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Perception-Aware Chance-Constrained
Model Predictive Control for Uncertain Environments

Angelo D. Bonzanini, Ali Mesbah, and Stefano Di Cairano

Abstract— We consider a known system that operates in
an unknown environment, which is discovered by sensing and
affects the known system through constraints. However, sensing
quality is typically dependent on system operation. Thus, the
control decisions should account for both the impact of control
on sensing and the impact of sensing on control. Since the
information acquired from sensing is of statistical nature, we
develop a perception-aware chance-constrained model predic-
tive control (PAC-MPC) strategy that leverages uncertainty
propagation models to relate control and sensing decisions to the
environment knowledge. We propose conditions for recursive
feasibility and provide an overview of the stability properties in
such a statistical framework. The performance of the proposed
PAC-MPC is demonstrated on a case study inspired by an
automated driving application.

I. INTRODUCTION

Model predictive control (MPC) [1] is especially effective
when accurate prediction models can be derived [2] such
as in automotive, aerospace and robotics. However, even
when accurate prediction models are available, significant
uncertainty may still be present in the environment, e.g.,
other vehicles in autonomous driving, obstacles for drones,
and human workers on a factory floor. Sensing devices, such
as LIDAR, radar, and cameras, can be used to estimate
the environment state, but such knowledge is still subject
to uncertainty. In addition, the entire sensing process may
depend on the decisions made by the controller. For instance,
sensing quality may depend on the system state, e.g., due to
its heading angle and distance from the target. Furthermore,
the information received from sensors may arrive in vast
amounts, which make it impossible to process it in its entirety
in real-time. Thus, decisions have to be made on what
information to process, i.e., where to focus the “attention”
of the sensors, and how much to process it.

The reduction of the environment uncertainty through the
sensing process is often partially dependent on the decisions
of the controller, either directly due to sensing decisions,
or indirectly due to how sensing is affected by the state
trajectory. Thus, there is an interdependence between sensing
and control. That is, the system should sense better where
it is commanded to go, and it should be commanded to go
where it can sense better. For example, if the system must
be steered to an area in which the environment is highly
uncertain, the controller may command to focus the sensing
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on that area to reduce the uncertainty before approaching.
Similarly, if the sensing quality depends on the system state,
the controller may choose to modify the system trajectory to
improve the sensing process.

Although most of the literature has focused on active
perception and control as separate objectives, some re-
search started to consider the two objectives simultaneously.
Recently, active perception approaches within the control
strategy have been proposed, whereby the controller seeks to
allocate the sensing resources such that it strikes a balance
between the control objective and reducing the uncertainty
in the environment. In [3], [4], the control actions are
selected for the exploration of an unknown environment
while also maximizing localization accuracy, and in [5],
distance-dependent measurement models are considered. In
[6], perception-aware model predictive control (PAMPC) is
introduced, whereby the goal of reference tracking is bal-
anced with the goal of improving perception, where the latter
amounts to maximizing the visibility of a point of interest.
Learning-based controllers have also been considered to
determine the approximate control inputs, while estimating
the uncertainty of the learned controller [7].

In this paper, we consider a known system in an uncertain
environment, which affects the system through the con-
straints. The sensing process that estimates the environment
state depends on the system states and inputs and is corrupted
by measurement noise, which results in a stochastic envi-
ronment estimate. We propose a perception-aware chance-
constrained MPC (PAC-MPC) that optimizes the control
objective and guarantees constraint satisfaction in probability
by accounting for the uncertainty in the estimate of the envi-
ronment and for the impact of the control decisions on it. By
incorporating active perception, PAC-MPC exploits sensing
more effectively to improve control performance. This, in
turn, reduces the uncertainty and enables less conservative
control.

