;
4 while Tracking do
5 State xk|k−1 and Covariance Ck|k−1 are predicted

using UT and CT with polar velocity;
6 Obtain measurements Zk = {zk,l}Lk

l=1 at time k;
7 n= 1;xl=0,n=1 = xk|k−1;Cl=0,n=1 = Ck|k−1;
8 while n < Niter and not converged do
9 for l = 1 to L do

10 for f = 1 to L do
11 Calculate the mean h̄f,k(xl−1,n) and

covariance Xf,k using UT and (10);

12 Calculate weights ρli,k using (16);
13 Calculate the synthetic measurement z̄l,k using

(17) and covariance Czz using (18);
14 Calculate filter gain K = CxzC

−1
zz ;

15 Update state xl,n and covariance Cl,n;

16 n = n+ 1;

17 xk|k = xL,Niter , Ck|k = CL,Niter

to each ellipsis component. Different from the general PMHT
algorithm [27] to handle the measurement-to-object association and
update the kinematic states of multiple objects over consecutive
time steps, the PMHT algorithm here is applied to handle the
measurement-to-ellipsis association and update both kinematic
and extent states of a single object over the current time step.
Specifically, the PMHT employs the EM algorithm for a soft
measurement-to-ellipsis assignment that in turns creates a synthetic
measurement for each component. Mathematically, the measurement-
to-ellipsis association weights ρli,k, synthetic measurements z̄l,k,
and corresponding synthetic covariance matrix Czz are derived as
follows1

ρli,k =
N
(
zi,k; h̄l,k(xk|k−1), 4Xl,k + R

)∑Lk
l=1N

(
zi,k; h̄l,k(xk|k−1), 4Xl,k + R

) , (16)

z̄l,k =

∑Nk
i=1 ρ

l
i,kzi,k∑Nk

i=1 ρ
l
i,k

, (17)

Czz = 4Xl,k +
R∑Nk

i=1 ρ
l
i,k

. (18)

Then, the covariance between the states and measurements Cxz is
calculated during the UT procedure in (10) and the filter gain is
calculated as K = CxzC

−1
zz . The object states xk,l and covariance

Ck,l are updated based on the l-th measurement equation in (15),
i.e., the update stage of UKF.

The PMHT iterates between the expectation and maximization
steps until the predefined maximum iteration number Niter is
reached. In each iteration n, the object state xl,n and covariance
Cl,n are updated incrementally by each component (i.e., over l) in
the order of (10) and (16)-(18). The initial states and covariance are
xl=0,n=1 = xk|k−1 and Cl=0,n=1 = Ck|k−1. The overall online
tracking algorithm is shown in Algorithm 1.

1Due to space limit, we skip the detailed derivation of the PMHT and use
Algorithm 1 for the overall state update step.



(a) (b)

Fig. 2. Offline learned B-spline chained ellipses models for (a)
a sedan and (b) a truck from offline measurements in the unit
coordinate system.

4. SIMULATION RESULTS

In this section, we consider two vehicle types: a) a sedan and b) a
truck as shown in Fig. 2 to verify the offline EM learning step and
evaluate the online tracking performance. The length and width of
both vehicles are 5m and 2m, respectively.

4.1. Offline Model Learning

To verify the offline EM learning step, we synthesize automotive
radar measurements according to a uniform distribution within the
range of 0.2m inside the true vehicle contour and then convert these
offline measurements to the unit coordinate system according to (6)
with labeled object state. Due to the symmetry, the model is first
trained using only measurements in the positive y-coordinate region
and then flipped with respect to the x-axis to represent the other half.
Particularly, we set d = 2, m + 1 = 6 and L = 7 in (4) for the B-
spline.

Fig. 2 shows the learned B-spline chained ellipses model for the
two considered vehicle types in the unit coordinate system. Note
that the proposed model is capable of capturing both the object
contour and the measurement spread for different vehicles. For the
sedan type, the offline learned model demonstrates a good balance
between the measurement spread and the smoothness of the chained
ellipses over the B-spline contour. On the other hand, the offline
learned model for the truck shows larger discrepancy over the sharp
corners around the truck. Nevertheless, the learned B-spline contour
can still sufficiently reflect those sharp contour variations, while
corresponding ellipsis components adapt to those sharp variations
by increasing their extents (eigenvalues of the covariance matrices)
and tilting their orientation angles (eigenvectors of the covariance
matrices).

4.2. Online Tracking Performance

To verify the online tracking performance, we consider a trajectory
over which the vehicle moves towards the x+-axis in a linear motion,
turns towards the y+-axis, keeps the linear motion, turns towards
the x−-axis, and moves in a linear motion until the end. For
both considered vehicle types, the velocity is constant at 11.2m/s
(i.e., 25mph). Similar to the offline training data, the online
radar measurements are uniformly distributed within the range
of 0.2m inside the corresponding vehicle contour. As a result,
the tracking performance evaluation includes the effect of spatial
model mismatch as the learned spatial model only approximates
the true uniform spatial model; see the notable model mismatch
around the corners of Fig. 2 (b). Moreover, the number of the
measurements in each scan is Poisson distributed with mean of 20,

(a) (b)

(c) (d)

Fig. 3. Root mean square error (RMSE) of the UKF-PMHT
algorithm with the offline learned model and the standard random
matrix approach for different vehicle types: (a) position estimation
for the sedan; (b) extent (length) estimation for the sedan; (c)
position estimation for the truck; and (d) extent (width) estimation
for the truck.

and the measurement noise variance is given as diag
(
0.12, 0.12

)
.

The sampling period is 2 seconds and there are in total 52 time steps.
For each Monte-Carlo run, the kinematic and extent states are

initialized randomly as a Gaussian vector with mean [0, 0, 11.2, 0,
0.01, 5, 2]T and covariance diag{0.52, 0.52, 0.05, 0.12, 0.0352 ,
0.0052, 0.0052}. For the kinematic state, the coordinated turn (CT)
motion model with polar velocity [28] is used. For the extent state,
i.e., the length and width, a constant model is used with a process
noise with small covariance σ2

l = σ2
w = (1e−5)2 as the physical

length and width are unlikely changed over time.
Fig. 3 shows the tracking performance in terms of the root

mean square error (RMSE) for the position and extent estimation
for the considered vehicle types over 100 Monte-Carlo runs. The
conventional RMM approach [10] is included for comparison. It
is seen that, with the better learned spatial model, our UKF-PMHT
algorithm can achieve lower RMSEs for both position and extent
(length/width) estimations. Within the two learned models, the
position errors are larger for the truck than the case of sedan, likely
contributed from the larger model mismatch. The same observation
also holds for the extent estimation by comparing Fig. 3 (b) and (d).

5. CONCLUSIONS

In this paper, a new surface-volume spatial model was introduced for
automotive radar tracking. With an offline learned model, the UKF-
PMHT algorithm has been used to deal with the nonlinear forward-
warping transformation, measurement-to-ellipsis association, and
kinematic/extent state update. Preliminary performance evaluation
validated the proposed algorithm. Follow-up efforts include the
integration of Doppler measurements [29], extension to multi-
sensor fusion [22, 30] and multiple extended object tracking [31,
32], and experimental validation of real-world automotive radar
measurements [33].
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