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Abstract

We propose an interpretable graph neural network based on algorithm unrolling to recon-
struct a time-varying graph signal from partial measurements. The proposed graph unrolling
networks expand algorithm unrolling to the graph-time domain and provide an interpretation
of the architecture design from a signal processing perspective. We unroll an iterative inpaint-
ing algorithm by mapping each iteration to a single network layer. The feed-forward process
is thus equivalent to iteratively reconstructing a time-varying graph signal. We train this
network through unsupervised learning, where the input time-varying graph signal is used to
supervise the training. By leveraging the learning ability of neural networks, we adaptively
capture appropriate priors from input data, instead of manually choosing signal priors. To
validate the proposed methods, we conduct experiments on three real-world datasets and
demonstrate that our networks achieve smaller reconstruction errors than conventional in-
painting algorithms and state-of-the-art graph neural networks.
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ABSTRACT

We propose an interpretable graph neural network based on
algorithm unrolling to reconstruct a time-varying graph sig-
nal from partial measurements. The proposed graph unrolling
networks expand algorithm unrolling to the graph-time do-
main and provide an interpretation of the architecture design
from a signal processing perspective. We unroll an iterative
inpainting algorithm by mapping each iteration to a single
network layer. The feed-forward process is thus equivalent
to iteratively reconstructing a time-varying graph signal. We
train this network through unsupervised learning, where the
input time-varying graph signal is used to supervise the train-
ing. By leveraging the learning ability of neural networks,
we adaptively capture appropriate priors from input data, in-
stead of manually choosing signal priors. To validate the pro-
posed methods, we conduct experiments on three real-world
datasets and demonstrate that our networks achieve smaller
reconstruction errors than conventional inpainting algorithms
and state-of-the-art graph neural networks.

Index Terms— Graph-temporal data, Graph neural net-
works, Algorithm unrolling

1. INTRODUCTION

Data today is often generated from a diverse sources, in-
cluding social, citation, biological, and physical infrastruc-
ture [1]. Unlike time-series signals or images, such signals
possess complex and irregular structures, which can be mod-
eled as graphs. Analyzing graph signals requires dealing with
the underlying irregular relationships. To address this, graph
signal processing generalizes classical signal processing tools
to the graph domain and provides a series of techniques to
process graph signals [1]. In practice, many graph signals
are varying across time, which can be further modeled as
time-varying graph signals [2]. Those techniques that process
time-varying graph signals can be widely used for skeleton-
based human action recognition [3], traffic forecasting [4],
and multi-agent motion prediction [5].

In this work, we consider time-varying graph signal in-
paiting. Signal inpainting is an important task in both signal
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and image processing [6]. A mainstream approach for in-
painting over graphs is to introduce a graph-regularization
term that promotes certain properties of the graph signal and
then solve a regularized optimization problem to obtain a
reconstruction [7]. In image inpainting, the total variation,
which captures the integral of the absolute gradient of the
image [8], is often used to recover the missing pixels. In
time-varying graph signal inpainting, some popular regular-
izers include low-rank [7] and a quadratic form of the graph
Laplacian, which captures the second-order difference of a
graph signal, corresponding to a graph smoothness prior [9].

A fundamental challenge here is that we may not know an
appropriate prior on an incomplete time-varying graph signal
in practice. It is then hard to choose an appropriate graph-
regularization term. Furthermore, some graph priors are too
complicated to be precisely described in mathematical terms
or may lead to computationally intensive algorithms. To solve
this issue, it is desirable to learn an appropriate prior from
given graph signals; in other words, the inpainting algorithm
should have sufficient feasibility to learn from and adapt to
arbitrary signal priors.

Deep neural networks have demonstrated strong power in
learning abstract, yet effective features from a huge amount
of data [10]. As the extension of neural networks to the graph
domain, graph neural networks have also received a lot of
attention and achieved significant success in social network
analysis and geometric data analysis [11]. One mainstream
graph neural network architecture is the graph convolutional
network (GCN), which relies on a layered architecture that
consists of trainable graph convolution operations, followed
by pointwise nonlinear functions [12]. These models have
shown remarkable success in graph-based semi-supervised
learning [11] and graph classification tasks [13]. However,
these neural network architectures are typically designed
through trial and error. It is thus hard to explain the de-
sign rationale and further improve the architectures [14].
Furthermore, most graph neural networks are developed for
supervised-learning tasks, such as node classification [11]
and graph classification [13]. These tasks require a large
number of ground-truth labels, which is expensive to obtain.