Notation: R, Ry, Ry, Z, Zoy, and Z, are the sets
of real, nonnegative real, positive real, integer, nonnegative
integer, and positive integer numbers, respectively. Intervals
are denoted by Zp, ) = {z € Z : a < z < b}, where
Z can be substituted for any other set. For vectors x v,
we denote the i-th component by [z];, and the stacking
by (z,y) = [z y"]". || - ||, denotes the p-norm and
H$||22 = 2" Q. The Cholesky decomposition of Q is Q*/2,
while the trace is tr(Q). P[A] is the probability of event A.
For a random vector z, E[z] = p* is the expectation, %*
the covariance matrix, and x ~ AN (u*,X%) denotes it is
normally distributed. A function « : Ro4 — R4 is of class
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Fig. 1. Schematic of system, environment, and control architecture.

KC if it is continuous, strictly increasing, «(0) = 0, and of
class Koo if lim._, o a(c) = 00, also.

II. MODELING AND PROBLEM DEFINITION

Consider the discrete-time linear system

Tp1 = Az + Buy,

(1a)

yr = Exp, (1b)

where (A, B) is stabilizable, € R"= is the state vector,
u € R™ is the input vector, and y € R™v is the performance
output vector. System (1) is subject to constraints

reX={z:Hax<bt,uclU={u:Hu<b,}. (2

While (1) and (2) are perfectly known, the system operates
in an uncertain environment, which imposes additional con-
straints on (1). The environment is represented by a vector
w € R™, which we simply call the environment. We model
wy, at any k € Zo4 as a Gaussian random vector, wy ~
N (1, 2. Due to w being random, the constraints imposed
by the environment on (1) are formulated as individual
chance constraints (ICCs) [8]

P [h;rxk + n;rwk < bs] >1—¢es, s€EZLnn,, Q)

where ¢, is the allowed violation probability for the s ICC.
We model the environment dynamics and its measure-
ments as

wit1 = AYwy, + B¢y,
Y = C"(zg, up)wy + D™ (zk, up)Cr,

where 1, € R™ is the measurement of the environment,
&x ~ N (¢, 2€) is the process noise, and ¢ ~ N (u¢, X¢)
is the measurement noise. In (4b), ¢ depends on the state
and input vectors of (1), which allows to represent a variable
sensing quality depending on x, u. In what follows & ~
N(0,1), ¢ ~ N(0,I), since standard steps can be applied
to (4) to reformulate into this case.

The estimate of w is denoted by a Gaussian random
variable @ ~ N (u®, %), where

(i1, 210) = g(ud s S o, o, ug), (5)

and g is a general estimator, which includes a model of (4)
and depends on the state and input of (1) due to (4b).

The problem tackled in this paper is to control (1) such that
the performance output y tracks a reference r € R™v while

(4a)
(4b)

enforcing constraints (2) and chance constraints (3) based
on the estimate w of the environment w. Figure 1 shows
a schematic of the control architecture, the environment,
and the system. In the optimal control problem (OCP),
we propagate the uncertainty moments over the prediction
horizon by a model § of the estimator g, where, ideally,
g = g, although in practice § may be an approximation of
g. At each time step k, given x and the estimate wy of wy,
the PAC-MPC solves the OCP

J*(xk,rk) ZII[IJin J(wk,Uk,I‘k) (63.)
k

St Ty = A$j|k + BUj|k (6b)

e~ N (1 2 ) (60)

(U5 1ji Zai) = GG Bl L Tk i) (6d)
(xj|k,uj|k) eX xU (6e)
P [hd zjp +nd wyp < bs] > 1—e4,8 € L,y (6
(6g)

where N € Z4 is the prediction horizon, U, =

UQ|ky - - - ,uN|k.) is the control sequence and rp =

TOlks -+ > TN k) is the reference trajectory, which is antici-
patively known, and (6d) propagates the uncertainty, i.e., the
distribution of w, along the prediction horizon. Uncertainty
propagation via ¢, which includes a dependency on the mea-
surement equation (4b) and as a consequence on the state and
input of (1), enables predicting the impact of control actions
onto the estimate uncertainty, hence enabling perception-
aware control. Therefore, using (6d), the controller makes
decisions that may reduce the predicted uncertainty, which
impacts the constraints (6f), in order optimize the cost (6a)
and hence the control performance.