In this work, we leverage the powerful learning ability of
graph neural networks and combine them with interpretablity
based on a signal processing perspective. We further consider
an unsupervised-learning setting, where the network has to



learn from a single incomplete time-varying graph signal
while the ground-truth complete signal is unknown. Through
unsupervised learning, we demonstrate the generalization
ability of the proposed graph neural networks.

We first propose a general iterative algorithm for graph
signal inpainting and then transform it to a graph neural net-
work through algorithm unrolling, where each iteration is
mapped to a network layer [15]. Compared to conventional
inpainting algorithms [7], the proposed graph unrolling net-
work is able to learn a variety of priors from given graph sig-
nals by leveraging deep neural networks. Compared to many
other graph neural networks [11], the proposed unrolling
network is interpretable by following analytical iterative
steps. To validate the empirical performance of the proposed
method, we conduct experiments on three real-world datasets.
We find that graph unrolling networks consistently achieve
better inpainting performance than conventional graph sig-
nal denoising algorithms and state-of-the-art graph neural
networks in the unsupervised setting.

The main contributions of this work include:

e We propose interpretable graph unrolling networks by
unrolling a general iterative algorithm for graph signal in-
painting in an unsupervised-learning setting; and

e We conduct experiments on three real-world data to val-
idate that the proposed unrolling method outperforms both
conventional graph signal inpainting methods and state-of-
the-art graph neural networks in the unsupervised setting.

2. INPAINTING NETWORKS VIA UNROLLING

2.1. Problem Formulation

In this section, we mathematically formulate the task of
time-varying graph signal inpainting. We consider a graph
G = (V,&E,A), where V = {v,,}]; is the set of vertices,
E = {e,n}yM_| is the set of undirected edges, and A is a N-
by-IN graph adjacency matrix, representing connections be-
tween vertices. The weight A; ; of an edge from the ith to
the jth vertex characterizes the relation, such as similarity or
dependency, between the corresponding signal values. Using
the graph representation G, a time-varying graph signal is
defined as a map that assigns a time series s,, with length T’
to the vertex v,,. A time-varying graph signal can be written
as a N-by-T matrix defined by

xr], (1

X = N = [Xl X2

where the column vector x; is a graph signal at the ¢th time
stamp and the element X,, ; = (s,): = (X¢)n is the signal
coefficient of the nth vertex at the ¢th time stamp.

Consider a measurement of a graph-time signal modeled
as'Y = PoX + E, where o is element-wise multiplication, W is

a N-by-T sensing matrix with binary elements and E models
the noise. Our goal is to reconstruct the original time-varying
graph signal X given the measurement Y and the sensing ma-
trix W.

Without any prior information on the original time-
varying graph signals, it is impossible to reconstruct the
complete data from incomplete measurements. Here we
consider a smoothness prior along both temporal and graph
domains. Let Ap = C -1 be the temporal difference operator,
where I is the identity matrix and
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is a T-by-T cyclic-permutation matrix. For a time series s €
RT its first-order temporal difference is

S1 — ST
§2 — 81
ATS = . ) (2)
ST —S7-1

whose elements are the differences between signal coeffi-
cients at two consecutive time stamps. When all elements in
Ars are small, the time series s is smooth.

Let A be the graph difference operator, which is the M-
by-N oriented incidence matrix of G, whose rows correspond
to edges [16, 17]. For example, if e; is a directed edge that
connects the jth node to the kth node (j < k), the elements of
the ith row of A are

1, (=k;

(Ag)ig=1 -1, L=3;
0, otherwise.

For a graph signal x € R”, its first-order graph difference is
an edge signal Agx € RM, whose ith element (Agx), =
Ty — xj, assigns the difference between two adjacent signal
coefficients to the ¢th edge, where the ith edge connects the
jth node to the kth node (5 < k). When all elements in Agx
are small, the graph signal x is smooth.