Remark 1: Since our focus is on the uncertainty due
to environment sensing, here (1) is assumed known. For
handling model uncertainty our approach can be merged with
the methods in [9]-[11]. |

In the next sections we propose designs for (6) that yield
a tractable formulation and provide conditions for stability
and recursive feasibility in the stochastic setting.

_ AU W W W
Lok = Tky Mok = M » Eouc =X,

III. UNCERTAINTY PROPAGATION AND CHANCE
CONSTRAINTS

Next we develop designs for the uncertainty propaga-
tion (6d), the chance constraints (6f), and the cost func-
tion (6a). In what follows, we use the short-hand notation
C;é} = C’“’(xk,uk), D}:’ = Dw(xk,uk).

A. Model-based Uncertainty Propagation

A first approach for the uncertainty propagation (6d)
is based on the availability of a model for (5). Specifi-
cally, we consider (5) to be a linear estimator with gain
Ly = L(xp,ug) that possibly depends on the states and
inputs of (1). This includes the Luenberger-type observers,
including the stationary Kalman filter, and can be extended
immediately to the Kalman filter, where the gain is time-
varying yet completely predictable. In this case, the mean



and covariance of w are propagated by

(7a)
(7b)

/‘;‘H+1|k = Ajlk“;p\k — Ljjjik
D b AT
Ee = M5 e + Qi + Rk

where Ay := (A" 4 L,C¥), Q := B (B®)', and Ry, :=
LyD¥ (LpD¥)".

Remark 2: In (7a), ¢j| . 1s the predicted measurement,
which can beA selected in several ways, ¥, = Yox = Yy or
wj‘,g =Cv u]“.i K where, in the second case, the mean evolves
in open-loop yet the estimator still affects the covariance. l

Remark 3: The gain dependency on x and u allows for
modeling the variability of the sensing process as a function
of the system state and sensing decisions. For instance, when
the measurement noise decreases due to a shorter sensing
distance, or when the sensing process focuses more resources
on the point of interest, the estimator gain can be higher. Bl

B. Learning-based Uncertainty Propagation

Instead of deriving model-based uncertainty propagation,
if historical data is available, machine learning (ML) models
can be learned to directly propagate the mean and covariance
in (6d). Here, we choose Gaussian Process regression (GPR)
because of its non-parametric form, which lends itself well
to learning arbitrary functions of states and inputs, and
yields the uncertainty associated with its predictions [12].
Given M training points from previously collected system
states and inputs, as well as measurements and estimates of
theA envir(?nment, let X; = (u?,Z}f’,xj,uj,wj) and Y; =
(151, X34 1), and define the training dataset as

D— {X = X, Xua]T, Y= [YO,...,YM_l]T}.

Given a test point X;, the Gaussian posterior distribution
mean and covariance conditioned to D are

[M}DH(XJ‘)}a = [m(X;)]a + k%, x (Fxx
+021) 7 ([Y]a — (X)), (a)
[2?41()(‘7‘)]11 =k%,x, — kX, x (xx + 051)71 k% x, (8b)

where a = {1,...,2n,} is the a™ dimension of Y, o2 is
the a™ diagonal term of the noise covariance of the training
outputs, m®(-) is the mean function of the GP prior, and
k. x, = k*(X1,X5) is the kernel function, such as the
squared exponential kernel function [12]. Concatenating the
individual predictions in (8), the GP-based predictor is

- W Wb
Wit1|k ~ N(Nj+1|k(ﬂj\k» Ej|kvxj\k'vuj\ka Vilk)s
W Wy
e (1 25 xj\kauj\ka'l/)j\k))-

Remark 4: An advantage of GPR is that the worst-case
quality of the model can be systematically quantified through
its covariance. Thus, model accuracy can be ensured up to a
pre-defined confidence interval. ]

C. Chance Constraints Formulation

Since iy, ~ N (1, B5,), e = wliy + (55,0 2Epn
where ;| ~ N(0,7), and (3) is formulated as

N R 1/2
P\ b @i +ng iy + (nIEﬁkns) ke < bs} >1—e,.

Since constraints are linear and §;;, is Gaussian ICCs are
formulated as the deterministic constraints

hy x40 pf + oas(n) Sins)? < by, )

with ay = Fy'(1 — &,), where Fy'(-) is the standard
normal inverse cumulative distribution function (CDF). Since
we consider ICCs, the probability of all constraints being
satisfied is mgar > 1524 (1 — €5).

D. Cost Function
The cost function

N-—-1
(@, Urve) = D U@, wgip, 5) + F@n i, rae) - (10)
j=0
balances the control objective with the acquisition of
information on the environment. In (10), #(x,u,r) =
e — |13, + [l — |3, + Se (r [£?] — e [S2])* and
F(z,r) = ||z — r“’||?;c , where Q., R., and P, are positive
(semi)definite weight matrices, and the state and input ref-
erence trajectories, r;”‘k and r;.Ll «» Tespectively, are generated
from the performance output reference rj;, by the standard
parametrization (rj, 7y, ) = [TmTu}Trﬂk [13]. The term
(tr [E“ﬂ —tr [E;‘S’] )2 aims at reducing the uncertainty in the
estimate of the environment by driving the covariance to its
steady-state. S. € Ry determines the trade-off between the
control objective and the uncertainty reduction.

IV. PAC-MPC AND ITS PROPERTIES

At time k, the PAC-MPC designed with components

designed based on Section III solves

J*(xg,r) = H(l]in J(xg, Uk, Tg) (11a)
k

St Tk = Aiﬂj‘k + Bu]'|k (11b)

(U1 S 0) = (05000 S5 ks 500 wgi) (110)

Vit = h (k5 Wj ke Vi) (11d)
(5, ujie) € X XU, (11e)
hy i+ 0y i+ as(nd S5ms) 2 < b (11D
(N> TN k) € Z5(VN|E) (11g)
Tojk = Tk, Yok = Yk, S € Liin,]s (11h)

where (11c) is the uncertainty propagation function, which
can take the form (7) for model-based PAC-MPC, or (8) for
learning-based PAC-MPC, (11d) is the function that is used
to predict the measurement, e.g., hy(-) = Yo OF hy(-) =
cv ugjl w» ¥ € R™ is a short hand notation for the effect of w
onto the constraints, i.e., []s = 0, ufl, +as(n) B%,m)'2,
so that (11f) becomes hsx + [y]s < bs, and (11g) is the

terminal constraint, which can be made trivial by setting



Z¢(ynk) = R for all v € R™. The optimal solution
of (11) is denoted by U} = (u8|k7"'7u*N—1\k)' Then, the
PAC-MPC law is

up = KT, il S k) = U (12)

Next, we present preliminary results to achieve recursive
feasibility and stability for (12) based on (11) in this stochas-

tic setting. For the remainder of this section we consider
model-based PAC-MPC where (11c) is implemented by (7).

A. Recursive Feasibility and Stability

The terminal set Z;(v) in (11g) is designed to ensure
recursive feasibility. Let ©w = Kz be a stabilizing control
gain for (1), and consider the control law

u=K(x—ry)+r, =Ke+T.r (13)

where T, = T, — KT,. Consider (1), (13), resulting in
Tk+1 = Aazp + Barg, and auxiliary constant dynamics
Tk+1 = Tk, Vk+1 = 7k, the re-formulation of ICCs as
H.zp + v, < b, and the admissible references as H,ry <
b.. Let z = (x,r,7), under mild assumptions, we can
compute [14] a set O C Zy = {z : H,z < b,} which
is positive invariant, i.e., if z € O then Azlz € O. Let y;, be
such that [y]s = nJ 1 + o (1] Tns) 172 ,and 71 = 7.
If (Ik,’l’k,’yk) € O, then (A 1 + B, 1rk,7’k+1,’yk+1) e O
for every vi+1 < vk. Thus, if z € O, r constant, and ~ does
not increase, the constraints are satisfied for all future steps.

The conditions for recursive feasibility are summarized by
the following assumptions.