For a time-varying graph signal X, we can combine these
two differences and define the first-order graph-time differ-
ence as Ag X A, which is a M-by-T matrix. When all ele-
ments in Ag X A are small, the time-varying graph signal X
is smooth. To make it more general, we can consider higher
order differences. Let AZ, X AZ be the pth-order graph and
gth-order time difference. We leverage this property to design
a smoothness prior.

2.2. Optimization

To recover X, we consider the optimization problem

. 1 A
min f(X) = 2 [VoX-Y[p+ 2 [AcXAr|g, ()



where A is a hyper-parameter. The first term is a data fitting
term and the second term reflects the regularization for a time-
varying graph signal.

Since this optimization problem is quadratic, we can solve
it using conjugate gradient descent [18]. The update step of
the kth iteration is then

T
f’(X(k)) 7.(K)
= N ) (42)
(Y+f’(Z(k))) 7.(k)
X (k+D) X®) 7 zk) (4b)
2
1 (k+1)
Y= 2
|7,
Z(k+1) _f/(X(k+1)) +’7Z(k)7 (4d)

where the gradientis f/(X) = WoX-Y + \ALAG X ApAT,
X@ = 0and 2 = - f/(X©). Note that Ly = ALA7 and
Lo = ALAG are high-pass filters in the temporal and graph
domains, respectively. In (3), we set the difference orders
p = q = 1; however, various data may fit other orders. To ad-
dress this, we can leverage the learning ability of deep neural
networks, to allow for more flexibility in the prior.

2.3. Algorithm Unrolling

Here we aim to unroll the iteration steps in (4) to one
network layer with trainable parameters. When we se-
quentially stack network layers, the architecture is hypo-
thetically equivalent to running the iteration steps multi-
ple times. The key step is to update the gradient com-
putation, which is leveraged in all four steps in (4). Let
h(Lg) =Lg+ 211;2 h, LY., where hy,s are graph filter coeffi-
cients and g(Lr) = Ly + ZqQ:2 gq L%, where g s are temporal
filter coefficients. We consider a trainable gradient function

fi(X) = WoX-Y+X-h(Lg) Xg(Ly), S

where A, h,s and g,s are trainable parameters, and the sub-
script w indicates the gradient function is trainable. We up-
date the iteration steps (4) by replacing the original gradient
function f(-) with (5). Note that we preserve the entire com-
putational structure and only update the gradient function,
which is equivalent to considering a data-adaptive regular-
ization term in (3). When h, = g, = 0, the trainable gra-
dient function degenerates to the original gradient function;
otherwise, the trainable gradient function generates higher-
order differences in graph and temporal dimensions, which
might regularize the reconstructed time-varying graph signal
be smoother.

To build a complete network architecture, we initial-
ize X = O,Z(O) = —gw(X(O)) and sequentially stack
K unrolling layers. Finally, we output the reconstruction
X = XE*D | The training parameters are shared across all

the network layers. To train those parameters, we directly
use (3) as the loss function with A = 0 and use the stochas-
tic gradient descent to minimize the loss and optimize this
network [10].

2.4. Discussion

Here we provide some insights into the proposed un-
rolling algorithm.
Closed-form solution. The closed-form solution of (3) is

vee(X) = (@ +ALr®Lg) ™" dvec(Y),

where ® = diag(vec(¥)) € RNT*NT  When the regular-

ization term in (3) is replaced by |h(L¢) Xg(LT)T”; with
fixed filters g(+), h(-), the closed-form solution is

vee(X) = (®+A-g(LE) @ h(Lg))  Bvec(Y).

When the filter coefficients are trainable, we can optimize
them by solving

2

2
(6)

The above optimization is clearly enormous. The proposed
unrolling algorithm is essentially a fast method to solve (6)
through a few unrolling layers.

Generalization ability. Here the total number of train-
ing parameters is merely P + (), which is much smaller than
the number of known entries 17 W1. It makes the generaliza-
tion easy. We also try individual trainable parameters in each
of the K unrolling layers. Then the total number of training
parameters becomes K (P + Q). The experiments show that
it produces similar performance with the shared setting. The
intuition is that algorithmic structure provides a strong prior,
which regularizes the training of parameters.

g(r.r)l’ihn(.) H(I)(((I’ +A-g(L7)® h(LG))i o - I)vec(Y)

3. EXPERIMENTAL RESULTS

In this section, we validate the superiority of the proposed
method on three real-world datasets.

3.1. Dataset

U.S. temperature data. We consider 150 weather sta-
tions in the United States that record their local tempera-
tures [19]. Each weather station has 365 days of recordings
(one recording per day), for a total of 54,750 measurements.
The graph representing these weather stations is obtained
by measuring the geodesic distance between each pair of
weather stations. The vertices are represented by an 8-nearest
neighbor graph, in which vertices represent weather stations,
and each station is connected to the eight closest ones.
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Fig. 1: Reconstruction errors as a function of the sensing ratio in three real-world datasets.

NYC traffic data. We consider the taxi-pickup activity in
Manhattan on January 1th, 2014. This is the Manhattan street
network with 2, 552 intersections and 3, 153 road segments.
We model each intersection as a vertex and each road segment
as an edge. Each graph signal is the hourly number of taxi-
pickups recorded in each intersection. We consider 24 graph
signals for one day in total [20]. Compared to temperature
data, the graph signals here are much more complicated. Even
two adjacent intersections have correlations, they could have
different traffic behaviors.

MSR action data. The dataset is captured by a depth sen-
sor, e.g., Kinect, and the 3D positions of 20 skeletal joints are
provided. We pick one action “hand waving”, which includes
55 frames. Each graph signal is the 3D coordinates supported
on a skeleton graph recorded in each frame [21].

3.2. Experimental Setup

Evaluation Metric. We evaluate the inpainting perfor-
mance by comparing the difference between the reconstruc-
tion and the original time-varying graph signal on the un-
known entries; that is,

Error = (117 - %) o (X = X) | /117 - ¥|

1 )

where the nominator computes the difference between the re-
construction and the original data on the unknown entries and
the denominator counts the number of unknown entries.
Baselines. We compare the proposed method with three
baseline methods: graph Laplacian-based inpainting [9], the
exact optimization (4) and graph convolutional network [11].
Graph Laplacian-based inpainting is a classical graph signal
inpainting method, which uses the quadratic term of graph
Laplacian as the regularization term in (3), promoting graph
smoothness. The exact optimization uses the conjugate gra-
dient descent to solve (3). Graph convolutional network is a
commonly-used graph neural network, which uses trainable
graph convolutions to reconstruct a time-varying graph sig-
nal from partial measurements with the loss function (3). For

graph Laplacian-based inpainting and the exact optimization,
we set the number of iterations to be 50,000 and make sure
the solutions achieve convergence. For graph convolutional
network, we set the number of network layers to be 3 and the
number of iterations to be 100. For the proposed unrolling
method, we set the filter orders P = 2,() = 5, the number
of network layers to be 50 and the number of iterations to be
100. In graph convolutional network, it is known that deep
layers lead to over-smoothing [22]. In our experiments, we
do not encounter the over-smoothing issue and deeper layers
usually lead to better performances.

3.3. Results

Fig. 1 shows the inpainting performance on three datasets.
The x-axis is the ratio between the number of known entries
and the number of total entries and the y-axis is the recon-
struction error. We see that the proposed unrolling method (in
red) outperforms the other competitors. Although the graph
convolution network has similar learning ability, it does not
include sufficient algorithmic structure and cannot reconstruct
well. This reflects the appropriate combination of learning
ability and algorithmic structure is important.

4. CONCLUSIONS

This paper proposes a graph unrolling network to recon-
struct a time-varying graph signal from partial measurements.
This network unrolls an iterative inpainting algorithm by
mapping each iteration into a single network layer where the
feed-forward process is equivalent to iteratively reconstruct-
ing a time-varying graph signal. By leveraging the learning
ability of neural networks, we adaptively capture appropri-
ate priors from input incomplete time-varying graph signals,
instead of manually choosing signal priors. To validate the
proposed methods, we conduct experiments on three real-
world datasets and demonstrate that our methods achieve
smaller reconstruction errors than conventional inpainting
algorithms and state-of-the-art graph neural networks.
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