Assumption 1: ,u}fH = /ﬂﬁk, E}fH = Zf’k.

Assumption 2: Yn|p+1 < YNk 1s admissible.

Assumption 3: VY1 = V1)

Although Assumptions 1-3 are challenging to satisfy in
general, below we discuss minor modifications to the PAC-
MPC that guarantee recursive feasibility even when these
assumptions are relaxed.

Theorem 1: Let Z¢(y) = {(x,r) : (x,7r,7) € O} and
assume that the OCP (11) with (11c) implemented by (7)
is feasible at time k. If, in addition, assumptions 1-3 are
satisfied, then, constraints (2), (3) are satisfied at time k£ + 1
and (11) is feasible at time k + 1 with probability mgyy.

Proof (sketch). If (11) is feasible at time k, by the
chance constraints under the state assumptions, there is
a probability at least mg,¢ that the constraints are satis-
fied at time k + 1. Let the optimal solution of the OCP
(11) at time k be U} = (ug‘k...u}‘v_”k) and X; =
(@, - - - @y, )» and define Iy = (75, - - - Vo). Construct
the candidate §olution Ups1 = (u*{lk,...,u*le,Kx}‘Vlk +
Teryy,)s and Xppq = (@75 Ty Ay, + Bary,)-
Since pj’y = Pl Xihy = i Ve = i, and
by (11d) we also have T'yy; = (’yi"lk, ..,fy}*\”k,yMkH)
Since U}, X, T’} satisfied the constraints, Upyi Xpi1
Pk+1 satisfy (1le), (11f). Finally, (zn, 7Nk YN|K) €
O implies  (TN|k+1; "N|k+1> IN|k+1) = (Aclx*N|k +
Bclr}‘vlk,er,yMk) € O by invariance. Since Yy|pt1 <
YN ks then (N k41, "N k+1) € Z(YN|k+1) 1s satisfied. W

Assumptions 1 and 2 are satisfied as follows. Let 1/Jk+1 =
wuk, i.e., Assumption 3 is satisfied. Then, ,uk+1 = M1|k’
Ek = le ., are satisfied when (7a), (7b) are the uncertainty
propagation equations used in (11c). The condition x| 4+1 <
Y|k (Assumption 2) holds if the estimator guarantees that
Ye+1 < Yk, componentwise, i.e., if the uncertainty on the
constraints does not increase, since g41 = ). This can
be enforced by the estimator design, and also by the PAC-
MPC control over the uncertainty reduction by sensing.

The remaining condition is to ensure Assumption 3, i.e.,
that we can correctly predict the next measurement, which is
challenging to satisfy in general. An incorrect prediction of
the measurement ;. affects the prediction of the mean
Mu kr1s but not the prediction of the covariance le Kl
While in practice an error in prediction of the mean may
not render (11) infeasible, and its effect on the constraint
tightening may be compensated for by the covariance esti-
mate, we propose a slight modification to the PAC-MPC that
accounts for the measurement prediction error.

Let A, = Yrtj — Vi ~ Pay(k,;) be a random vector
that captures the gredlctlon error in the measurement, and let
Pay(eg) =N (i ]IZ’, Zﬁ;f) be our model for the distribution
DPap(k,g)- We modify (7) as

- _ ~ ~Aw
“}Uﬂ\k = Aj\kﬂﬁk = Ltk — Lj\k“j|k (14)

n _ b AT AP T
Z;‘UJrl\k = Aj\kZ;’UIkAj\k + lek + Rk, "’Lj\kzjwc lek'

By decomposing ¥4; = Avj, + ¥k, we obtain the
uncertainty propagation (14) which includes the additional
uncertainty due to At);. Thus, if the measurement predic-
tion error is correctly modeled, i.e., Pay(k,j) = PAw(k.j)
each chance constraint is satisfied with the desired proba-
bility 1 — 5. If instead Ppay(k,j) # PAy(k,j)» the chance
constraint satisfaction probabilities may be different from the
desired ones, but will be larger with increasing uncertainty
in the measurement prediction error. Then, pay(x,;) can be
used as design parameter that trades off conservativeness in
the trajectory and probability of constraint satisfaction.

Remark 5: Since the cost is deterministic and the uncer-
tainty does not affect the dynamics (1) existing stability
results can be applied [1], [9] for the stability of the PAC-
MPC. Therefore, under the assumptions in Theorem 1, given
the terminal controller v = Kz, and if S, = 0, the PAC-MPC
(12) is asymptotically stable to the reference rj. The case
S. > 0 requires co-design of controller and estimator (5),
and is subject of ongoing research. |

V. CASE STUDY: AUTOMATED VEHICLE CONTROL

We consider a linearized model of the lateral vehicle
dynamics with respect to the centerlane, see, e.g., [15],
discretized with sampling period T = 0.050 s, which results
in (1) where © = (e1, €2, €1,€2), u =6, and y = ([z]1, [z]2),
e1 is the distance from the lane center, e5 is the orientation
error with respect to the road, and § is the wheel steering
angle. The values of A, B, F in (1) are from real vehicle
data [15]. We include two additional inputs [u]2, [u]3, which
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Fig. 2. Regulation to straight driving. Lateral position trajectories by
standard MPC and model-based PAC-MPC with distance-dependent mea-
surement (15). PAC-MPC overshoots the reference to approach the top road
boundary, which improves sensing.

determine the amount of sensing on the left and right road
boundary, respectively, so that u = (0, [u]a, [u]3).

The environment is modeled as w € R2, for representing
the lateral coordinate of the road boundaries, with A = I,
and BY = 0, with wy = [3.5,—0.5]T. We consider deter-
ministic input constraints, [~-1.5 0 0] < u, < [1.5 1 1]T,
and ICCs imposing to remain within the road boundaries,
P [z + 0wy <0] > 0.95, s = {1,2}, where h; =
10007, 9 =[-10]T,he=[-1000]", 7o =1[01]T.

We consider two measurement models with C* = I for
sensing the environment: (i) distance-dependent measure-
ments, where the noise increases with the distance [16],

[DP)i.i = diag(P([wi]i)) ||([wx)i — [wels) /LLlly . (15)

diag(P(-)) depends on the boundary position wy, Ly, is a
length-scale constant, and 3 is deterioration rate by distance;
and (i), input-dependent measurements, where [u] and [u]3
give direct control over the uncertainty,

Dy = P(wy) (I — 8 - diag([u]2, [u]3)), ~ (16)

so that, [u]> and [u]3 are the amount of sensor processing
for each side of the road.

A. Regulation to straight driving

First, we regulate the vehicle starting at e; = 1 m
to straight driving with 7, = [2,0]T (m, rad), under the
distance-dependent measurement (15). The road clearance
(width minus vehicle size) is 4 m, with boundaries at [y]; =
3.5mand [y]; = —0.5 m, initially unknown to the controller.
We set S. = 100 and limit D" to only depend on the
[yk]1 — [wg]1, i-e., only the left boundary is considered.

Fig. 2 shows the closed-loop trajectory of PAC-MPC with
uncertainty propagation (7). Since in (15) D® does not
depend on [u]z, [u]3, [u]2 = [u]s = 0, constantly.

Due to S. > 0, the model-based PAC-MPC balances the
control objective, i.e., tracking r, and the acquisition of envi-
ronment information, i.e., driving the covariance to steady-
state. Hence, as compared to a standard MPC (S, = 0),
PAC-MPC overshoots [r]; to better sense the road boundary
at [y]1 = 3.5 m, which makes the covariance converge faster.

* Pt A A A VA Ay

3 ——wpC
=~ Model PAC-MPC
2F Reference
Obstacle

u, (PAC-MPC)
u, (PAC-MPC)

U2 an

100 150

Discrete Time

Fig. 3. Double lane change maneuver. Standard MPC vs model-based PAC-
MPC with the input-dependent measurement model (16). Trajectories of
lateral position (top) and sensing inputs (bottom). The sensing inputs for the
standard MPC are fixed to zero, while model-based PAC-MPC manipulates
the sensing inputs.

B. Double Lane Change

Next we consider a double lane change maneuver, with
the input-dependent measurement model (16) and S, = 0,
so that sensing decisions are driven only by the constraints.
The road is as in the previous test, the vehicle starts at e; = 1
and the lane centerlines are at 0 m and at 3 m. In prediction,
the controller knows the future reference trajectory.

Fig. 3 shows the comparison of: (i) MPC with fixed sens-
ing, [u]a = [u]s = 0; and (i) PAC-MPC with model-based
uncertainty propagation (7) that can allocate the sensing
resources. Table I reports the absolute average errors (AAEs).

Since the MPC cannot optimize sensing to reduce the
environment uncertainty, the constraint tightening in the
ICCs (9) forces the vehicle to follow a more conservative
trajectory, where the MPC cannot reach the desired setpoints,
since these are too close to the estimated road boundaries.

In contrast, PAC-MPC can track the setpoints with practi-
cally no steady-state offset by exploiting [u]2 and [u]3 (Fig.
3 (bottom)) to reduce D"™. This reduces the covariance of
the environment measurement E;”‘k through the term R
in (7), which, in turn, reduces the constraint tightening in
(9). Fig. 3 (bottom) shows that when the vehicle operates
close to [y} = —0.5 m, [u]s is increased to reduce the
right boundary measurement uncertainty, whereas when the
vehicle operates close to [y]; = 3.5 m, [u]z is increased to

TABLE I
AVERAGE ABSOLUTE ERRORS FOR THE CLOSED-LOOP TRAJECTORIES

Strategy MPC  PAC (model) PAC (model) PAC (learning)
P N/A N/A p=0.5 p=20.5
AAE (m) 0.64 0.31 0.45 0.37




reduce the left boundary measurement uncertainty. Thus, the
AAE of the model-based PAC-MPC is 51% lower than that
of the MPC (Table I). At steady-state, the AAE of the model-
based PAMPC is only approximately 0.08 m. The controller
reduces the measurement uncertainty despite S. = 0 because
it is worth incurring an input cost for [u]5 and [u]3 for getting
closer to the reference trajectory.

Finally, we compare model-based PAC-MPC (Section III-
A) with learning-based PAC-MPC (Section III-B), which
uses a GPR learned model (8) to propagate the uncertainty
mean and covariance in prediction. We also introduce a
“sensing budget” constraint, [u]s + [u]3 < p which could
arise due to limitations in computation or energy.

Fig. 4 shows the closed-loop trajectories of the model-
based PAC-MPC and learning-based PAC-MPC with p =
0.5. The performance of the model-based PAC-MPC has
deteriorated compared to Fig. 3, shown by a larger tracking
error (Table I) due to the sensing budget constraint (p = 0.5).
Even though the learning-based PAC-MPC is subject to the
same constraint, it is able to track the desired reference
trajectory with minimal offset, and performs, on average,
18% better than the model-based PAC-MPC, see Table I.
Further simulations revealed that, in general, learning-based
PAC-MPC performed equally or better than model-based
PAC-MPC. This can be attributed to the GPR, which was
trained using simulation data. Due to the finite number
of samples, the empirical distribution of the environment
measurement uncertainties may not be exactly Gaussian.
Consequently, it may be better captured through the GPR
(8). Also, learning-based PAC-MPC may outperform model-
based PAC-MPC because it intrinsically accounts for the
measurement prediction error, therefore adjusting the tight-
ening in (14), without assuming any distribution for );;, or
treating the distribution as a tuning parameter.

VI. CONCLUSIONS

We presented a perception-aware chance-constrained MPC
(PAC-MPC) for a system operating in an unknown environ-
ment that affects the system through constraints, and where
the environment is discovered through sensing, which de-
pends on how the system is operated. Due to using stochastic
uncertainty propagation, which can be obtained from models
or data, and PAC-MPC enforces chance constraints and lever-
ages stochastic MPC approaches. We provided preliminary
conditions for recursive feasibility and stability, which are
being extended by ongoing research.
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